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Abstract. The purpose of this paper is to prove the following re-
sult. Let R be a prime ring of characteristic different from two and
let D : R→ R be an additive mapping satisfying the relation 2D(x3) =
D(x2)x + x2D(x) + D(x)x2 + xD(x2) for all x ∈ R. In this case D
is a derivation. This result is related to a classical result of Herstein,
which states that any Jordan derivation on a prime ring of characteristic
different from two is a derivation.
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This research is a continuation of the recent work of Vukman [15]. Thro-
ughout R will represent an associative ring with center Z(R). As usual we
write [x, y] for xy − yx. Given an integer n ≥ 2, a ring R is said to be n-
torsion free, if for x ∈ R, nx = 0 implies x = 0. Recall that a ring R is prime
if for a, b ∈ R, aRb = (0) implies either a = 0 or b = 0, and is semiprime
in case aRa = (0) implies a = 0. We denote by Qmr, Qr, Qs and C the
maximal right ring of quotients, the right ring of quotients, the symmetric
Martindale ring of quotients and the extended centroid of a semiprime ring
R, respectively. For the explanation of Qmr, Qr, Qs and C we refer the
reader to [1]. An additive mapping D : R → R, where R is an arbitrary
ring, is called a derivation if D(xy) = D(x)y + xD(y) holds for all pairs
x, y ∈ R and is called a Jordan derivation in case D(x2) = D(x)x+xD(x) is
fulfilled for all x ∈ R. A derivation D is inner in case there exists a ∈ R such
that D(x) = [x, a] for all x ∈ R. Every derivation is a Jordan derivation.
The converse is in general not true. A classical result of Herstein [13] asserts
that any Jordan derivation on a prime ring of characteristic different from
two is a derivation. A brief proof of Herstein’s result can be found in [6].
Cusack [7] generalized Herstein’s result to 2-torsion free semiprime rings
(see also [2] for an alternative proof). In last few decades a lot of results on
certain identities with derivations on prime and semiprime rings has been
obtained (see for example [2, 3, 8, 9, 10, 15]).
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Brešar [3] has proved the following result.

Theorem 1. Let R be a 2-torsion free semiprime ring and let D : R → R
be an additive mapping satisfying the relation

D(xyx) = D(x)yx+ xD(y)x+ xyD(x).(1)

In this case D is a derivation.

An additive mapping D : R→ R, where R is an arbitrary ring, satisfying
the relation (1) is called a Jordan triple derivation. One can easily prove that
any Jordan derivation on an arbitrary 2-torsion free ring is a Jordan triple
derivation, which means that Theorem 1 generalizes Cusack’s generalization
of Herstein theorem. Motivated by Theorem 1, Vukman [15] has recently
proved the following result.

Theorem 2. Let R be a 2-torsion free semiprime ring and let D : R → R
be an additive mapping. Suppose that either

D(xyx) = D(xy)x+ xyD(x)(2)

or

D(xyx) = D(x)yx+ xD(yx)(3)

holds for all pairs x, y ∈ R. In both cases D is a derivation.

Vukman [15] conjectured that in case there exists an additive mapping
D : R→ R, where R is a 2-torsion free semiprime ring, satisfying the relation

2D(xyx) = D(xy)x+ xyD(x) +D(x)yx+ xD(yx)

for all pairs x, y ∈ R, then D is a derivation.
It is our aim in this paper to prove the following result, which is related

to the conjecture we have just mentioned above.

Theorem 3. Let R be a prime ring of characteristic different from two and
let D : R→ R be an additive mapping satisfying the relation

2D(x3) = D(x2)x+ x2D(x) +D(x)x2 + xD(x2)(4)

for all x ∈ R. In this case D is a derivation.

