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Abstract

In this paper, a non-autonomous SIR epidemic model with almost periodic transmis-
sion rate and a constant removal rate is considered. By means of Mawhin’s continuous
theorem of coincidence degree, some new sufficient conditions for the existence and mul-
tiplicity of positive almost periodic solutions to the model are established. Further, the
global asymptotical stability of positive almost periodic solution of the model is also in-
vestigated by constructing a suitable Lyapunov functional. Finally, some examples and
numerical simulations are given to illustrate the main results.
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1 Introduction

Let R, Z and N+ denote the sets of real numbers, integers and positive integers, respec-
tively. Related to a continuous function f , we use the following notations:

f l = inf
s∈R

f(s), fM = sup
s∈R

f(s), f̄ = lim
T→∞

1

T

∫ T

0

f(s) ds.

Epidemiology is the branch of biology which deals with the mathematical modeling of
spread of diseases. Many problems arising in epidemiology may be described, in a first for-
mulation, by means of differential equations. This means that the models are constructed by
averaging some population and keeping only the time variable. To the best of our knowledge
the first mathematical model of epidemiology was formulated and solved by Daniel Bernoulli
in 1760. Since the time of Kermack and McKendrick [8], the study of mathematical epidemi-
ology has grown rapidly, with a large variety of models having been formulated and applied
to infectious diseases [2, 5, 14].

Consider a population which remains constant and which is divide into three classes: the
susceptibles, denoted by S, who can catch the disease; the infectives, denoted by I, who are
infected and can transmit the disease to the susceptibles, and the removed class, denoted
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by R, who had the disease and recovered or died or have developed immunity or have been
removed from contact with the other classes. Since from the modeling perspective only the
overall state of a person with respect to the disease is relevant, the progress of individuals is
schematically described by

S → I → R.

These types of models are known as SIR models. The phenomena of periodic oscillations have
been observed in the spread of many infectious diseases, such as influenza, measles, rubella,
mumps and chickenpox. It is interesting to study how periodic solutions arise and to determine
the number of periodic solutions further in an epidemiological model. In recent years, many
scholars pay extensive attention to the dynamic behaviours of SIR epidemic models. We refer
the readers to [1, 9, 12, 13, 16].

In [1], Bai and Zhou formulated a non-autonomous SIR epidemic model with saturated
incidence rate and constant removal rate by introducing the periodic transmission rate β(t)
as follows:

Ṡ(t) = α− µS(t)− β(t)S(t)I(t)
k1+k2I(t)

,

İ(t) = β(t)S(t)I(t)
k1+k2I(t)

− (µ+ γ)I(t)− h(I),

Ṙ(t) = γI + h(I)− µR,

(1.1)

where α is the recruitment rate, µ is the natural death rate, γ is the recovery rate of the
infective, β(t) is the transmission rate at time t and h is a treatment function, which is a
positive constant σ for I > 0, and zero for I = 0.

By a simple analysis in [1], Bai and Zhou reduced SIR epidemic model (1.1) to the following
model:{

Ṡ(t) = α− µS(t)− β(t)S(t)I(t)
k1+k2I(t)

,

İ(t) = β(t)S(t)I(t)
k1+k2I(t)

− (µ+ γ)I(t)− σ.
(1.2)

By using the continuation theorem of coincidence degree theory, sufficient conditions for the
existence of at least two positive periodic solutions are obtained.

However, any biological or environmental parameters are naturally subject to fluctuation
in time and if a model is desired which takes into account such fluctuation it must be nonau-
tonomous, which is, of course, more difficult to study in general. One must of course ascribe
some properties to the time dependence of the parameters in the models, for only then can
the resulting dynamics to be studied accordingly. For example, one might assume they are
periodic, quasi-periodic or almost periodic, etc. Furthermore, in real world phenomenon, the
environment varies due to the factors such as seasonal effects of weather, food supplies, mating
habits, harvesting. So it is usual to assume the periodicity of parameters in the systems. How-
ever, if the various constituent components of the temporally nonuniform environment is with
incommensurable (nonintegral multiples) periods, then one has to consider the environment
to be almost periodic since there is no a priori reason to expect the existence of periodic solu-
tions. For this reason, the assumption of almost periodicity is more realistic, more important
and more general when we consider the effects of the environmental factors. In this paper, we
consider the following non-autonomous almost periodic epidemic model:{

Ṡ(t) = α(t)− µ(t)S(t)− β(t)S(t)I(t)
k1+k2I(t)

,

İ(t) = β(t)S(t)I(t)
k1+k2I(t)

− (µ(t) + γ(t))I(t)− σ(t),
(1.3)
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where k1, k2 > 0 and all the coefficients in system (1.3) are nonnegative almost periodic
functions. From the epidemiological interpretation our discussion on system (1.3) will be
restricted in the following bounded domain

D =

{
(S, I)T : S ≥ 0, I > 0, 0 < S + I ≤ αM

µl

}
.

