Stepanov-like pseudo almost automorphic solutions to some stochastic differential equations

Yong-Kui Chang^{*}, Zhuan-Xia Cheng[†], and G. M. N'Guérékata[‡]

September 18, 2013

Abstract

In this paper, we introduce a new concept of S^2 -pseudo almost automorphy for stochastic processes. We apply the results obtained to investigate the existence and uniqueness of S^2 -pseudo almost automorphic mild solutions to some stochastic differential equations in a real separable Hilbert space. Our main results extend some known ones in the sense of square-mean pseudo almost automorphy or S^2 -almost automorphy for stochastic processes.

Keywords: Stepanov-like pseudo almost automorphic stochastic processes, Squaremean pseudo almost automorphy, Stochastic differential equations.

Mathematics Subject Classification(2000): 34K14, 60H10, 35B15, 34F05.

1 Introduction

The concept of almost automorphy is an important generalization of the classical almost periodicity. It was introduced by Bochner [5, 6], for more details about this topics we refer the reader to [14, 15, 17]. Diagana [11] introduced the concept of Stepanov-like pseudo almost automorphy as a natural generalization of the pseudo almost automorphy and an implement of the Stepanov-like almost automorphy due to N'Guérékata and Pankov [18]. Zhang, Chang and N'Guérékata [24, 25, 26] proved some properties and new ergodic theorems of Stepanov-like weighted pseudo almost automorphic functions and applied them to some evolution equations.

^{*}Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China. E-mail: lzchangyk@163.com

[†]Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China. E-mail: chengzx5566@163.com

[‡]Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, M.D. 21251, USA. E-mail: nguerekata@aol.com

Since noise or stochastic perturbation is unavoidable in real world, it is of great importance to consider the stochastic effects in the investigation of differential systems [1, 19, 21, 20, 23]. Bezandry and Diagana systematically studied the fundamental properties of almost periodic stochastic processes and investigated almost periodic solutions to different kinds of stochastic differential equations in a recent monograph [3]. Fu and Liu [12] introduced a new concept of square-mean almost automorphic stochastic processes, which is a natural generalization of almost automorphic functions in deterministic cases. The notation of square-mean pseudo almost automorphy for stochastic processes was presented by Chen and Lin [9], and was further developed by Bezandry and Diagana [4]. The concepts and properties of the square-mean weighted pseudo almost automorphy and the square-mean bi-almost automorphy for a stochastic process was also discussed in [10]. Chang, Zhao and N'Guérékata [8] presented the concept of S^2 -almost automorphy for stochastic processes, which is more general than square-mean almost automorphy and can be seen as a natural generalization of Stepanov-like almost automorphic functions in deterministic cases. For more results on topic, we refer to [7, 22, 27] and references therein.

From above mentioned works, we can see that the Stepanov-like pseudo almost automorphy is a generalization of the Stepanov-like almost automorphy and pseudo almost automorphy in deterministic cases. Thus, a natural question is: what is it in stochastic cases? In present paper, we first introduce a new concept of S^2 -pseudo almost automorphy for stochastic processes, which generalizes the notation of square-mean pseudo almost automorphy [4, 9] or S^2 -almost automorphy for stochastic processes [8]. And then we present some properties of such functions and apply this new concept to investigate the existence and uniqueness of S^2 -pseudo almost automorphic mild solutions to the following stochastic differential equations

$$dx(t) = Ax(t)dt + f(t)dt + g(t)dW(t), \ t \in \mathbb{R},$$
(1.1)

and

$$dx(t) = Ax(t)dt + f(t, x(t)) dt + g(t, x(t)) dW(t), \ t \in \mathbb{R},$$
(1.2)

where A is the infinitesimal generator of a C_0 -semigroup $\{T(t)\}_{t\geq 0}$ on $L^2(\mathbb{P}, \mathbb{H})$, and W(t) is a two-sided standard one-dimensional Brownian motion defined on the filtered probability space $(\Omega, \mathscr{F}, \mathbb{P}, \mathscr{F}_t)$, where $\mathscr{F}_t = \sigma\{W(u) - W(v); u, v \leq t\}$. Here f and g are appropriate functions specified later.

The rest of this paper is organized as follows. In Section 2, we introduce the notion of S^2 -pseudo almost automorphic processes and give some basic properties. In Section 3, we prove the existence and uniqueness of S^2 -pseudo almost automorphic mild solutions to some linear and nonlinear stochastic differential equations, respectively.

2 Preliminaries

Throughout the paper, we assume that $(\mathbb{H}, \|\cdot\|, \langle\cdot, \cdot\rangle)$ and $(\mathbb{K}, \|\cdot\|_{\mathbb{K}}, \langle\cdot, \cdot\rangle_{\mathbb{K}})$ are two real separable Hilbert spaces. Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a complete probability space. The notation $L^2(\mathbb{P}, \mathbb{H})$ stands for the space of all \mathbb{H} -valued random variables x such that

$$E||x||^2 = \int_{\Omega} ||x||^2 d\mathbb{P} < \infty.$$

For $x \in L^2(\mathbb{P}, \mathbb{H})$, let

$$\|x\|_2 = \left(\int_{\Omega} \|x\|^2 d\mathbb{P}\right)^{\frac{1}{2}}.$$

Then it is routine to check that $L^2(\mathbb{P}, \mathbb{H})$ is a Hilbert space equipped with the norm $\|\cdot\|_2$. We let $C(\mathbb{R}, L^2(\mathbb{P}, \mathbb{H}))$ (respectively, $C(\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}), L^2(\mathbb{P}, \mathbb{H}))$) denote the collection of continuous stochastic processes from \mathbb{R} into $L^2(\mathbb{P}, \mathbb{H})$ (respectively, the collection of continuous stochastic processes from $\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H})$ into $L^2(\mathbb{P}, \mathbb{H})$). In addition, W(t) is a two-sided standard one-dimensional Brownian motion defined on the filtered probability space $(\Omega, \mathscr{F}, \mathbb{P}, \mathscr{F}_t)$, where $\mathscr{F}_t = \sigma\{W(u) - W(v); u, v \leq t\}$.

Definition 2.1 ([12]) A stochastic process $x : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})$ is said to be stochastically continuous if

$$\lim_{t \to s} E \|x(t) - x(s)\|^2 = 0.$$

Definition 2.2 ([12]) A stochastically continuous stochastic process $x : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})$ is said to be square-mean almost automorphic if for every sequence of real numbers there exist a subsequence $\{s_n\}_{n \in \mathbb{N}}$ and a stochastic process $y : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})$ such that

$$\lim_{n \to \infty} E \|x(t+s_n) - y(t)\|^2 = 0 \quad and \quad \lim_{n \to \infty} E \|y(t-s_n) - x(t)\|^2 = 0$$

hold for each $t \in \mathbb{R}$. The collection of all square-mean almost automorphic stochastic processes $x : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})$ is denoted by $AA(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$.

