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Abstract

In the paper we study groups in which the factor-group by k-th hypercenter
is locally finite and has finite exponent. We proved that in these groups the
(k+1)-th term of lower central series is locally finite and has finite exponent.
Moreover we are able to find bounds for the exponent of γk+1(G) and for the
exponent of the locally nilpotent residual of G.
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Introduction

The aim of this paper is to establish a relationship between the factors of the upper
and the lower central series of a group. Given a group G, we recall that the upper
central series of G is the series

〈1〉 = ζ0(G) ≤ ζ1(G) ≤ ζ2(G) ≤ · · · ≤ ζα(G) ≤ ζα+1(G) ≤ · · · ζγ(G),
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where ζ1(G) = ζ(G) is the center of G, ζα+1(G)/ζα(G) = ζ(G/ζα(G)) for every
ordinal α, ζλ(G) =

⋃
µ<λ ζµ(G) for every limit ordinal λ, and ζ(G/ζγ(G)) = 〈1〉.

The term ζα(G) is said to be the αth–hypercenter of G, and the last term ζγ(G) of
this series is said to be the upper hypercenter of G. The ordinal γ is said to be the
central length of G and is denoted by zl(G). On the other hand, the lower central
series of G is the series

G = γ1(G) ≥ γ2(G) ≥ · · · γα(G) ≥ γα+1(G) ≥ · · · γδ(G),

where γ2(G) = [G,G] is the derived group of G, γα+1(G) = [γα(G), G] for every
ordinal α, γλ(G) =

⋂
µ<λ γλ(G) for every limit ordinal, and γδ(G) = [γδ(G), G]. The

term γα(G) is said to be the αth–hypocenter of G, and the last term γδ(G) of this
series is said to be the lower hypocenter of G.

Let G be a nilpotent group. Then there exits a positive integer k such that
G = ζk(G). Equivalently γk+1(G) = 〈1〉. Extending this well-know fact, R. Baer [1]
has been able to show the following result:
Theorem. Given a group G, suppose that the factor-group G/ζk(G) is finite for
some positive integer k. Then γk+1(G) is likewise finite.

To express properly these results in a general and unified way, we introduce the
following concept. A class of groups X is said to be a Baer class if whenever G is a
group and we have G/ζk(G) ∈ X for some positive integer k, then γk+1(G) ∈ X. A
natural question here is Finding Baer classes of groups. Obviously the trivial class
I = {〈1〉} is a Baer class, and Baer’s theorem shows that the class F of all finite
groups is also a Baer class. Another important precedent appeared if one considers
the case k = 1. I. Schur has studied the relationship between the central factor-group
G/ζ(G) of a group G and the derived subgroup [G,G] of G [6]. In particular, from
Schur’s results it follows that if G/ζ(G) is finite then [G,G] is also finite. Inspired
by this and related facts, in [2] a class of groups X of groups is called a Schur class
if for every group G such that G/ζ1(G) ∈ X it follows that derived subgroup γ2(G)
always belong to X; examples of Schur classes are related in the mentioned paper
[2]. Therefore I and F are Schur classes.

Obviously, every Baer class is a Schur class. This raises in a natural way the
study of the converse: Which Schur classes are Baer classes?. Now we known many
examples of Schur classes, most of them since a long time ago (see [2]). For example,
the class F of all finite groups, the class LFπ of locally finite π–groups, for an
arbitrary set π of prime numbers, the class P of polycyclic-by-finite groups, the class
C of Chernikov groups, the class S1 of soluble-by-finite minimax groups and many
others. Many of these classes have been proved to be Baer classes. A few years ago,
A. Mann [5] proved that the class L of all locally finite groups having finite exponent
is a Schur class. Moreover there exists a function m such that the exponent of the
derived subgroup of a locally finite of exponent e is bounded by m(e). Therefore the
question of deciding whether this is a Baer class or not naturally appears. The first
main result of this paper gives a positive answer on this question.
Theorem A. Let G be a group and suppose that G/ζk(G) is a locally finite group,
having finite exponent e. Then the subgroup γk+1(G) is locally finite and has finite
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exponent. Moreover, there exists a function β1 such that the exponent of γk+1(G) is
at most β1(e, k).