Any Jordan derivation D : R→ R satisfies the relation

D(xy + yx) = D(x)y + xD(y) +D(y)x+ yD(x)

for all pairs x, y ∈ R. The substitution y = x2 in the relation above gives the
relation (4), which means, that Theorem 3 generalizes Herstein theorem. In
the proof of Theorem 3 we shall use as the main tool the theory of functional
identities (Brešar-Beidar-Chebotar theory). The theory of functional iden-
tities considers set-theoretic mappings on rings that satisfy some identical
relations. When treating such relations one usually concludes that the form
of the maps involved can be described, unless the ring is very special. We
refer the reader to [4] for an introductory account on functional identities
and to [5] for full treatment of this theory.
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Let R be an algebra over a commutative ring φ and let

(5) p(x1, x2, x3) =
∑
π∈S3

xπ(1)xπ(2)xπ(3)

be a fixed multilinear polynomial in noncommuting indeterminates xi over
φ. Here S3 stands for the symmetric group of order 3. Let L be a subset of R
closed under p, i.e. p(x̄3) ∈ L for all x1, x2, x3 ∈ L, where x̄3 = (x1, x2, x3).
We shall consider a mapping D : L → R satisfying

2D(p(x̄3)) =
∑
π∈S3

D(xπ(1)xπ(2))xπ(3) +
∑
π∈S3

xπ(1)xπ(2)D(xπ(3))(6)

+
∑
π∈S3

D(xπ(1))xπ(2)xπ(3) +
∑
π∈S3

xπ(1)D(xπ(2)xπ(3))

for all x1, x2, x3 ∈ L.
For the proof of Theorem 3 we need Theorem 4 which might be of inde-

pendent interest.

Theorem 4. Let L be a 6-free Lie subring of R closed under p. If D : L → R
is an additive mapping satisfying (6), then D is a derivation.

Proof. For any a ∈ R and x̄3 ∈ L3 we have

[p(x̄3), a] = p([x1, a] , x2, x3) + p(x1, [x2, a] , x3) + p(x1, x2, [x3, a])

and therefore

2D [p(x̄3), a] =
∑
π∈S3

D
[
xπ(1)xπ(2), a

]
xπ(3) +

∑
π∈S3

D(xπ(1)xπ(2))
[
xπ(3), a

]
+

∑
π∈S3

[
xπ(1)xπ(2), a

]
D(xπ(3)) +

∑
π∈S3

xπ(1)xπ(2)D
[
xπ(3), a

]
+

∑
π∈S3

D
[
xπ(1), a

]
xπ(2)xπ(3) +

∑
π∈S3

D(xπ(1))
[
xπ(2)xπ(3), a

]
+

∑
π∈S3

[
xπ(1), a

]
D(xπ(2)xπ(3)) +

∑
π∈S3

xπ(1)D
[
xπ(2)xπ(3), a

]
.

In particular, we have

2D [p(x̄3), p(ȳ3)](7)

=
∑
π∈S3

D
[
xπ(1)xπ(2), p(ȳ3)

]
xπ(3) +

∑
π∈S3

D(xπ(1)xπ(2))
[
xπ(3), p(ȳ3)

]
+

∑
π∈S3

[
xπ(1)xπ(2), p(ȳ3)

]
D(xπ(3)) +

∑
π∈S3

xπ(1)xπ(2)D
[
xπ(3), p(ȳ3)

]
+

∑
π∈S3

D
[
xπ(1), p(ȳ3)

]
xπ(2)xπ(3) +

∑
π∈S3

D(xπ(1))
[
xπ(2)xπ(3), p(ȳ3)

]
+

∑
π∈S3

[
xπ(1), p(ȳ3)

]
D(xπ(2)xπ(3)) +

∑
π∈S3

xπ(1)D
[
xπ(2)xπ(3), p(ȳ3)

]
.
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It is easy to verify that

f(xπ(1)xπ(2), p(ȳ3)) = 2D
[
xπ(1)xπ(2), p(ȳ3)

]
= −2D

[
p(ȳ3), xπ(1)xπ(2)

]
=

∑
σ∈S3

D
[
xπ(1)xπ(2), yσ(1)yσ(2)

]
yσ(3) +

∑
σ∈S3

D(yσ(1)yσ(2))
[
xπ(1)xπ(2), yσ(3)

]
+

∑
σ∈S3

[
xπ(1)xπ(2), yσ(1)yσ(2)

]
D(yσ(3)) +

∑
σ∈S3

yσ(1)yσ(2)D
[
xπ(1)xπ(2), yσ(3)

]
+

∑
σ∈S3

D
[
xπ(1)xπ(2), yσ(1)

]
yσ(2)yσ(3) +

∑
σ∈S3

D(yσ(1))
[
xπ(1)xπ(2), yσ(2)yσ(3)

]
+

∑
σ∈S3

[
xπ(1)xπ(2), yσ(1)