Lemma 2.1 ([12]) $(AA(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})), \|\cdot\|_{\infty})$ is a Banach space when it is equipped with the norm

$$||x||_{\infty} := \sup_{t \in \mathbb{R}} ||x(t)||_2 = \sup_{t \in \mathbb{R}} (E||x(t)||^2)^{\frac{1}{2}},$$

for $x \in AA\left(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})\right)$.

Let $PAP_0(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ be the collection of all $x \in BC(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ such that

$$\lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} E \|x(s)\|^2 ds = 0.$$

Similarly, we define $PAP_0(\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H}))$ to be the collection of all bounded jointly continuous stochastic processes $f : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H})$ such that

$$\lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} E \|f(s, x)\|^2 ds = 0$$

uniformly in $x \in L^2(\mathbb{P}, \mathbb{H})$.

Definition 2.3 [4] A stochastic process $x \in BC(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ is called square-mean pseudo almost automorphic if it can be expressed as $x = y + \varphi$, where $y \in AA(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ and $\varphi \in PAP_0(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$. The collection of such functions will be denoted by $PAA(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$.

Definition 2.4 [4] A bounded continuous stochastic process $F : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H})$) is called square-mean pseudo almost automorphic if it can be expressed as $F = G + \Phi$, where $G \in AA(\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H}))$ and $\Phi \in PAP_0(\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H}))$. The collection of such functions will be denoted by $PAA(\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H}))$.

Lemma 2.2 [4] $(PAA(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})), \|\cdot\|_{\infty})$ is a Banach space with the supremum norm

$$||x||_{\infty} = \sup_{t \in \mathbb{R}} \left(E ||x(t)||^2 \right)^{1/2}.$$

Definition 2.5 ([12]) A function $f : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H})$, $(t, x) \to f(t, x)$, which is jointly continuous, is said to be square-mean almost automorphic in $t \in \mathbb{R}$ for each $x \in L^2(\mathbb{P}, \mathbb{H})$ if for every sequence of real numbers $\{s'_n\}_{n \in \mathbb{N}}$, there exist a subsequence $\{s_n\}_{n \in \mathbb{N}}$ and a stochastic process $\tilde{f} : f : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H})$ such that

$$\lim_{n \to \infty} E \|f(t+s_n, x) - \tilde{f}(t, x)\|^2 = 0 \quad and \quad \lim_{n \to \infty} E \|\tilde{f}(t-s_n, x) - f(t, x)\|^2 = 0$$

for each $t \in \mathbb{R}$ and each $x \in L^2(\mathbb{P}, \mathbb{H})$.

Definition 2.6 [2] The Bochner transform $x^b(t, s), t \in \mathbb{R}, s \in [0, 1]$, of a stochastic process $x : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})$ is defined by

$$x^b(t,s) := x(t+s).$$

Definition 2.7 [2] The Bochner transform $f^b(t, s, u), t \in \mathbb{R}, s \in [0, 1], u \in L^2(\mathbb{P}, \mathbb{H})$, of a function $f : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H})$ is defined by

$$f^{b}(t,s,u) := f(t+s,u)$$

for each $u \in L^2(\mathbb{P}, \mathbb{H})$.

Definition 2.8 [2] The space $BS^2(L^2(\mathbb{P}, \mathbb{H}))$ of all Stepanov bounded stochastic processes consists of all measurable stochastic processes $x : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})$ such that $x^b = L^\infty(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$. This is a Banach space with the norm

$$||x||_{S^2} = ||x^b||_{L^{\infty}(\mathbb{R};L^2)} = \sup_{t \in \mathbb{R}} \left(\int_0^1 E||x(t+s)||^2 ds \right)^{\frac{1}{2}}$$
$$= \sup_{t \in \mathbb{R}} \left(\int_t^{t+1} E||x(\tau)||^2 d\tau \right)^{\frac{1}{2}}.$$

Definition 2.9 [8] A stochastic process $x \in BS^2(L^2(\mathbb{P}, \mathbb{H}))$ is called Stepanov-like almost automorphic (or S^2 -almost automorphic) if $x^b \in AA(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$. In other words, a stochastic process $x \in L^2_{loc}(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ is said to be Stepanov-like almost automorphic if its Bochner transform $x^b : \mathbb{R} \to L^2(0, 1; L^2(\mathbb{P}, \mathbb{H}))$ is square-mean almost automorphic in the sense that for every sequence of real numbers $\{s'_n\}_{n\in\mathbb{N}}$, there exist a subsequence $\{s_n\}_{n\in\mathbb{N}}$ and a stochastic process $y \in L^2_{loc}(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ such that

$$\int_{t}^{t+1} E \|x(s+s_n) - y(s)\|^2 ds \to 0 \quad and \quad \int_{t}^{t+1} E \|y(s-s_n) - x(s)\|^2 ds \to 0$$

as $n \to \infty$ pointwise on \mathbb{R} . The collection of all such functions will be denoted by $AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})).$

Lemma 2.3 [8] Let $(x_n(t))_{n \in \mathbb{N}}$ be a sequence of S^2 -almost automorphic stochastic processes such that

$$\int_{t}^{t+1} E \|x_n(s) - x(s)\|^2 ds \to 0 \quad \text{for each} \quad t \in \mathbb{R},$$

as $n \to \infty$, then $x \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$.

Lemma 2.4 [8] $AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ is a Banach space when it is equipped with the norm $\|\cdot\|_{S^2}$.

Lemma 2.5 [8] If $x : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})$ is a square-mean almost automorphic stochastic process, then x is S^2 -almost automorphic, that is, $AA(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})) \subseteq AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$.

Definition 2.10 [8] A function $f : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H})$, $(t, x) \to f(t, x)$ with $f(\cdot, x) \in L^2_{loc}(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ for each $x \in L^2(\mathbb{P}, \mathbb{H})$, is said to be S²-almost automorphic in $t \in \mathbb{R}$ uniformly in $x \in L^2(\mathbb{P}, \mathbb{H})$ if $t \to f(t, x)$ is S²-almost automorphic for each $x \in L^2(\mathbb{P}, \mathbb{H})$. That means, for every sequence of real numbers $\{s'_n\}_{n\in\mathbb{N}}$, there exist a subsequence $\{s_n\}_{n\in\mathbb{N}}$ and a function $\tilde{f} : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H})$ with $\tilde{f}(\cdot, x) \in \mathbb{R}$.