For the groups described in Theorem A, we may ask another related question.
Given a group G, we recall that the locally nilpotent residual L of G is the intersection
of all normal subgroups H of G such that G/H is locally nilpotent. It is well-known
that G/L need not to be locally nilpotent and therefore the case in which this factor-
group is locally nilpotent is very interesting. In particular, such situation is obtained
in our second main result.
Theorem B. Let G be a group and suppose that G/ζk(G) is a locally finite group
having finite exponent e. Then the locally nilpotent residual L of G is locally finite
having finite exponent and G/L is locally nilpotent. Moreover, there exists a function
β2 such that the exponent of L is at most β2(e).

It is worth mentioning that in fact the exponent of the locally nilpotent residual
depends only of the exponent of G/ζk(G).

1 Proof of Theorem A

The proof rely on the following auxiliary results.

Lemma 1.1 Suppose that A is an abelian normal subgroup of a group G such that
G/CG(A) = 〈x1CG(A), x2CG(A)〉 for some elements x1, x2 ∈ G. Then [A,G] =
[A, x1][A, x2].

Proof. Put U = [A, x1][A, x2]. If a ∈ A, then

[a, x2
j ] = [a, xj ][y, xj ]xj = [y, xj ][yxj , xj ] ∈ [A, xj ] ≤ U, j ∈ {1, 2}.

It follows that [a, xnj ] ∈ U for each n ∈ Z. Let n, k ∈ Z and put u = xn1 and v = xk2.
Given a ∈ A, we have

[a, uv] = [a, v][a, u]v and [a, u]v = [vcv−1, u]v,

where c = v−1av ∈ A. Put d = [vcv−1, u] so that

[vcv−1, u]v = dv = dd−1v−1dv = d[d, v].

Clearly d ∈ [A, u] = [A, xn1 ] ≤ U and [d, v] ∈ [A, v] = [A, xk2] ≤ U and then

[a, u]v = [vcv−1, u]v = dv = d[d, v] ∈ U.

It follows that [a, uv] ∈ U . Proceeding in this way and applying induction, we see
that

[a, xk11 x
t1
2 · · ·x

kn
1 xtn2 ] ∈ U, for k1, t1, · · · , kn, tn ∈ Z.

Let g be an arbitrary element of G. Then

g = xr11 x
s1
2 · · ·x

rm
1 xsm

2 c,
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for some element c ∈ CG(A) and integer numbers r1, s1, · · · , rm, sm ∈ Z. Then

[a, xr11 x
s1
2 · · ·x

rm
1 xsm

2 c] = [a, xr11 x
s1
2 · · ·x

rm
1 xsm

2 ] ∈ U,

and hence we obtain that U is a G–invariant subgroup of A. By the choice of G, we
have A/U ≤ ζ(G/U) which gives that [A,G] ≤ U , as required. �

Corollary 1.2 Let A be an abelian normal subgroup of a group G and suppose we
have that G = 〈CG(A),M〉 for a certain subset M of G. Then [A,G] is the product
of all [A, x], when x runs M .

Proof. Put V = 〈[A, x] | x ∈M〉. Clearly V ≤ [A,G]. Let w ∈ [A,G] so that

w = [a1, y1] · · · [an, yn]

for suitable elements a1, · · · , an ∈ A and y1, · · · , yn ∈ G. Then there exist elements
x1, · · · , xm ∈M such that

y1, · · · , yn ∈ 〈x1, · · · , xm, CG(A)〉 = H

and therefore w ∈ [A,H]. Since the product [A, xj ][A, xk] is 〈xj , xk〉–invariant for
any choice of j, k ∈ {1, · · · ,m} by Lemma 1.1, the subgroup [A, x1] · · · [A, xm] = U is
H–invariant. Then the center of the section H/U includes A/U , that is [A,H] ≤ U .
Since the converse inclusion is also true, we deduce that [A,H] = U . Therefore

w ∈ [A, x1] · · · [A, xm] ≤ V

and hence [A,G] = V , as required. �

Lemma 1.3 Let A be an abelian normal subgroup of a group G and suppose that
A/(ζ(G)∩A) is locally finite and has finite exponent e. Then [A,G] is a locally finite
subgroup having finite exponent at most e.