]
D(yσ(2)yσ(3)) +

∑
σ∈S3

yσ(1)D
[
xπ(1)xπ(2), yσ(2)yσ(3)

]

and

f(xπ(3), p(ȳ3)) = 2D
[
xπ(3), p(ȳ3)

]
= −2D

[
p(ȳ3), xπ(3)

]
=

∑
σ∈S3

D
[
xπ(3), yσ(1)yσ(2)

]
yσ(3) +

∑
σ∈S3

D(yσ(1)yσ(2))
[
xπ(3), yσ(3)

]
+

∑
σ∈S3

[
xπ(3), yσ(1)yσ(2)

]
D(yσ(3)) +

∑
σ∈S3

yσ(1)yσ(2)D
[
xπ(3), yσ(3)

]
+

∑
σ∈S3

D
[
xπ(3), yσ(1)

]
yσ(2)yσ(3) +

∑
σ∈S3

D(yσ(1))
[
xπ(3), yσ(2)yσ(3)

]
+

∑
σ∈S3

[
xπ(3), yσ(1)

]
D(yσ(2)yσ(3)) +

∑
σ∈S3

yσ(1)D
[
xπ(3), yσ(2)yσ(3)

]
.

In exactly the same way we obtain results for f(xπ(1), p(ȳ3)) and f(xπ(2)xπ(3), p(ȳ3)).
Using the last four relations in (7) we arrive at

4D [p(x̄3), p(ȳ3)](8)

=
∑
π∈S3

f(xπ(1)xπ(2), p(ȳ3))xπ(3) +
∑
π∈S3

2D(xπ(1)xπ(2))
[
xπ(3), p(ȳ3)

]
+

∑
π∈S3

2
[
xπ(1)xπ(2), p(ȳ3)

]
D(xπ(3)) +

∑
π∈S3

xπ(1)xπ(2)f(xπ(3), p(ȳ3))

+
∑
π∈S3

f(xπ(1), p(ȳ3))xπ(2)xπ(3) +
∑
π∈S3

2D(xπ(1))
[
xπ(2)xπ(3), p(ȳ3)

]
+

∑
π∈S3

2
[
xπ(1), p(ȳ3)

]
D(xπ(2)xπ(3)) +

∑
π∈S3

xπ(1)f(xπ(2)xπ(3), p(ȳ3)).
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Note that also

4D [p(x̄3), p(ȳ3)] = −4D [p(ȳ3), p(x̄3)](9)

=
∑
σ∈S3

−f(yσ(1)yσ(2), p(x̄3))yσ(3) +
∑
σ∈S3

2D(yσ(1)yσ(2))
[
p(x̄3), yσ(3)

]
+

∑
σ∈S3

2
[
p(x̄3), yσ(1)yσ(2)

]
D(yσ(3))−

∑
π∈S3

yσ(1)yσ(2)f(yσ(3), p(x̄3))

−
∑
σ∈S3

f(yσ(1), p(x̄3))yσ(2)yσ(3) +
∑
σ∈S3

2D(yσ(1))
[
p(x̄3), yσ(2)yσ(3)

]
+

∑
σ∈S3

2
[
p(x̄3), yσ(1)

]
D(yσ(2)yσ(3))−

∑
σ∈S3

yσ(1)f(yσ(2)yσ(3), p(x̄3)).

Comparing relations (8) and (9) we arrive at

0 =
∑
π∈S3

∑
σ∈S3

(
f(xπ(1)xπ(2), yσ(1)yσ(2)yσ(3))(10)

− 2D(xπ(1)xπ(2))yσ(1)yσ(2)yσ(3) + f(xπ(1), yσ(1)yσ(2)yσ(3))xπ(2)

− 2D(xπ(1))yσ(1)yσ(2)yσ(3)xπ(2) + 2D(yσ(1)yσ(2))yσ(3)xπ(1)xπ(2)

+ 2D(yσ(1))yσ(2)yσ(3)xπ(1)xπ(2)

)
xπ(3)

+
∑
π∈S3

∑
σ∈S3

(
f(yσ(1)yσ(2), xπ(1)xπ(2)xπ(3))

− 2D(yσ(1)yσ(2))xπ(1)xπ(2)xπ(3) + f(yσ(1), xπ(1)xπ(2)xπ(3))yσ(2)