 $L^2_{loc}(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ such that

$$\int_{t}^{t+1} E \|f(s+s_n,x) - \tilde{f}(s,x)\|^2 ds \to 0 \quad and \quad \int_{t}^{t+1} E \|\tilde{f}(s-s_n,x) - f(s,x)\|^2 ds \to 0$$

as $n \to \infty$ pointwise on \mathbb{R} and for each $x \in L^2(\mathbb{P}, \mathbb{H})$. We denote by $AS^2(\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H}))$ the set of all such functions.

Let us now introduce the new concept of S^2 -pseudo almost automorphy for stochastic processes.

Definition 2.11 A stochastic process $x \in BS^2(L^2(\mathbb{P},\mathbb{H}))$ is called S^2 -pseudo almost automorphic if it can be expressed as $x = y + \varphi$, where $y \in AS^2(\mathbb{R}; L^2(\mathbb{P},\mathbb{H}))$ and $\varphi^b \in PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P},\mathbb{H})))$. The collection of such functions will be denoted by $PAAS^2(\mathbb{R}; L^2(\mathbb{P},\mathbb{H}))$.

We also have

Definition 2.12 A function $f : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H}), (t, x) \to f(t, x)$ with $f(\cdot, x) \in L^2_{loc}(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ for each $x \in L^2(\mathbb{P}, \mathbb{H})$, is said to be S^2 -pseudo almost automorphic in $t \in \mathbb{R}$ uniformly in $x \in L^2(\mathbb{P}, \mathbb{H})$ if it can be expressed as $f = h + \varphi$, where $h \in AS^2(\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H}))$ and $\varphi^b \in PAP_0(\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H}))$. The collection of such functions will be denoted by $PAAS^2(\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H}))$.

Lemma 2.6 If $\phi^b(\cdot) \in PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$, then for any $h \in \mathbb{R}$, $\phi^b(\cdot - h) \in PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$.

Proof: Since

$$\frac{1}{2r} \int_{-r}^{r} \left[\int_{t}^{t+1} E \|\phi(s-h)\|^2 ds \right] dt = \frac{1}{2r} \int_{-r}^{r} \left[\int_{t-h}^{t-h+1} E \|\phi(s)\|^2 ds \right] dt$$
$$= \frac{1}{2r} \int_{-r-h}^{r-h} \left[\int_{t}^{t+1} E \|\phi(s)\|^2 ds \right] dt.$$

If $h \ge 0$,

$$\frac{1}{2r} \int_{-r}^{r} \left[\int_{t}^{t+1} E \|\phi(s-h)\|^2 ds \right] dt \le \frac{2(r+h)}{2r} \frac{1}{2(r+h)} \int_{-(r+h)}^{r+h} \left[\int_{t}^{t+1} E \|\phi(s)\|^2 ds \right] dt,$$

which implies $\phi^b(\cdot - h) \in PAP_0\left(\mathbb{R}; L^2\left(0, 1; L^2(\mathbb{P}, \mathbb{H})\right)\right)$. And if h < 0,

$$\frac{1}{2r} \int_{-r}^{r} \left[\int_{t}^{t+1} E \|\phi(s-h)\|^2 ds \right] dt \le \frac{2(r-h)}{2r} \frac{1}{2(r-h)} \int_{-(r-h)}^{r-h} \left[\int_{t}^{t+1} E \|\phi(s)\|^2 ds \right] dt,$$

which also implies $\phi^b(\cdot - h) \in PAP_0\left(\mathbb{R}; L^2\left(0, 1; L^2(\mathbb{P}, \mathbb{H})\right)\right)$. \Box

Note that $L^2(\mathbb{P}, \mathbb{H})$ is a Banach space, we state the following lemmas (cf. [24, 11]).

Lemma 2.7 [11] If $f \in PAA(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$, then $f \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$. In other words, $PAA(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})) \subseteq PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$.

Lemma 2.8 [11] The space $PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ equipped with the norm $\|\cdot\|_{S^2}$ is a Banach space.

Lemma 2.9 [11] Let $F : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H})$ be a S²-pseudo almost automorphic function. Suppose that F(t, u) is Lipschitzian in $u \in L^2(\mathbb{P}, \mathbb{H})$ uniformly in $t \in \mathbb{R}$, that is there exists a constant L > 0 such that

$$E \|F(t, u) - F(t, v)\|^2 \le LE \|u - v\|^2$$

for all $t \in \mathbb{R}$ and $u, v \in L^2(\mathbb{P}, \mathbb{H})$. If $\Phi \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$, then the operator $\Upsilon : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H}))$ defined by $\Upsilon(\cdot) := F(\cdot, \Phi(\cdot))$ belongs to $PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$.

Lemma 2.10 [24] Let $F : \mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}) \to L^2(\mathbb{P}, \mathbb{H})$ be a S²-pseudo almost automorphic function with F = G + H. Assume that F satisfies the following conditions:

(i) $F(t, \cdot)$ is uniformly continuous on each bounded subset $K \subset L^2(\mathbb{P}, \mathbb{H})$ uniformly for $t \in \mathbb{R}$, that is for all $\varepsilon > 0$, there exists $\delta > 0$ such that $u, v \in K$ and $E ||u - v||^2 < \delta$ imply that $E ||f(t, u) - f(t, v)||^2 < \varepsilon$ for all $t \in \mathbb{R}$;

(ii) $G(t, \cdot)$ is uniformly continuous on each bounded subset $K \subset L^2(\mathbb{P}, \mathbb{H})$ uniformly for $t \in \mathbb{R}$;

(iii) For every bounded subset $K \subset L^2(\mathbb{P}, \mathbb{H})$, the set $\{F(\cdot, u) : u \in K\}$ is bounded in $PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$.

$$\begin{split} &If \ \Phi \ = \ \alpha + \beta \ \in \ PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})) \ with \ \alpha \ \in \ AS^2\left(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})\right), \ \beta^b \ \in \ PAP_0\left(\mathbb{R}; L^2\left(\mathbb{P}, \mathbb{H}\right)\right), \\ &L^2\left(0, 1; L^2(\mathbb{P}, \mathbb{H})\right)\right) \ and \ \overline{\{\alpha(t) : t \in \mathbb{R}\}} \ is \ compact, \ then \ for \ any \ \Phi \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})), \\ &the \ operator \ \Upsilon : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})) \ defined \ by \ \Upsilon(\cdot) := F(\cdot, \Phi(\cdot)) \ belongs \ to \ PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})). \end{split}$$

3 Main results

In this section, we investigate the existence of S^2 -pseudo almost automorphic solutions for the problems (1.1) and (1.2).