During the last twenty years, many people have been interested in the dynamic behaviours
of epidemic models, but most scholars have focused on the permanence and extinction of
the disease, global stability and the existence of positive periodic solution [1, 7, 10, 11, 17-19].
There are scarcely any papers on the existence and multiplicity of positive almost periodic
solutions for nonlinear epidemic models. On the other hand, the method used to investigate
the positive periodic solution of the non-linear biosystem (for example, coincidence degree
theory (see [21]) or fixed point theorem of strict-set-contraction (see [22])) is difficult to be
used to investigate the almost periodic solution of system (1.3). Motivated by the above
statements, the main purpose of this paper is to establish some new sufficient conditions on
the existence and multiplicity of positive almost periodic solutions for system (1.3) by using
some new analytical techniques and Mawhin’s continuous theorem.

The paper is organized as follows. In Section 2, we give some basic definitions and necessary
lemmas which will be used in later sections. In Section 3, we obtain some new sufficient
conditions for the existence and stability of positive almost periodic solution of system (1.3)
by way of Mawhin’s continuous theorem and Lyapunov functional. In Section 4, a multiplicity
result for system (1.3) is obtained based on some good analytical techniques. Finally, some
illustrative examples and numerical simulations are given in Section 5.

2 Preliminaries

Definition 2.1. [3, 6] Let x ∈ C(R) = C(R,R). x is said to be almost periodic on R, if for
∀ϵ > 0, the set

T (x, ϵ) = {τ : |x(t+ τ)− x(t)| < ϵ, ∀t ∈ R}

is relatively dense, i.e., for ∀ϵ > 0, it is possible to find a real number l = l(ϵ) > 0, for any
interval length l, there exists a number τ = τ(ϵ) ∈ T (x, ϵ) in this interval such that

|x(t+ τ)− x(t)| < ϵ, ∀t ∈ R.

τ is called to the ϵ-almost period of x, T (x, ϵ) denotes the set of ϵ-almost periods for x and
l(ϵ) is called to the length of the inclusion interval for T (x, ϵ).

Let AP (R) denote the set of all real valued almost periodic functions on R and

AP (R,Rn) =

{
(x1, x2, . . . , xn)

T : xi ∈ AP (R), i = 1, 2, . . . , n, n ∈ N+

}
.

Lemma 2.1. [3, 6] If x ∈ AP (R), then x is bounded and uniformly continuous on R.

Next, we present and prove several useful lemmas which will be used in later section.

Lemma 2.2. Assume that x ∈ AP (R) ∩ C1(R) with ẋ ∈ C(R). For arbitrary interval [a, b]
with b− a = ω > 0, let ξ, η ∈ [a, b] and

Ξẋ
[ξ,b] =

{
s ∈ [ξ, b] : ẋ(s) ≥ 0

}
, Πẋ

[η,b] =
{
s ∈ [η, b] : ẋ(s) ≤ 0

}
.
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Then

x(t) ≤ x(ξ) +

∫
Ξẋ
[ξ,b]

ẋ(s) ds, ∀t ∈ [ξ, b],

x(t) ≥ x(η) +

∫
Πẋ

[η,b]

ẋ(s) ds, ∀t ∈ [η, b].

Proof. For t ∈ [ξ, b], let Ξẋ
[ξ,t] =

{
s ∈ [ξ, t] : ẋ(s) ≥ 0

}
. It follows that

x(t) = x(ξ) +

∫ t

ξ

ẋ(s) ds ≤ x(ξ) +

∫
Ξẋ
[ξ,t]

ẋ(s) ds ≤ x(ξ) +

∫
Ξẋ
[ξ,b]

ẋ(s) ds, ∀t ∈ [ξ, b].