− 2D(yσ(1))xπ(1)xπ(2)xπ(3)yσ(2) + 2D(xπ(1)xπ(2))xπ(3)yσ(1)yσ(2)

+ 2D(xπ(1))xπ(2)xπ(3)yσ(1)yσ(2)

)
yσ(3)

+
∑
π∈S3

∑
σ∈S3

xπ(1)

(
f(xπ(2)xπ(3), yσ(1)yσ(2)yσ(3))

+ xπ(2)f(xπ(3), yσ(1)yσ(2)yσ(3)) + 2yσ(1)yσ(2)yσ(3)D(xπ(2)xπ(3))

+ 2xπ(2)yσ(1)yσ(2)yσ(3)D(xπ(3))− 2xπ(2)xπ(3)yσ(1)yσ(2)D(yσ(3))

− 2xπ(2)xπ(3)yσ(1)D(yσ(2)yσ(3))
)

+
∑
π∈S3

∑
σ∈S3

yσ(1)

(
f(yσ(2)yσ(3), xπ(1)xπ(2)xπ(3))

+ yσ(2)f(yσ(3), xπ(1)xπ(2)xπ(3)) + 2xπ(1)xπ(2)xπ(3)D(yσ(2)yσ(3))

+ 2yσ(2)xπ(1)xπ(2)xπ(3)D(yσ(3))− 2yσ(2)yσ(3)xπ(1)xπ(2)D(xπ(3))

− 2yσ(2)yσ(3)xπ(1)D(xπ(2)xπ(3))
)
.
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Let us define mappings E,F : L5 → R by the rule

E(u1, u2, u3, u4, u5) = f(u1u2, u3u4u5)− 2D(u1u2)u3u4u5 +
+ f(u1, u3u4u5)u2 − 2D(u1)u3u4u5u2 +
+ 2D(u3u4)u5u1u2 + 2D(u3)u4u5u1u2

and

F (u1, u2, u3, u4, u5) = f(u1u2, u3u4u5) + u1f(u2, u3u4u5) +
+ 2u3u4u5D(u1u2) + 2u1u3u4u5D(u2)−
− 2u1u2u3u4D(u5)− 2u1u2u3D(u4u5)

for all u5 ∈ L5. Accordingly, (10) can be rewritten as

0 =
∑
π∈S3

∑
σ∈S3

E(xπ(1), xπ(2), yσ(1), yσ(2), yσ(3))xπ(3)

+
∑
π∈S3

∑
σ∈S3

E(yσ(1), yσ(2), xπ(1), xπ(2), xπ(3))yσ(3)

+
∑
π∈S3

∑
σ∈S3

xπ(1)F (xπ(2), xπ(3), yσ(1), yσ(2), yσ(3))

+
∑
π∈S3

∑
σ∈S3

yσ(1)F (yσ(2), yσ(3), xπ(1), xπ(2), xπ(3)).

and hence

0 =
3∑
i=1

( ∑
π∈S3
π(3)=i

∑
σ∈S3

E(xπ(1), xπ(2), yσ(1), yσ(2), yσ(3))
)
xi

+
6∑
i=4

( ∑
π∈S3

∑
σ∈S3
σ(3)=i

E(yσ(1), yσ(2), xπ(1), xπ(2), xπ(3))
)
yi

+
3∑
j=1

xj

( ∑
π∈S3
π(1)=j

∑
σ∈S3

F (xπ(2), xπ(3), yσ(1), yσ(2), yσ(3))
)

+
6∑
j=4

yj

( ∑
π∈S3

∑
σ∈S3
σ(1)=j

F (yσ(2), yσ(3), xπ(1), xπ(2), xπ(3))
)
.

Let s : Z → Z be a mapping defined by s(i) = i − 3. For each σ ∈ S3 the
mapping s−1σs : {4, 5, 6} → {4, 5, 6} will be denoted by σ. Writing x3+i

instead of yi, i = 1, 2, 3, we can express so obtained relation as
6∑
i=1

Eii(x6)xi +
6∑
j=1

xjF
j
j (x6) = 0



A RESULT RELATED TO HERSTEIN THEOREM 7

for all x6 = (x1, x2, x3, x4, x5, x6) ∈ L6, where Ei, Fj : L5 → R and Ei, F j :
L6 → R are mappings

Ei(x̄6) = E(x1, . . . , xi−1, xi+1, . . . , x6)

and

F j(x̄6) = E(x1, . . . , xj−1, xj+1, . . . , x6).