Proof. We pick a subset M of G such that G = 〈CG(A),M〉. Given g ∈ G, we
consider the mapping ξg : a → [a, g], a ∈ A so that ξg is an endomorphism of
A. Since ζ(G) ∩ A ≤ CA(g) = Ker(ξg), A/Ker(ξg) is locally finite and has finite
exponent at most e. Since

A/Ker(ξg) ∼=G Im(ξg) = [A, g]

[A, g] is locally finite and has finite exponent at most e. By Corollary 1.2, [A,G] is
the product of the subgroups [A, g], when g runs M . Since every subgroup [A, g] is
locally finite and has finite exponent at most e, the same is true for [A,G]. �

We are now in a position to prove our first main result.
Proof of Theorem A. Let

〈1〉 = Z0 ≤ Z1 ≤ · · · ≤ Zk−1 ≤ Zk = Z

be the upper central series of G. We proceed by induction on k.
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If k = 1, then G/Z1 is a locally finite group having finite exponent e. Application
of Mann’s theorem [5] shows that γ2(G) = [G,G] is locally finite and there exists a
function m such that the exponent of γ2(G) is bounded by m(e).

We now suppose that k > 1 and we have already proved that γk(G/Z1) is locally
finite of finite exponent and there exists a function β1 such that the exponent of
γk(G/Z1) is at most β1(e, k − 1). Put K/Z1 = γk(G/Z1) and L = γk(G) so that
L ≤ K. Applying Mann’s theorem [5] to K, we obtain that D = [K,K] is locally
finite and has finite exponent at most m(β1(e, k − 1)). Since the factor-group K/D
is abelian, LD/D is also abelian. We have

(LD/D)(LD/D ∩ Z1D/D) = (LD/D)((LD ∩ Z1D)/D) ∼= LD/(LD ∩ Z1D) ∼=
∼= (LD)(Z1D)/(Z1D) = (LZ1D)/(Z1D) ∼= L/(L ∩ Z1D),

which shows that (LD/D)(LD/D ∩Z1D/D) is an epimorphic image of L/(L∩Z1).
Since L/(L ∩ Z1) ∼= LZ1/Z1 ≤ K/Z1, L/(L ∩ Z1) is a locally finite group of finite
exponent at most β1(e, k−1). Therefore, the same is true also for (LD/D)(LD/D∩
Z1D/D). Applying Lemma 1.3 to the factor-group G/D, we see that its subgroup
V/D = [LD/D,G/D] is locally finite and has finite exponent at most β1(e, k − 1).
Since the center of G/V includes LV/V and (G/V )/(LV/V ) is nilpotent of class at
most k, γk+1(G) ≤ V . It follows that γk+1(G) is a locally finite subgroup having
exponent at most m(β1(e, k − 1))β1(e, k − 1) = β1(e, k), and we are done. �

It is worth mentioning that the function β1(t, k) constructed in this theorem is
defined recursively by β1(e, 1) = m(e), β1(e, 2) = m(m(e))m(e) and

β1(t, k) = m(β1(e, k − 1))β1(e, k − 1).

2 Proof of Theorem B

To show the auxiliary results that lead to the proof of this theorem, we need the
following module-theoretical concepts.

Let G be a group, R a ring and A an RG–module. Then the set

ζRG(A) = {a ∈ A | a(g − 1) = 0 for each element g ∈ G}

is a submodule called the RG–center of A. The upper RG–central series of A is,

{0} = A0 ≤ A1 ≤ · · · ≤ Aα ≤ Aα+1 ≤ · · ·Aγ ,

where A1 = ζRG(A), Aα+1/Aα = ζRG(A/Aα), α < γ, and ζRG(A/Aγ) = {0}. The
last term Aγ of this series is called the upper RG–hypercenter of A and will be
denoted by ζ∞RG(A), while the ordinal γ is said to be the RG–central length of A
and will be denoted by zlRG(A). The RG–module A is said to be RG–hypercentral
if A = Aγ happens and RG–nilpotent if γ is finite.