Definition 3.1 An \mathscr{F}_t -progressively measurable stochastic process $\{x(t)\}_{t\in\mathbb{R}}$ is called a mild solution of the problem (1.1) on \mathbb{R} if it satisfies the corresponding stochastic integral equation

$$x(t) = T(t-a)x(a) + \int_{a}^{t} T(t-s)f(s)ds + \int_{a}^{t} T(t-s)g(s)dW(s)$$

for all $t \geq a$ and for each $a \in \mathbb{R}$.

Definition 3.2 An \mathscr{F}_t -progressively measurable stochastic process $\{x(t)\}_{t\in\mathbb{R}}$ is called a mild solution of the problem (1.2) on \mathbb{R} if it satisfies the corresponding stochastic integral equation

$$x(t) = T(t-a)x(a) + \int_{a}^{t} T(t-s)f(s,x(s)) \, ds + \int_{a}^{t} T(t-s)g(s,x(s)) \, dW(s)$$

for all $t \geq a$ and for each $a \in \mathbb{R}$.

We first list the following basic assumption:

(H1) The operator A is the infinitesimal generator of an exponentially stable C_0 -semigroup $\{T(t)\}_{t\geq 0}$ on $L^2(\mathbb{P}, \mathbb{H})$; that is, there exist M > 0, $\delta > 0$ such that $||T(t)|| \leq Me^{-\delta t}$, for all $t \geq 0$.

Theorem 3.1 Under previous assumptions, if we assume that (H1) holds, then the problem (1.1) has a unique mild solution $x \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$.

Proof: Let us first prove uniqueness. It is conducted similarly as in the proof of [16, Theorem 3.1]. Assume that $x : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})$ is bounded stochastic process and satisfies the homogeneous equation

$$dx(t) = Ax(t)dt, \quad t \in \mathbb{R}.$$
(3.1)

Then x(t) = T(t-s)x(s), for any $t \ge s$. Thus $||x(t)|| \le MKe^{-\delta(t-s)}$ with $||x(s)|| \le K$ for $s \in \mathbb{R}$ almost surely. Take a sequence of real numbers $\{s_n\}_{n\in\mathbb{N}}$ such that $s_n \to -\infty$ as $n \to \infty$. For any $t \in \mathbb{R}$ fixed, one can find a subsequence $\{s_{n_k}\}_{k\in\mathbb{N}} \subset \{s_n\}_{n\in\mathbb{N}}$ such that $s_{n_k} < t$ for all $k = 1, 2, \cdots$. By letting $k \to \infty$, we get x(t) = 0 almost surely.

Now, if $x_1, x_2 : \mathbb{R} \to L^2(\mathbb{P}, \mathbb{H})$ are bounded solutions to Eq. (1.1), then $x = x_1 - x_2$ is a bounded solution to Eq. (3.1). In view of the above, $x = x_1 - x_2 = 0$ almost surely, that is, $x_1 = x_2$ almost surely.

Now let us investigate the existence. Since $f, g \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$, there exist $\rho, \varpi \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ and $\phi^b, \psi^b \in PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$ such that $f = \rho + \phi, g = \varpi + \psi$.

Consider for each $n = 1, 2, \cdots$, the integrals

$$x_n(t) = \int_{n-1}^n T(\sigma)\rho(t-\sigma)d\sigma, \ y_n(t) = \int_{n-1}^n T(\sigma)\varpi(t-\sigma)dW(\sigma),$$

and

$$z_n(t) = \int_{n-1}^n T(\sigma)\phi(t-\sigma)d\sigma, \ w_n(t) = \int_{n-1}^n T(\sigma)\psi(t-\sigma)dW(\sigma)$$

for each $t \in \mathbb{R}$. First, by using Hölder's inequality, we get

$$\int_{t}^{t+1} E \|x_{n}(s)\|^{2} ds = \int_{t}^{t+1} E \left\| \int_{n-1}^{n} T(\sigma) \rho(s-\sigma) d\sigma \right\|^{2} ds$$

Stepanov-like pseudo almost automorphic solutions

$$\leq \int_{t}^{t+1} \int_{n-1}^{n} \|T(\sigma)\|^{2} E\|\rho(s-\sigma)\|^{2} d\sigma ds \leq M^{2} \int_{t}^{t+1} \int_{n-1}^{n} e^{-2\delta\sigma} E\|\rho(s-\sigma)\|^{2} d\sigma ds \leq M^{2} \int_{n-1}^{n} e^{-2\delta\sigma} \left(\int_{t}^{t+1} E\|\rho(s-\sigma)\|^{2} ds\right) d\sigma \leq M^{2} \|\rho\|_{S^{2}}^{2} \int_{n-1}^{n} e^{-2\delta\sigma} d\sigma \leq \frac{M^{2}}{2\delta} \|\rho\|_{S^{2}}^{2} e^{-2\delta n} (e^{2\delta} - 1).$$

Since $\frac{M^2}{2\delta} \|\rho\|_{S^2}^2 (e^{2\delta} - 1) \sum_{n=1}^{\infty} e^{-2\delta n} < \infty$, we deduce from the well-known Weierstrass test that the series $\sum_{n=1}^{\infty} x_n(t)$ is convergent in the sense of the norm $\|\cdot\|_{S^2}$ uniformly on \mathbb{R} . Now let

$$\Phi(t) := \sum_{n=1}^{\infty} x_n(t) \quad \text{for each} \quad t \in \mathbb{R}.$$

Observe that

$$\Phi(t) = \int_{-\infty}^{t} T(t-s)\rho(s)ds \quad \text{ for each } t \in \mathbb{R}.$$

Clearly, $\Phi(t) \in C(\mathbb{R}, L^2(\mathbb{P}, \mathbb{H})).$

Now, by using an estimate on Itô integral established in Ichikawa [13], we obtain that

$$\begin{split} \int_{t}^{t+1} E \|y_{n}(s)\|^{2} ds &= \int_{t}^{t+1} E \left\| \int_{n-1}^{n} T(\sigma) \varpi(s-\sigma) dW(\sigma) \right\|^{2} ds \\ &\leq \int_{t}^{t+1} \int_{n-1}^{n} \|T(\sigma)\|^{2} E \|\varpi(s-\sigma)\|^{2} d\sigma ds \\ &\leq M^{2} \int_{t}^{t+1} \int_{n-1}^{n} e^{-2\delta\sigma} E \|\varpi(s-\sigma)\|^{2} d\sigma ds \\ &\leq M^{2} \int_{n-1}^{n} e^{-2\delta\sigma} \left(\int_{t}^{t+1} E \|\varpi(s-\sigma)\|^{2} ds \right) d\sigma \\ &\leq M^{2} \|\varpi\|_{S^{2}}^{2} \int_{n-1}^{n} e^{-2\delta\sigma} d\sigma \\ &\leq \frac{M^{2}}{2\delta} \|\varpi\|_{S^{2}}^{2} e^{-2\delta n} (e^{2\delta} - 1). \end{split}$$