Now we simply apply the definition of 6−freeness L. There exist maps
p6,j : L4 → R, j = 1, . . . , 5 and λ6 : L5 → C(L) such that

∑
π∈S3
π(3)=3

∑
σ∈S3

E(xπ(1), xπ(2), xσ̄(4), xσ̄(5), xσ̄(6)) =
5∑
i=1

xip6,i(x̄i5) + λ6(x̄5)

for all x̄5 ∈ L5. In view of definition of a mapping E, we arrive at∑
π∈S3
π(3)=3

∑
σ∈S3

xπ(1)

(
xπ(2)xσ̄(4)xσ̄(5)D(xσ̄(6)) + xπ(2)xσ̄(4)D(xσ̄(5)xσ̄(6))

+ xσ̄(4)D(xσ̄(5)xσ̄(6))xπ(2)

)
+
∑
π∈S3
π(3)=3

∑
σ∈S3

xσ̄(4)

(
D
[
xπ(1)xπ(2), xσ̄(5)xσ̄(6)

]
+ xσ̄(5)D

[
xπ(1)xπ(2), xσ̄(6)

]
− xπ(1)xπ(2)D(xσ̄(5)xσ̄(6))− xσ̄(5)xπ(1)xπ(2)D(xσ̄(6))

− xσ̄(5)xπ(1)D(xσ̄(6))xπ(2) + xσ̄(5)D
[
xπ(1), xσ̄(6)

]
xπ(2)

− xπ(1)D(xσ̄(5)xσ̄(6))xπ(2) +D
[
xπ(1), xσ̄(5)xσ̄(6)

]
xπ(2)

)
+
∑
π∈S3
π(3)=3

∑
σ∈S3

(
D
[
xπ(1)xπ(2), xσ̄(4)xσ̄(5)

]
+D(xσ̄(4)xσ̄(5))xπ(1)xπ(2)

+ D
[
xπ(1)xπ(2), xσ̄(4)

]
xσ̄(5) − 2D(xπ(1)xπ(2))xσ̄(4)xσ̄(5)

+ D(xσ̄(4))xπ(1)xπ(2)xσ̄(5)

)
xσ̄(6)

+
∑
π∈S3
π(3)=3

∑
σ∈S3

(
D
[
xπ(1), xσ̄(4)xσ̄(5)

]
xσ̄(6) +D(xσ̄(4)xσ̄(5))xπ(1)xσ̄(6)

+ D
[
xπ(1), xσ̄(4)

]
xσ̄(5)xσ̄(6) +D(xσ̄(4))xπ(1)xσ̄(5)xσ̄(6)

− 2D(xπ(1))xσ̄(4)xσ̄(5)xσ̄(6) + xπ(1)xσ̄(4)xσ̄(5)D(xσ̄(6))
)
xπ(2)

−
5∑
i=1

xip6,i(x̄i5) ∈ C(L)
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for all x̄5 ∈ L5. Applying the theory of functional identities gives∑
σ∈S3

(
D
[
x1, xσ̄(4)xσ̄(5)

]
+D(xσ̄(4)xσ̄(5))x1 +D

[
x1, xσ̄(4)

]
xσ̄(5)

+D(xσ̄(4))x1xσ̄(5) − 2D(x1)xσ̄(4)xσ̄(5)

)
xσ̄(6)

+
∑
σ∈S3

x1xσ̄(4)xσ̄(5)D(xσ̄(6))−
4∑
i=1

xip5,i(x̄i4) ∈ C(L),

which implies the existence of functions t, u, v : L2 → R and κ : L3 → C(L)
such that∑

σ∈S3
σ̄(6)=6

D
[
x1, xσ̄(4)xσ̄(5)

]
+D(xσ̄(4)xσ̄(5))x1 +D

[
x1, xσ̄(4)

]
xσ̄(5)

+ D(xσ̄(4))x1xσ̄(5) − 2D(x1)xσ̄(4)xσ̄(5) =

= x1t(x4, x5) + x4u(x1, x5) + x5v(x1, x4) + κ(x1, x4, x5).

Putting x1 = x4 = x5 = x in the above relation gives

(11) 2D(x2)x− 2D(x)x2 = xt(x, x) + xu(x, x) + xv(x, x) + κ(x, x, x).