If B and C are RG–submodules of A and B ≤ C, then the factor C/B is said to
be G–central if G = CG(C/B) and G-eccentric otherwise. An RG–submodule C of
A is said to be RG–hypereccentric if C has an ascending series of RG–submodules

{0} = C0 ≤ C1 ≤ · · · ≤ Cα ≤ Cα+1 ≤ · · ·Cγ = C
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whose factors Cα+1/Cα are G–eccentric simple RG–modules.
Following D.I. Zaitsev [7], an RG–module A is said to have the Z–decomposition

if one has
A = ζ∞RG(A)⊕ E∞RG(A),

where E∞RG(A) is the unique maximal RG–hypereccentric RG–submodule of A.
We actually note that a given maximal E includes every RG–hypereccentric RG–
submodule B and, in particular, it is unique. For, if (B+E)/E is non-zero, it hve to
include a non-zero simple RG–submodule U/E. Since (B+E)/E ∼= B/(B∩E), U/E
is RG–isomorphic to some simple RG–factor of B and it follows that G/CG(U/E) 6=
G. On the other hand, (B+E)/E ≤ A/E ≤ ζ∞RG(A), that is G/CG(U/E) = G. This
contradiction shows that B ≤ E, as claimed.

Lemma 2.1 Let G be a finite nilpotent group and A be a ZG–module. Suppose that
A includes a ZG–nilpotent ZG–submodule C such that A/C is a finite group of order
t and exponent e. Then A includes a finite ZG–submodule K such that |K| | t, the
exponent of K is at most e and A/K is ZG–nilpotent.

Proof. We first remark that Aζ∞ZG(A) is a finite of order divisor of t and exponent
e. Pick a finite subset M of elements of A such that

MZG+ C = A/C.

Put V = MZG and U = C ∩ V so that U is clearly ZG–nilpotent. Since

V/U = V/(V ∩ C) ∼= (V + C)/C = A/C,

|V/U | = t and V/U has exponent at most e. Since G is finite, the natural semidirect
product V h G is a nilpotent-by-finite group. Being finitely generated, it satisfies
the maximal condition on all subgroups, and it follows that U is a finitely generated
subgroup. Therefore the periodic part T of U is finite and hence U = T ⊕W , for
some torsion-free subgroup W . Put Y = U |T | so that Y is a characteristic subgroup
of U . In particular, Y is a ZG–submodule and U/Y is finite whence V/Y is finite
too. Since G is nilpotent, the finite factor-module V/Y has the Z–decomposition [7],
that is

V/Y = Z/Y
⊕

E/Y,

where Z/Y = ζ∞ZG(V/Y ) and E/Y = E∞ZG(V/Y ). Since U/Y is ZG–nilpotent,
U/Y ≤ Z/Y . Applying the latter, the isomorphisms

E/Y ∼= (V/Y )/(Z/Y ) ∼= V/Z

and the inclusion (ζ∞ZG(A)+Y )/Y ≤ Z/Y at once, we obtain that E/Y is isomorphic
to some factor-module of A/ζ∞ZG(A). In particular, E/Y is finite, |E| | t and the
exponent of E/Y is at most e.

The choice of E yields that E is a ZG–submodule of V . Then the periodic part
K of E is also a ZG–submodule. Since Y is torsion-free, K ∩Y = {0} and then K is
isomorphic to some section of E/Y . Therefore K is finite, |K| | t and the exponent
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of K is at most e. The choice of E yields |K| | |E/Y | | t. The factor-module E/K
is Z–torsion-free and includes a ZG–nilpotent submodule (Y +K)/K having finite
index. It follows that E/K is also ZG–nilpotent. The isomorphisms

V/E ∼= (V/Y )/(E/Y ) ∼= ζ∞ZG(V/Y )

give that V/K is ZG–nilpotent. Since A = V + C and C ≤ ζ∞ZG(A), A/K is ZG–
nilpotent, as required. �

An RG–module is said to be locally RG–nilpotent if for every finitely generated
subgroup F of G and every finite subset M of A the ZF–submodule MZF generated
by M is ZF–nilpotent.