Since $\frac{M^2}{2\delta} \|\varpi\|_{S^2}^2 (e^{2\delta} - 1) \sum_{n=1}^{\infty} e^{-2\delta n} < \infty$, we deduce from the Weierstrass test that the series $\sum_{n=1}^{\infty} y_n(t)$ is convergent in the sense of the norm $\|\cdot\|_{S^2}$ uniformly on \mathbb{R} . Furthermore,

$$\Psi(t) := \int_{-\infty}^{t} T(t-s)\varpi(s)dW(s) = \sum_{n=1}^{\infty} y_n(t), \quad t \in \mathbb{R},$$

and clearly $\Psi(t) \in C(\mathbb{R}, L^2(\mathbb{P}, \mathbb{H})).$

Now let us show that each $x_n, y_n \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$. First, we prove that $x_n \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$. Indeed, let $\{s'_m\}_{m \in \mathbb{N}}$ be a sequence of real numbers. Since $\rho \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$, there exist a subsequence $\{s_m\}_{m \in \mathbb{N}}$ of $\{s'_m\}_{m \in \mathbb{N}}$ and a stochastic process $\tilde{\rho} \in L^2_{loc}(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$

$$\int_{t}^{t+1} E \|\rho(s+s_m) - \tilde{\rho}(s)\|^2 ds \to 0 \text{ and } \int_{t}^{t+1} E \|\tilde{\rho}(s-s_m) - \rho(s)\|^2 ds \to 0$$

as $m \to \infty$ pointwise on \mathbb{R} . Moreover, if we let $\widetilde{x}_n(t) = \int_{n-1}^n T(\sigma) \widetilde{\rho}(t-\sigma) d\sigma$, we have

$$\begin{split} &\int_{t}^{t+1} E \|x_{n}(s+s_{m}) - \widetilde{x}_{n}(s)\|^{2} ds \\ &= \int_{t}^{t+1} E \left\| \int_{n-1}^{n} T(\sigma) \rho(s+s_{m}-\sigma) d\sigma - \int_{n-1}^{n} T(\sigma) \widetilde{\rho}(s-\sigma) d\sigma \right\|^{2} ds \\ &= \int_{t}^{t+1} E \left\| \int_{n-1}^{n} T(\sigma) [\rho(s+s_{m}-\sigma) - \widetilde{\rho}(s-\sigma)] d\sigma \right\|^{2} ds \\ &\leq \int_{t}^{t+1} \int_{n-1}^{n} \|T(\sigma)\|^{2} E \|\rho(s+s_{m}-\sigma) - \widetilde{\rho}(s-\sigma)\|^{2} d\sigma ds \\ &\leq M^{2} \int_{t}^{t+1} \int_{n-1}^{n} e^{-2\delta\sigma} E \|\rho(s+s_{m}-\sigma) - \widetilde{\rho}(s-\sigma)\|^{2} d\sigma ds \\ &\leq M^{2} \int_{n-1}^{n} e^{-2\delta\sigma} \left(\int_{t}^{t+1} E \|\rho(s+s_{m}-\sigma) - \widetilde{\rho}(s-\sigma)\|^{2} ds \right) d\sigma. \end{split}$$

Obviously, the last inequality goes to 0 as $m \to \infty$ pointwise on \mathbb{R} . Similarly we can prove that

$$\int_{t}^{t+1} E \|\widetilde{x}_{n}(s-s_{m}) - x_{n}(s)\|^{2} ds \to 0$$

as $m \to \infty$ pointwise on \mathbb{R} . Thus we conclude that each $x_n \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ and consequently their uniform limit $\Phi(t) \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$, by using Lemma 2.3.

Next, we show that each $y_n \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$. Since $\varpi \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$, then for every sequence of real numbers $\{s'_m\}_{m \in \mathbb{N}}$ there exists a subsequence $\{s_m\}_{m \in \mathbb{N}} \subset \{s'_m\}_{m \in \mathbb{N}}$ and a stochastic process $\widetilde{\varpi} \in L^2_{loc}(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ such that

$$\int_{t}^{t+1} E \|\varpi(s+s_m) - \widetilde{\varpi}(s)\|^2 ds \to 0 \text{ and } \int_{t}^{t+1} E \|\widetilde{\varpi}(s-s_m) - \varpi(s)\|^2 ds \to 0$$

as $m \to \infty$ pointwise on \mathbb{R} . Moreover, if we let $\tilde{y}_n(t) = \int_{n-1}^n T(\sigma) \tilde{\varpi}(t-\sigma) dW(\sigma)$, by using the Ito integral, we get

$$\int_t^{t+1} E \|y_n(s+s_m) - \widetilde{y}_n(s)\|^2 ds$$

Stepanov-like pseudo almost automorphic solutions

$$= \int_{t}^{t+1} E \left\| \int_{n-1}^{n} T(\sigma) \varpi(s+s_{m}-\sigma) dW(\sigma) - \int_{n-1}^{n} T(\sigma) \widetilde{\varpi}(s-\sigma) dW(\sigma) \right\|^{2} ds$$

$$= \int_{t}^{t+1} E \left\| \int_{n-1}^{n} T(\sigma) [\varpi(s+s_{m}-\sigma) - \widetilde{\varpi}(s-\sigma)] dW(\sigma) \right\|^{2} ds$$

$$\leq \int_{t}^{t+1} \int_{n-1}^{n} \|T(\sigma)\|^{2} E \|\varpi(s+s_{m}-\sigma) - \widetilde{\varpi}(s-\sigma)\|^{2} d\sigma ds$$

$$\leq M^{2} \int_{t}^{t+1} \int_{n-1}^{n} e^{-2\delta\sigma} E \|\varpi(s+s_{m}-\sigma) - \widetilde{\varpi}(s-\sigma)\|^{2} d\sigma ds$$

$$\leq M^{2} \int_{n-1}^{n} e^{-2\delta\sigma} \left(\int_{t}^{t+1} E \|\varpi(s+s_{m}-\sigma) - \widetilde{\varpi}(s-\sigma)\|^{2} ds \right) d\sigma.$$

Obviously, the last inequality goes to 0 as $m \to \infty$ pointwise on \mathbb{R} . Arguing in a similar way, we infer that

$$\int_t^{t+1} E \|\widetilde{y}_n(s-s_m) - y_n(s)\|^2 ds \to 0$$

as $m \to \infty$ pointwise on \mathbb{R} . Thus we conclude that each $y_n \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ and consequently their uniform limit $\Psi(t) \in AS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$, by using Lemma 2.3.