After the complete linearization of the above identity and considering that
L is a 6-free subset of R, we get

(12) 2D(xy) + 2D(yx)− 2D(x)y − 2D(y)x = xf(y) + yg(x) + λ(x, y),

where f, g : L → R and λ : L2 → C(L). The symmetric analogue in which
maps F are involved, is clearly proved in the same way. Therefore

(13) 2D(xy) + 2D(yx)− 2xD(y)− 2yD(x) = f ′(x)y + g′(y)x+ λ′(x, y),

where f ′, g′ : L → R and λ′ : L2 → C(L). Replacing the roles of denotations
x and y in (12) and comparing so obtained identities leads to 0 = xf(y) +
yg(x) − yf(x) − xg(y) + λ(x, y) − λ(y, x), which yields f(x) = g(x) and
λ(x, y) = λ(y, x) for all x, y ∈ L. Putting x for y in (12) leads to

(14) 4D(x2) = 4D(x)x+ 2xf(x) + λ(x, x).

Using the same arguments, it follows from (13) that f ′(x) = g′(x) and
λ′(x, y) = λ′(y, x) for all x, y ∈ L. Therefore

(15) 4D(x2) = 4xD(x) + 2f ′(x)x+ λ′(x, x).

Comparing the above relations gives

(16) x(4D(x)− 2f(x))− (4D(x)− 2f ′(x))x ∈ C(L).

Hence, there exist r ∈ R and µ : L → C(L) such that

(17) 4D(x)− 2f(x) = rx+ µ(x).

Considering 2f(x) = 4D(x)− rx− µ(x) in (14) gives

(18) 4D(x2) = 4D(x)x+ 4xD(x)− xrx− xµ(x) + λ(x, x).
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Replacing y for x and x for x2 in (12) gives

4D(x3) = 2D(x2)x+ 2D(x)x2 + x2f(x) + xf(x2) + λ(x2, x).

Using (4) and (14) in the above relation leads to

2xf(x2) = 4xD(x)x+ 4x2D(x) + xλ(x, x)− 2λ(x2, x).

Considering 2f(x) = 4D(x)− rx− µ(x) in the above relation gives

4xD(x2)− xrx2 − xµ(x2) =(19)
= 4xD(x)x+ 4x2D(x) + xλ(x, x)− 2λ(x2, x).

Using (18) in the above relation we obtain −x2rx−xrx2 = x2µ(x)+xµ(x2)−
2λ(x2, x). The complete linearization of this relation and using the theory
of functional identities leads to −xrx− rx2 = xµ(x) + µ(x2). This identity
implies that −xr − rx ∈ C(L). Therefore

(20) −xr − rx = ν(x),

where ν(x) : L → C(L). Left multiplication of the above relation by y gives
−yxr− yrx = yν(x). Putting yx for x in (20) leads to −yxr− ryx = ν(yx).
On comparing the last two identities, we obtain [y, r]x = ν(yx) − yν(x),
whence it follows that [y, r] = 0 and ν(x) = 0 for all x ∈ R. From (20) we
obtain −xr− rx = 0, which together with [x, r] = 0 gives xr = 0. Since R is
prime, the last relation implies r = 0. We now have xµ(x) + µ(x2) = 0 and
therefore also µ(x) = 0. Considering these ascertainments in (17) we obtain

(21) f(x) = 2D(x)

for all x ∈ R. Using this in (14) gives

(22) 4D(x2) = 4D(x)x+ 4xD(x) + λ(x, x).

Putting x2 for x in (22) and using (22) leads to

4D(x4) = 4D(x)x3 + 4xD(x)x2 + 4x2D(x)x+ 4x3D(x) +(23)
+ λ(x, x)x2 + x2λ(x, x) + λ(x2, x2).

Putting x = x3, y = x in (12), considering (4), (21) and (22) we obtain

16D(x4) = 8D(x3)x+ 8D(x)x3 + 8x3D(x) + 8xD(x3) + 4λ(x3, x) =
= 16D(x)x3 + 16x3D(x) + 16xD(x)x2 + 16x2D(x)x+
+ λ(x, x)x2 + x2λ(x, x) + 2xλ(x, x)x+ 4λ(x3, x).(24)

Comparing the last two identities gives

3λ(x, x)x2 + 3x2λ(x, x) + 4λ(x2, x2)− 2xλ(x, x)x− 4λ(x3, x) = 0.