Corollary 2.2 Let G be a periodic locally nilpotent group and A be a ZG–module.
Suppose that A includes a ZG–nilpotent ZG–submodule C such that the additive
group of A/C is periodic and has finite exponent e. Then A includes a ZG–submodule
K the additive group of K is periodic and has finite exponent at most e and A/K is
locally ZG–nilpotent.

Proof. Let M be an arbitrary finite subset of A. If L is the local system of G
consisting of all its finite subgroups and F ∈ L, we consider the ZF–submodule
MF = C +MZF . Since A/C is Z–periodic and F is finite, MF /C is finite (perhaps
trivial if M ⊆ C). By Lemma 2.1, MF includes a finite ZF–submodule R such that
MF /R is ZF–nilpotent and the exponent of R is at most e. Then R includes a unique
minimal finite ZF–submodule KF such that MF /KF is ZF–nilpotent. Let H ∈ L
be such that F ≤ H. Obviously MF ≤ MH . Since the factor-module MH/KH is
ZH–nilpotent, it is clearly ZF–nilpotent. It follows that MF /(KH ∩MF ) is ZF–
nilpotent and then KF ≤ KH ∩MF whence KF ≤ KH by the election of KF . From
the equation G =

⋃
F∈L F ,

M0 =
⋃
F∈L

MF and K(M) =
⋃
F∈L

KF

are ZG–submodules. Let S be an arbitrary finite subset of M0 and X be an arbitrary
finite subgroup of G. Since M0 is generated by M as ZG–submodule, there exists a
finite subgroup F ∈ L such that S ≤ MF . Pick H ∈ L such that X,F ≤ H. Then
MZX ≤ MH . Since MH/KH is ZF–nilpotent, in particular, it is ZX–nilpotent.
Then (MZX +KH)/KH is ZX–nilpotent and therefore (MZX +K(M))/K(M) is
ZX–nilpotent. Hence M0/K(M) is locally ZG–nilpotent. Since KF has exponent at
most e for each F ∈ L, K(M) also has exponent at most e.

We now consider the local family M consisting of the finite subset of A. Let
M,S ∈M such that M ⊆ S and pick F ∈ L. Since S0/K(S) is locally ZG–nilpotent,
(SZF +K(S))/K(S) is ZF–nilpotent. It follows that MZF/(MZF ∩K(S)) is ZF–
nilpotent. Therefore KF ≤ MZF ∩K(S) and then KF ≤ K(S). Thus

⋃
F∈LKF ≤

K(S). Thus K(M) ≤ K(S). This means that the family {K(M) | M ∈M} is local,
hence K =

⋃
M∈MK(M) is a ZG–submodule. Since A =

⋃
M∈MM , A/K is locally

ZG–nilpotent. By construction, K has exponent at most e. �
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Lemma 2.3 Let K be a locally finite normal subgroup of a group G such that G/K
is locally nilpotent. Then the locally nilpotent residual L of G is locally finite. More-
over, if G satisfies locally the maximal condition on subgroups, then G/L is locally
nilpotent.

Proof. Since G/K is locally nilpotent, L ≤ K and it follows that L is locally finite.
Replacing G by the factor-group G/L, we may suppose that L = 〈1〉. Then the thesis
is to prove thatG is locally nilpotent. Pick a family {Gλ | λ ∈ Λ} of normal subgroups
of G such that

⋂
λ∈ΛGλ = 〈1〉 and G/Gλ is locally nilpotent for every λ ∈ Λ.

Since the result is trivial if Λ is finite, we suppose that the family is infinite. Put
Kλ = K∩Gλ so that

⋂
λ∈ΛKλ = 〈1〉, every subgroup Kλ is G–invariant and G/Kλ is

locally nilpotent for every λ ∈ Λ. Let F be an arbitrary finitely generated subgroup of
G. Then F/(F ∩K) is a finitely generated nilpotent group and the subgroup F ∩K is
locally finite. Since F satisfies the maximal condition on subgroups, T = F ∩K have
to be finite. Then there exists a finite subset M of Λ such that T ∩(

⋂
λ∈M Kλ) = 〈1〉.