On the other hand, for t ∈ [η, b], let Πẋ
[η,t] =

{
s ∈ [η, t] : ẋ(s) ≤ 0

}
. It follows that

x(t) = x(η) +

∫ t

η

ẋ(s) ds ≥ x(η) +

∫
Πẋ

[η,t]

ẋ(s) ds ≥ x(η) +

∫
Πẋ

[η,b]

ẋ(s) ds, ∀t ∈ [ξ, b].

This completes the proof.

Lemma 2.3. Assume that x ∈ AP (R), then for arbitrary interval [a, b] with b − a = ω > 0,
there exist ξ0 ∈ [a, b], ξ1 ∈ (−∞, a] and ξ2 ∈ [ξ1 + ω,+∞) such that

x(ξ1) = x(ξ2) and x(ξ0) ≤ x(s), ∀s ∈ [ξ1, ξ2].

Proof. Without loss of generality, we consider [a, b] as [0, ω]. We shall present three cases to
prove this lemma.

(C1) x(0) = x(ω). Let ξ0 ∈ [0, ω] such that x(ξ0) = mins∈[0,ω] x(s), ξ1 = 0 and ξ2 = ω. So
Lemma 2.3 holds.

(C2) x(0) > x(ω). Let x∗ = infs∈R x(s). From Lemma 2.1, −∞ < x∗ ≤ x(ω) < x(0).

(a) If x(ω) > x∗, then we claim that there exists ω1 ∈ (−∞, 0] such that x(ω1) = x(ω)
and

x(s) ≥ x(ω1) = x(ω), ∀s ∈ [ω1, 0]. (2.1)

In fact, if it is not true, then

x(s) > x(ω), ∀s ∈ (−∞, 0]. (2.2)

By the definition of x∗ and the continuity of x, there must exist t0 ∈ R such that
x(t0) = x(ω)+x∗

2
∈ (x∗, x(ω)). Since x ∈ AP (R), then for ϵ = x(ω) − x(t0) =

x(ω)−x∗
2

> 0, there exists a number τ ∈ T (x, ϵ) ∩ (−∞,−t0] (t0 + τ ≤ 0) such that

|x(t+ τ)− x(t)| < ϵ = x(ω)− x(t0), ∀t ∈ R,

which implies from (2.2) that

|x(t0 + τ)− x(t0)| = x(t0 + τ)− x(t0) < x(ω)− x(t0) =⇒ x(t0 + τ) < x(ω),

which leads to a contradiction with (2.2). Therefore, our claim is valid. From
(2.1), mins∈[ω1,ω] x(s) = mins∈[0,ω] x(s). So we can choose ξ0 ∈ [0, ω] such that
x(ξ0) = mins∈[0,ω] x(s), ξ1 = ω1 and ξ2 = ω, we obtain from (2.1) that

x(ξ1) = x(ξ2) and x(ξ0) ≤ x(s), ∀s ∈ [ξ1, ξ2].

Therefore, Lemma 2.3 holds.
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(b) If x(ω) = x∗, then we claim that there exist ω1 ∈ (−∞, 0) and ω2 ∈ (ω,+∞) such
that

x(ω1) = x(ω2) =
x(0) + x(ω)

2
∈ (x(ω), x(0)). (2.3)

First, we prove that there exist ω1 ∈ (−∞, 0) such that

x(ω1) =
x(0) + x(ω)

2
. (2.4)

By the continuity of x, there must exist t1 ∈ R such that x(t1) = x(0)+x(ω)
2

∈
(x(ω), x(0)). If (2.4) is not true, then

x(s) > x(t1) =
x(0) + x(ω)

2
> x(ω), ∀s ∈ (−∞, 0]. (2.5)

Since x ∈ AP (R), then for ϵ = x(t1)− x(ω) = x(0)−x(ω)
2

> 0, there exists a number
τ ∈ T (x, ϵ) ∩ (−∞,−ω] (ω + τ ≤ 0) such that

|x(t+ τ)− x(t)| < ϵ = x(t1)− x(ω), ∀t ∈ R,

which implies from (2.5) that

|x(ω + τ)− x(ω)| = x(ω + τ)− x(ω) < x(t1)− x(ω) =⇒ x(ω + τ) < x(t1),

which leads to a contradiction with (2.5). Therefore, (2.4) holds. Similar to the
above argument, it is not difficult to prove that there exists ω2 ∈ (ω,+∞) such

that x(ω2) =
x(0)+x(ω)

2
= x(ω1). Hence, (2.3) is satisfied, which implies that Lemma

2.3 holds by choosing ξ0 = ω, ξ1 = ω1 and ξ2 = ω2.