In the following, we intend to verify that each $z_n^b, w_n^b \in PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$. We first prove that $z_n^b \in PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$. Now by the fact $\{T(t)\}_{t\geq 0}$ is exponentially stable, we have

$$\int_{t}^{t+1} E \|z_{n}(s)\|^{2} ds = \int_{t}^{t+1} E \left\| \int_{n-1}^{n} T(\sigma)\phi(s-\sigma)d\sigma \right\|^{2} ds$$

$$\leq \int_{t}^{t+1} \int_{n-1}^{n} \|T(\sigma)\|^{2} E \|\phi(s-\sigma)\|^{2} d\sigma ds$$

$$\leq M^{2} \int_{t}^{t+1} \int_{n-1}^{n} e^{-2\delta\sigma} E \|\phi(s-\sigma)\|^{2} d\sigma ds$$

$$\leq M^{2} \int_{n-1}^{n} e^{-2\delta\sigma} \left(\int_{t}^{t+1} E \|\phi(s-\sigma)\|^{2} ds \right) d\sigma,$$

and hence for r > 0,

$$\frac{1}{2r} \int_{-r}^{r} \left(\int_{t}^{t+1} E \|z_{n}(s)\|^{2} ds \right) dt \leq M^{2} \int_{n-1}^{n} e^{-2\delta\sigma} \left[\frac{1}{2r} \int_{-r}^{r} \left(\int_{t}^{t+1} E \|\phi(s-\sigma)\|^{2} ds \right) dt \right] d\sigma.$$

It follows from Lemma 2.6 that

$$\lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} \left(\int_{t}^{t+1} E \|\phi(s-\sigma)\|^2 ds \right) dt = 0$$

as $s \to \phi^b(s - \sigma) \in PAP_0\left(\mathbb{R}; L^2\left(0, 1; L^2(\mathbb{P}, \mathbb{H})\right)\right)$.

Applying Lebesgue dominated convergence theorem it follows that

$$\lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} \left(\int_{t}^{t+1} E \|z_n(s)\|^2 ds \right) dt = 0.$$

and therefore $z_n^b \in PAP_0\left(\mathbb{R}; L^2\left(0, 1; L^2(\mathbb{P}, \mathbb{H})\right)\right)$.

Next, we prove that $w_n^b \in PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$. By the fact $\{T(t)\}_{t\geq 0}$ is exponentially stable and Itô isometry, we get

$$\int_{t}^{t+1} E \|w_{n}(s)\|^{2} ds = \int_{t}^{t+1} E \left\| \int_{n-1}^{n} T(\sigma)\psi(s-\sigma)dW(\sigma) \right\|^{2} ds$$

$$\leq \int_{t}^{t+1} \int_{n-1}^{n} \|T(\sigma)\|^{2} E \|\psi(s-\sigma)\|^{2} d\sigma ds$$

$$\leq M^{2} \int_{t}^{t+1} \int_{n-1}^{n} e^{-2\delta\sigma} E \|\psi(s-\sigma)\|^{2} d\sigma ds$$

$$\leq M^{2} \int_{n-1}^{n} e^{-2\delta\sigma} \left(\int_{t}^{t+1} E \|\psi(s-\sigma)\|^{2} ds \right) d\sigma,$$

and hence for r > 0,

$$\frac{1}{2r} \int_{-r}^{r} \left(\int_{t}^{t+1} E \|w_{n}(s)\|^{2} ds \right) dt \leq M^{2} \int_{n-1}^{n} e^{-2\delta\sigma} \left[\frac{1}{2r} \int_{-r}^{r} \left(\int_{t}^{t+1} E \|\psi(s-\sigma)\|^{2} ds \right) dt \right] d\sigma.$$

It again from Lemma 2.6 follows that

$$\lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} \left(\int_{t}^{t+1} E \|\psi(s-\sigma)\|^2 ds \right) dt = 0$$

as $s \to \psi^b(s - \sigma) \in PAP_0\left(\mathbb{R}; L^2\left(0, 1; L^2(\mathbb{P}, \mathbb{H})\right)\right)$.

By Lebesgue dominated convergence theorem it follows that

$$\lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} \left(\int_{t}^{t+1} E \|w_n(s)\|^2 ds \right) dt = 0,$$

and hence $w_n^b \in PAP_0\left(\mathbb{R}; L^2\left(0, 1; L^2(\mathbb{P}, \mathbb{H})\right)\right)$.

Arguing in the same way as previous, we can conclude from the Weierstrass test that

$$\mathbb{Z}(t) := \int_{-\infty}^{t} T(t-s)\phi(s)ds = \sum_{n=1}^{\infty} z_n(t), \quad t \in \mathbb{R},$$
$$\mathbb{W}(t) := \int_{-\infty}^{t} T(t-s)\psi(s)dW(s) = \sum_{n=1}^{\infty} w_n(t), \quad t \in \mathbb{R}$$

Applying $z_n^b, w_n^b \in PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$ and by a similar estimation of the remainder term of uniformly convergent series as [24], we can also deduce that the uniformly limit $\mathbb{Z}^b(t) = \sum_{n=1}^{\infty} z_n(t) \in PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$ and $\mathbb{W}^b(t) = \sum_{n=1}^{\infty} w_n(t) \in \mathbb{P}^{\infty}$

 $PAP_0(\mathbb{R}; L^2(0, 1; L^2(\mathbb{P}, \mathbb{H})))$. Therefore, $x(t) := \Phi(t) + \Psi(t) + \mathbb{Z}(t) + \mathbb{W}(t)$ is a S²-pseudo almost automorphic mild solution of Eq.(1.1).