Since λ(x, x) ∈ C(L), the above identity simplifies to

λ(x, x)x2 + λ(x2, x2)− λ(x3, x) = 0.

Because L is a 6-free subset of R, the above identity implies λ(x, x) = 0 for
all x ∈ R. Consequently, it follows from (22) that D is a Jordan derivation.
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By Herstein theorem, D is a derivation, which completes the proof of the
theorem. �

We are now in the position to prove Theorem 3.

Proof of Theorem 3. The complete linearization of (4) gives us (6). First
suppose that R is not a PI ring (satisfying the standard polynomial iden-
tity of degree less than 6). According to Theorem 4 the mapping D is a
derivation.

Assume now that R is a PI ring. It is well-known that in this case R has
a nonzero center (see [14]). Let c be a nonzero central element. Picking any
x ∈ R and set x1 = x2 = cx and x3 = x in (6) we obtain

6D(c2x3) = D(c2x2)x+ 2D(cx2)cx+ c2x2D(x) + 2cx2D(cx)
+ D(x)c2x2 + 2D(cx)cx2 + xD(c2x2) + 2cxD(cx2).

Next, setting x1 = x2 = c and x3 = x3 in (6) we get

6D(c2x3) = D(c2)x3 + 2D(cx3)c+ c2D(x3) + 2cx3D(c)
+ D(x3)c2 + 2D(c)cx3 + x3D(c2) + 2cD(cx3)
= D(c2)x3 + 4D(cx3)c+ 2c2D(x3) + 2cx3D(c)
+ 2D(c)cx3 + x3D(c2)

for all x ∈ R. Comparing both identities and using (4) we obtain

D(c2x2)x+ 2D(cx2)cx+ 2cx2D(cx)(25)
+ 2D(cx)cx2 + xD(c2x2) + 2cxD(cx2)
= D(c2)x3 + 4D(cx3)c+ c2D(x2)x+ c2xD(x2)
+ 2cx3D(c) + 2D(c)cx3 + x3D(c2)

for all x ∈ R. In case x = c we arrive at D(c4) = 2D(c2)c2. Setting x1 = x
and x2 = x3 = c in the complete linearization of (25) we get

c2D(c)x+ c2xD(c) + 4D(c2x)c+ 2cxD(c2) + 2cD(c2)x(26)
= 4D(c3x) + 3xc2D(c) + 3c2D(c)x

for all x ∈ R. Substituting x for cx in relation (26) we obtain

c3D(c)x+ c3xD(c) + 4D(c3x)c+ 2c2xD(c2) + 2c2D(c2)x
= 4D(c4x) + 3xc3D(c) + 3c3D(c)x.

Multiplying identity (26) by c we get

c3D(c)x+ c3xD(c) + 4D(c2x)c2 + 2c2xD(c2) + 2c2D(c2)x(27)
= 4cD(c3x) + 3xc3D(c) + 3c3D(c)x.

Comparing the last two identities we obtain

2D(c3x)c = D(c4x) +D(c2x)c2.(28)
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for all x ∈ R. Substituting x by cx in (4) we get

6D(c3x3) = 3D(c2x2)cx+ 3c2x2D(cx)
+ 3cxD(c2x2) + 3D(cx)c2x2

for all x ∈ R. Next, setting x1 = x2 = c and x3 = cx3 in the complete
linearization of (4) we arrive at

6D(c3x3) = D(c2)cx3 + 4cD(c2x3) + 2c2D(cx3)
+ 2c2x3D(c) + cx3D(c2) + 2D(c)c2x3.

Comparing the last two identities we arrive at

3D(c2x2)x+ 3cx2D(cx) + 3xD(c2x2) + 3D(cx)cx2(29)
= D(c2)x3 + 4D(c2x3) + 2cD(cx3) + 2cx3D(c) + x3D(c2) + 2D(c)cx3.

Setting x1 = x2 = c and x3 = x in the complete linearization of (29) and
using (28) we get

3D(c2)cx+ 3cxD(c2) + 2D(cx)c2 + 4D(c2x)c
= 6D(c3x) + 2xD(c)c2 + 2D(c)c2x.