(C3) x(0) < x(ω). Similar to the argument as that in (C2), it is not difficult to verify that
Lemma 2.3 holds. So we omit the proof of this case.

This completes the proof of Lemma 2.3.

Similar to the argument as that in Lemma 2.3, we can easily show that

Lemma 2.4. Assume that x ∈ AP (R), then for arbitrary interval [a, b] with b − a = ω > 0,
there exist η0 ∈ [a, b], η1 ∈ (−∞, a] and η2 ∈ [η1 + ω,+∞) such that

x(η1) = x(η2) and x(η0) ≥ x(s), ∀s ∈ [η1, η2].

Lemma 2.5. [3, 6] Assume that f ∈ AP (R) and f̄ = m(f) > 0, then for ∀a ∈ R, there exists
a positive constant T0 independent of a such that

1

T

∫ a+T

a

f(s) ds ∈
[
f̄

2
,
3f̄

2

]
, ∀T ≥ T0.
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3 Existence of at least one almost periodic solution

The method to be used in this paper involves the applications of the continuation theorem
of coincidence degree. This requires us to introduce a few concepts and results from Gaines
and Mawhin [4].

Let X and Y be real Banach spaces, L : DomL ⊆ X → Y be a linear mapping and
N : X → Y be a continuous mapping. The mapping L is called a Fredholm mapping of index
zero if ImL is closed in Y and dimKerL = codimImL < +∞. If L is a Fredholm mapping
of index zero and there exist continuous projectors P : X → X and Q : Y → Y such that
ImP = KerL, KerQ = ImL = Im(I − Q). It follows that L|DomL∩KerP : (I − P )X → ImL is
invertible and its inverse is denoted by KP . If Ω is an open bounded subset of X, the mapping
N will be called L-compact on Ω̄ if QN(Ω̄) is bounded and KP (I −Q)N : Ω̄ → X is compact.
Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Lemma 3.1. [4] Let Ω ⊆ X be an open bounded set, L be a Fredholm mapping of index zero
and N be L-compact on Ω̄. If all the following conditions hold:

(a) Lx ̸= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);

(b) QNx ̸= 0, ∀x ∈ ∂Ω ∩KerL;

(c) deg{JQN,Ω ∩KerL, 0} ̸= 0, where J : ImQ → KerL is an isomorphism.

Then Lx = Nx has a solution on Ω̄ ∩DomL.

Our first observation is that under the invariant transformation (S, I)T = (ex, ey)T , system
(1.3) reduces to{

ẋ(t) = α(t)e−x(t) − µ(t)− β(t)ey(t)

k1+k2ey(t)
,

ẏ(t) = β(t)ex(t)

k1+k2ey(t)
− (µ(t) + γ(t))− σ(t)e−y(t).

(3.1)

For x ∈ AP (R), we denote by

x̄ = m(x) = lim
T→∞

1

T

∫ T

0

x(s) ds,

a(x,ϖ) = lim
T→∞

1

T

∫ T

0

x(s)e−iϖs ds,

Λ(x) =

{
ϖ ∈ R : lim

T→∞

1

T

∫ T

0

x(s)e−iϖsds ̸= 0

}
the mean value, the Bohr transform and the set of Fourier exponents of x, respectively.

Set X = Y = V1

⊕
V2, where

V1 =

{
w = (x, y)T ∈ AP (R,R2) : mod(x) ⊆ mod(Lx),

mod(y) ⊆ mod(Ly),

∀ϖ ∈ Λ(x) ∪ Λ(y), |ϖ| ≥ θ0

}
,

V2 =
{
w = (x, y)T ≡ (k1, k2)

T , k1, k2 ∈ R
}
,
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where

Lx = Lx(t, φ) = α(t)e−φ1 − µ(t)− β(t)eφ2

k1 + k2eφ2
,

Ly = Ly(t, φ) =
β(t)eφ1

k1 + k2eφ2
− (µ(t) + γ(t))− σ(t)e−φ2 ,

φ = (φ1, φ2)
T ∈ R2, θ0 is a given positive constant. Define the norm

∥w∥X = max

{
sup
s∈R

|x(s)|, sup
s∈R

|y(s)|
}
, ∀w = (x, y)T ∈ X = Y.

Similar to the proof as that in [15], it follows that

Lemma 3.2. X and Y are Banach spaces endowed with ∥ · ∥.