Define

$$x(t) = \int_{-\infty}^{t} T(t-s)f(s)ds + \int_{-\infty}^{t} T(t-s)g(s)dW(s), \quad t \in \mathbb{R}$$

Obviously x is a bounded solution to Eq. (1.1). Let us prove that x(t) is a mild solution of the Eq. (1.1). Indeed, if we let $x(a) = \int_{-\infty}^{a} T(a-s)f(s)ds + \int_{-\infty}^{a} T(a-s)g(s)dW(s)$, then

$$T(t-a)x(a) = \int_{-\infty}^{a} T(t-s)f(s)ds + \int_{-\infty}^{a} T(t-s)g(s)dW(s)ds$$

But for $t \geq a$,

$$\begin{split} \int_{a}^{t} T(t-s)g(s)dW(s) &= \int_{-\infty}^{t} T(t-s)g(s)dW(s) - \int_{-\infty}^{a} T(t-s)g(s)dW(s) \\ &= x(t) - \int_{-\infty}^{t} T(t-s)f(s)ds + \int_{-\infty}^{a} T(t-s)f(s)ds - T(t-a)x(a) \\ &= x(t) - T(t-a)x(a) - \int_{a}^{t} T(t-s)f(s)ds. \end{split}$$

It follows that

In view of the above, it follows that x is the only bounded S^2 -pseudo almost automorphic mild solution to the equation (1.1). The proof is now complete. \Box

In order to investigate the solutions to the problem (1.2), we need the following additional assumptions:

(H2) The function $f \in PAAS^2 (\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H})) \cap C (\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}), L^2(\mathbb{P}, \mathbb{H}))$ and there exists a constant $L_f > 0$ such that

$$E||f(t,x) - f(t,y)||^2 \le L_f E||x - y||^2$$

for all $t \in \mathbb{R}$ and each $x, y \in L^2(\mathbb{P}, \mathbb{H})$.

(H3) The function $g \in PAAS^2 (\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}); L^2(\mathbb{P}, \mathbb{H})) \cap C (\mathbb{R} \times L^2(\mathbb{P}, \mathbb{H}), L^2(\mathbb{P}, \mathbb{H}))$ and there exists a positive number L_g such that

$$E||g(t,x) - g(t,y)||^2 \le L_g E||x - y||^2$$

for all $t \in \mathbb{R}$ and each $x, y \in L^2(\mathbb{P}, \mathbb{H})$.

Theorem 3.2 Assume the conditions (H1)-(H3) are satisfied, then the problem (1.2) admits a unique S^2 -pseudo almost automorphic mild solution on \mathbb{R} provided that

$$L_0 = \left[\frac{2}{\delta^2}M^2L_f + \frac{M^2}{\delta}L_g\right] < 1.$$
(3.2)

Proof: Let $\Lambda : PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H})) \to PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ be the operator defined by

$$\Lambda x(t) = \int_{-\infty}^{t} T(t-s)f(s,x(s)) \, ds + \int_{-\infty}^{t} T(t-s)g(s,x(s)) \, dW(s), \quad t \in \mathbb{R}.$$

From previous assumptions and the properties of $\{T(t)\}_{t\geq 0}$, one can easily see that Λx is well defined and continuous. By Lemma 2.9, we infer that both $F(\cdot) = f(\cdot, x(\cdot))$ and $G(\cdot) = g(\cdot, x(\cdot)) \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$. Then by using the proof of Theorem 3.1, we have that $\Lambda x \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ whenever $x \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$. Thus Λ maps $PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$ into itself.

Now we prove that Λ is a contraction mapping on $PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$. Indeed, for each $t \in \mathbb{R}, x, y \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$, we see that

$$\begin{split} &\int_{t}^{t+1} E \| (\Lambda x)(s) - (\Lambda y)(s) \|^{2} ds \\ &= \int_{t}^{t+1} E \left\| \int_{-\infty}^{s} T(s-\sigma) [f\left(\sigma, x(\sigma)\right) - f\left(\sigma, y(\sigma)\right)] d\sigma \\ &+ \int_{-\infty}^{s} T(s-\sigma) [g\left(\sigma, x(\sigma)\right) - g\left(\sigma, y(\sigma)\right)] dW(\sigma) \right\|^{2} ds \\ &\leq 2 \int_{t}^{t+1} E \left\| \int_{-\infty}^{s} T(s-\sigma) [f\left(\sigma, x(\sigma)\right) - f\left(\sigma, y(\sigma)\right)] dW(\sigma) \right\|^{2} ds \\ &+ 2 \int_{t}^{t+1} E \left\| \int_{-\infty}^{s} T(s-\sigma) [g\left(\sigma, x(\sigma)\right) - g\left(\sigma, y(\sigma)\right)] dW(\sigma) \right\|^{2} ds \\ &\leq 2M^{2} \int_{t}^{t+1} \left[\left(\left(\int_{-\infty}^{s} e^{-\delta(s-\sigma)} d\sigma \right) \left(\int_{-\infty}^{s} e^{-\delta(s-\sigma)} E \| f\left(\sigma, x(\sigma)\right) - f\left(\sigma, y(\sigma)\right) \right) \|^{2} d\sigma ds \\ &+ 2 \int_{t}^{t+1} \int_{-\infty}^{s} \| T(s-\sigma) \|^{2} E \| g\left(\sigma, x(\sigma)\right) - g\left(\sigma, y(\sigma)\right) \right\|^{2} d\sigma ds \\ &\leq \frac{2}{\delta}M^{2} \int_{t}^{t+1} \int_{-\infty}^{s} e^{-\delta(s-\sigma)} E \| f\left(\sigma, x(\sigma)\right) - f\left(\sigma, y(\sigma)\right) \|^{2} d\sigma ds \\ &+ 2M^{2} \int_{t}^{t+1} \int_{-\infty}^{s} e^{-2\delta(s-\sigma)} E \| g\left(\sigma, x(\sigma)\right) - g\left(\sigma, y(\sigma)\right) \|^{2} d\sigma ds \\ &\leq \frac{2}{\delta}M^{2} L_{f} \int_{t}^{t+1} \int_{-\infty}^{s} e^{-\delta(s-\sigma)} E \| x(\sigma) - y(\sigma) \|^{2} d\sigma ds \\ &+ 2M^{2} L_{g} \int_{t}^{t+1} \int_{-\infty}^{s} e^{-2\delta(s-\sigma)} E \| x(\sigma) - y(\sigma) \|^{2} d\sigma ds \end{split}$$

$$\leq \frac{2}{\delta} M^2 L_f \int_0^\infty e^{-\delta\xi} \int_{t-\xi}^{t-\xi+1} E \|x(s) - y(s)\|^2 ds d\xi \\ + 2M^2 L_g \int_0^\infty e^{-2\delta\xi} \int_{t-\xi}^{t-\xi+1} E \|x(s) - y(s)\|^2 ds d\xi \\ \leq \left[\frac{2}{\delta^2} M^2 L_f + \frac{M^2}{\delta} L_g\right] \|x - y\|_{S^2}^2.$$