Using the last identity and (27) we obtain

D(c2)cx+ cxD(c2) + 2D(cx)c2 + 2xD(c)c2 + 2D(c)c2x(30)
= 2D(c3x) + 2D(c)xc2 + 2xD(c)c2

and so

2D(c3x) = 2D(cx)c2 +D(c2)cx+ cxD(c2)

for all x ∈ R. Setting x1 = x2 = c and x3 = cx in (6) we get

12D(c3x) = 2D(c2)cx+ 8D(c2x)c+ 4c2D(cx)
+ 4c2xD(c) + 2cxD(c2) + 4c2D(c)x.

Comparing the last two identities we obtain

2D(cx)c+D(c2)cx+ cxD(c2) = 2D(c2x) + cxD(c) + cD(c)x.(31)

Substituting x for cx in (30) and using (28) we get

D(c2)c2x+ c2xD(c2) = 2D(c)c3x+ 2c3xD(c)

for all x ∈ R. If x = c we get D(c2) = 2D(c)c. Let us write cx instead of x
in (31). On the other hand we can multiply (31) by c. After comparing so
obtained identities we arrive at

2D(c2x)c = D(cx)c2 +D(c3x).(32)

Using the last identity in (27) we obtain

D(c)xc+ xcD(c) = 2D(c2x)− 2D(cx)c(33)
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for all x ∈ R. If x = c we get D(c3) = 3D(c)c2. Set x1 = x2 = c and x3 = x
in (6). It follows that

6D(c2x) = D(c2)x+ xD(c2) + 4D(cx)c(34)
+ 2c2D(x) + 2cxD(c) + 2cD(c)x.

Using (33) we obtain

2D(cx)− 2D(x)c = D(c)x+ xD(c).(35)

Therefore

2D(cx2)− 2D(x2)c = D(c)x2 + x2D(c)(36)

for all x ∈ R. Multiplying identity (35) by c we get

2D(cx)c− 2D(x)c2 = D(c)cx+ cxD(c).

Next substituting x by cx in (35) we arrive at

2D(c2x)− 2D(cx)c = D(c)cx+ cxD(c).

Then comparing the last two identities we get

2D(cx)c = D(x)c2 +D(c2x).(37)

Setting x1 = x2 = x and x3 = c in (6) and using (36) we have

6D(cx2) = 2D(x2)c+ 2D(cx)x+ 2xD(cx) + x2D(c)(38)
+ D(c)x2 + 2D(x)cx+ 2cxD(x)
= (2D(cx2)−D(c)x2 − x2D(c))
+ 2D(cx)x+ 2xD(cx)
+ x(xD(c) + 2cD(x)) + (D(c)x+ 2cD(x))x
= 2D(cx2)−D(c)x2 − x2D(c)
+ 4D(cx)x+ 4xD(cx)− 2xD(c)x.

Comparing this identity and (36) we get

4D(cx)x+ 4xD(cx)− 2xD(c)x = 3D(c)x2 + 3x2D(c) + 4D(x2)c.

Hence

4D(x2)c = 4(D(cx)x+ xD(cx))(39)
−3(D(c)x2 + x2D(c))− 2xD(c)x.

Using (35) we arrive at

4D(x2)c = 2(2D(x)xc+D(c)x2 + xD(c)x(40)
+ 2cxD(x) + xD(c)x+ x2D(c))
− 3(D(c)x2 + x2D(c))− 2xD(c)x
= 4D(x)xc+ 4xD(x)c− [[D(c), x], x].

Therefore, we also have

4D(x2)c2 = 4D(x)xc2 + 4xD(x)c2 − [[D(c2), x], x].
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Multiplying (40) by c we get

4D(x2)c2 = 4D(x)xc2 + 4xD(x)c2 − [[D(c), x], x]c.

Comparing so obtained identities we arrive at

[[D(c2), x], x]− [[D(c), x], x]c = 0

for all x ∈ R. Since [[2cD(c), x], x] = 2c[[D(c), x], x] we get [[D(c), x], x] = 0
which in turn implies

4D(x2)c2 = 4D(x)xc2 + 4xD(x)c2.

According to our assumptions it follows that D(x2) = D(x)x + xD(x) for
all x ∈ R. In other words, D is a Jordan derivation. By Herstein theorem
it follows that D is a derivation. The proof of the theorem is complete. �
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