Put V =
⋂
λ∈M Kλ so that G/V is locally nilpotent. We have now

F ∩ V = F ∩ (
⋂
λ∈M

Kλ) =
⋂
λ∈M

(F ∩Kλ) =
⋂
λ∈M

(F ∩ (K ∩Kλ)) =

=
⋂
λ∈M

((F ∩K) ∩Kλ) =
⋂
λ∈M

(T ∩Kλ) = T ∩ (
⋂
λ∈M

Kλ) = 〈1〉.

It follows that F ∼= F/(F ∩ V ) ∼= FV/V . Since G/V is locally nilpotent, FV/V is
nilpotent. Therefore an arbitrary finitely generated subgroup F of G is nilpotent
and hence G is locally nilpotent, as required. �

Lemma 2.4 Let Z be the upper hypercenter of a group G. If G/Z is locally finite,
then every finitely generated subgroup of G is nilpotent-by-finite.

Proof. Let F be an arbitrary finitely generated subgroup of G. The factor-group
FZ/Z is finite since it is finitely generated and locally finite. Since FZ/Z ∼= F/(F ∩
Z), F ∩Z has finite index in F . Then F ∩Z is finitely generated too (see [3, Corollary
7.2.1]), and being hypercentral, is nilpotent. �
Proof of Theorem B. Let

〈1〉 = Z0 ≤ Z1 ≤ · · · ≤ Zk−1 ≤ Zk = Z

be the upper central series of G so that every term Zj is G–invariant and every
factors Zj/Zj−1 is G–central. By L.A. Kaluzhnin’s theorem [4], the factor-group
G/CG(Z) is nilpotent of nilpotency class at most k − 1. Put C = CG(Z) so that
Z ≤ CG(C). In particular, G/CG(C) is locally finite and has finite exponent at most
e. Clearly C ∩Z ≤ ζ(C) and then C/(Z ∩C) ∼= CZ/Z is locally finite and has finite
exponent at most e. By Mann’s theorem [5], the derived subgroup D = [C,C] is
locally finite and there exists a function m such that the exponent of D is bounded
by m(e). The subgroup D is G–invariant and C/D is abelian. We think of C/D
as a ZH–module where H = (G/D)/CG/D(C/D). Since C/G is abelian, C/D ≤
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CG/D(C/D) and then (G/D)/CG/D(C/D) is nilpotent. Since G/CG(C) is locally
finite, (G/D)/CG/D(C/D) is also locally finite.

We have (C ∩ Z)D/D ≤ ζ∞ZH(C/D) and (C/D)/((C ≤ Z)D/D) ∼= C/(C ∩ Z)D
is a locally finite group of finite exponent at most e. By Lemma 2.2, C/D includes
a ZG–submodule V/D such that the additive group of V/D is periodic and has
finite exponent at most e. Moreover, the factor-module (C/D)/(V/D) is locally
ZG–nilpotent. Put B = C/V and pick an arbitrary subset M of E = G/V and put
F = 〈M〉. By Lemma 2.4, F is nilpotent-by-finite, in particular, it is noetherian, that
is it satisfies the maximal condition on subgroups. Then its subgroup K = F ∩ B
is finitely generated. In this case K is finitely generated as a ZF–module. Since
B is a ZG–module locally ZG–nilpotent, its finitely generated ZF–submodule K
is ZF–nilpotent. In other words, the upper hypercenter of F includes K. Since
F/K = F/(F ∩B) ∼= FB/B is nilpotent, F is likewise nilpotent. Thus G/V is locally
nilpotent and hence V includes the locally nilpotent residual L. Since D (respectively
V/D) is locally finite and has finite exponent at most m(e) (respectively e), V is
locally finite and has finite exponent at most em(e). In particular, L is locally finite
and has finite exponent at most em(e).

Finally, Lemma 2.4 shows that G is locally noetherian, and it suffices to apply
Lemma 2.3 to see that G/L is locally nilpotent, as required. �
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[6] I. Schur, Über die Darstellungen der endlichen Gruppen durch gebrochene lin-
eare substitutionen, J. reine angew. Math. 127 (1904), 20-50.

[7] D.I. Zaitsev, The hypercyclic extensions in abelian groups, in The groups defined
by the properties of systems of subgroups, Math. Inst. Kiev 1979, pp. 16-37.

9