Hence

$$\|\Lambda x - \Lambda y\|_{S^2} = \sup_{t \in \mathbb{R}} \left(\int_t^{t+1} E \|(\Lambda x)(s) - (\Lambda y)(s)\|^2 ds \right)^{\frac{1}{2}} \le \sqrt{L_0} \|x - y\|_{S^2},$$

which implies that Λ is a contraction by (3.2). So by the Banach contraction principle, we draw a conclusion that there exists a unique fixed point $x(\cdot)$ for Λ in $PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$, such that $\Lambda x = x$. Moreover, using the same proof as in Theorem 3.1, we can see that $x(t) = T(t-a)x(a) + \int_a^t T(t-s)f(s, x(s)) ds + \int_a^t T(t-s)g(s, x(s)) dW(s)$ is a mild solution of the equation (1.2) and $x(\cdot) \in PAAS^2(\mathbb{R}; L^2(\mathbb{P}, \mathbb{H}))$. This finishes the proof. \Box

Remark 3.1 Our main results can be applied to investigate the existence and uniqueness of S^2 -pseudo almost automorphic mild solutions for the example in [9, Section 6].

Acknowledgements: This work was partially supported by NSF of China (11361032), Program for New Century Excellent Talents in University (NCET-10-0022), the Key Project of Chinese Ministry of Education (210226), and NSF of Gansu Province of China (1107RJZA091).

References

- [1] Øksendal Bernt, Stochastic Differential Equations, Springer, Berlin, Heidelberg, 2005.
- [2] P. Bezandry, T. Diagana, Existence of S²-almost periodic solutions to a class of nonautonomous stochastic evolution equations, Electron. J. Qual. Theory Differ. Equ. 35 (2008), 1-19.
- [3] P. Bezandry, T. Diagana, Almost Periodic Stochastic Processes, Springer, New York, Dordrecht, Heidelberg, London, 2011.
- [4] P. Bezandry, T. Diagana, P-th mean pseudo almost automorphic mild solutions to some nonautonomous stochastic differential equations, Afr. Diaspora J. Math. 12 (2011) 60-79.

- [5] S. Bochner, A new approach to almost automorphicity, Proc. Natl. Acad. Sci. USA 48 (1962) 2039-2043.
- [6] S. Bochner, Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci. USA 52 (1964) 907-910.
- [7] J. F. Cao, Q. G. Yang, Z. T. Huang, Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations, Stochastics 83 (2011) 259-275.
- [8] Y. K. Chang, Z. H. Zhao, G. M. N'Guérékaa, R. Ma, Stepanov-like almost automorphy for stochastic processes and applications to stochastic differential equations, Nonlinear Anal. RWA, 12 (2011) 1130-1139.
- [9] Z. Chen, W. Lin, Square-mean pseudo almost automorphic process and its application to stochastic evolution equations, J. Funct. Anal. 261 (2011) 69-89.
- [10] Z. Chen, W. Lin, Square-mean weighted pseudo almost automorphic solutions for non-autonomous stochastic evolution equations, J. Math. Pures Appl.(2013), doi: dx.doi.org/10.1016/j.matpur.2013.01.010.
- [11] T. Diagana, Existence of pseudo-almost automorphic solutions to some abstract differential equations with S^p-pseudo-almost automorphic coefficients, Nonlinear Anal. 70 (2009) 3781-3790.
- [12] M. M. Fu. Z. X. Liu, Square-mean almost automorphic solutions for some stochastic differential equations, Proc. Amer. Math. Soc. 138 (2010), 3689-3701.
- [13] A. Ichikawa, Stability of semilinear stochastic evolution equations, J. Math. Anal. Appl. 90 (1982) 12-44.
- [14] J. Liu, G. M. N'Guérékata, N. V. Minh, Topics on Stability and Periodicity in Abstract Differential Equations, World Scientific Publishing Co. Pte. Ltd. 2008.
- [15] G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Space, Kluwer Academic Plenum Publishers, New York, London, Moscow, 2001.
- [16] G. M. N'Guérékata, Existence and uniqueness of almost automorphic mild solutions for some semilinear abstract differential equations, Semigroup Forum, 69 (2004), 80-86.
- [17] G. M. N'Guérékata, Topics in Almost Automorphy, Springer, New York, Boston, Dordrecht, London, Moscow, 2005.

- [18] G. M. N'Guérékata, A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal. 68 (2008) 2658-2667.
- [19] Y. Ren, Reflected backward doubly stochastic differential equations driven by a Lévy Process, C. R. Acad. Sci. Paris, Ser. I. 348 (2010) 439-444.
- [20] Y. Ren, R. Sakthivel, Existence, uniqueness, and stability of mild solutions for secondorder neutral stochastic evolution equations with infinite delay and Poisson jumps, J. Math. Phys. 53, 073517 (2012).
- [21] R. Sakthivel, Y. Ren, N. I. Mahmudov, Approximate controllability of second order stochastic differential equations with impulsive effects, Modern Physics Letters B 24 (2010) 1559-1572.
- [22] R. Sakthivel, P. Revathi, S. Marshal Anthoni, Existence of pseudo almost automorphic mild solutions to stochastic fractional differential equations, Nonlinear Anal. 75 (2012) 3339-3347.
- [23] R. Sakthivel, P. Revathi, Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal. 81 (2013) 70-86.
- [24] R. Zhang, Y. K. Chang, G. M. N'Guérékata, New composition theorems of Stepanovlike weighted pseudo almost automorphic functions and applications to nonautonomous evolution equations, Nonlinear Anal. RWA 13 (2012) 2866-2879.
- [25] R. Zhang, Y. K. Chang, G. M. N'Guérékata, Weighted pseudo almost automorphic solutions for non-autonomous neutral functional differential equations with infinite delay (in Chinese), Sci. Sin. Math. 43 (2013) 273-292.
- [26] R. Zhang, Y. K. Chang, G. M. N'Guérékata, Weighted pseudo almost automorphic mild solutions to semilinear integral equations with S^p-weighted pseudo almost automorphic coefficients, Discrete Contin. Dyn. Syst.-A 33 (2013) 5525-5537.
- [27] Z. H. Zhao, Y. K. Chang, J. J. Nieto, Square-mean asymptotically almost automorphic process and its application to stochastic integro-differential equations, Dynam. Syst. Appl. 22 (2013) 269-284.