Lemma 3.3. Let L : X → Y, Lw = L(x, y)T = (ẋ, ẏ)T , then L is a Fredholm mapping of
index zero.

Lemma 3.4. Define N : X → Y, P : X → X and Q : Y → Y by

Nw = N

(
x
y

)
=

(
α(t)e−x(t) − µ(t)− β(t)ey(t)

k1+k2ey(t)

β(t)ex(t)

k1+k2ey(t)
− (µ(t) + γ(t))− σ(t)e−y(t)

)
,

Pw = P

(
x
y

)
=

(
m(x)
m(y)

)
= lim

T→∞

1

T

( ∫ T

0
x(s) ds∫ T

0
y(s) ds

)
= Qw, ∀w =

(
x
y

)
∈ X = Y.

Then N is L-compact on Ω̄(Ω is an open and bounded subset of X).

Now we are in the position to present and prove our result on the existence of at least one
almost periodic solution for system (1.3).

First of all, we introduce a assumption:

(H1) ᾱ > 0, β̄ > 0 and σ̄ > 0.

Theorem 3.1. Assume that (H1) holds, then system (1.3) admits at least one positive almost
periodic solution.

Proof. It is easy to see that if system (3.1) has one almost periodic solution (x̄, ȳ)T , then
(S̄, Ī)T = (ex̄, eȳ)T is a positive almost periodic solution of system (1.3). Therefore, to com-
pletes the proof it suffices to show that system (3.1) has one almost periodic solution.

In order to use Lemma 3.1, we set the Banach spaces X and Y as those in Lemma 3.2 and
L,N, P,Q the same as those defined in Lemmas 3.3 and 3.4, respectively. It remains to search
for an appropriate open and bounded subset Ω ⊆ X.

Corresponding to the operator equation Lw = λw, λ ∈ (0, 1), we have
ẋ(t) = λ

[
α(t)e−x(t) − µ(t)− β(t)ey(t)

k1+k2ey(t)

]
,

ẏ(t) = λ

[
β(t)ex(t)

k1+k2ey(t)
− (µ(t) + γ(t))− σ(t)e−y(t)

]
.

(3.2)

Suppose that (x, y)T ∈ DomL ⊆ X is a solution of system (3.1) for some λ ∈ (0, 1), where
DomL = {w = (x, y)T ∈ X : x, y ∈ C1(R), ẋ, ẏ ∈ C(R)}. By the almost periodicity of x and
y, there exist two sequences {Tn : n ∈ N+} and {Pn : n ∈ N+} such that

x(Tn) ∈ [x∗ − 1

n
, x∗], x∗ = sup

s∈R
x(s), n ∈ N+, (3.3)
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y(Pn) ∈ [y∗ − 1

n
, y∗], y∗ = sup

s∈R
y(s), n ∈ N+. (3.4)

From (H1) and Lemma 2.5, for ∀a ∈ R, there exists a constant ω0 ∈ (0,+∞) independent
of a such that{

1
T

∫ a+T

a
α(s) ds ∈ [ ᾱ

2
, 3ᾱ

2
],

1
T

∫ a+T

a
σ(s) ds ∈ [ σ̄

2
, 3σ̄

2
], ∀T ≥ ω0.

(3.5)

Consider [Tn0 − ω0, Tn0 ] and [Pn0 − ω0, Pn0 ] for ∀n0 ∈ N+. By Lemma 2.3, there exist
ξn0
x ∈ [Tn0 − ω0, Tn0 ], ξ

n0
1 ∈ (−∞, Tn0 − ω0] and ξn0

2 ∈ [ξn0
1 + ω0,+∞) such that

x(ξn0
1 ) = x(ξn0

2 ) and x(ξn0
x ) ≤ x(s), ∀s ∈ [ξn0

1 , ξn0
2 ]. (3.6)

Integrating the first equation of system (3.1) from ξn0
1 to ξn0

2 leads to∫ ξ
n0
2

ξ
n0
1

[
α(s)e−x(s) − µ(s)− β(s)ey(s)

k1 + k2ey(s)

]
ds = 0,

which yields from (3.5)-(3.6) that

αMe−x(ξ
n0
x )(ξn0

1 − ξn0
2 ) ≥

∫ ξ
n0
2

ξ
n0
1

α(s)e−x(s) ds ≥
∫ ξ

n0
2

ξ
n0
1

µ(s) ds ≥ µ̄

2
(ξn0

1 − ξn0
2 ).

Then

ex(ξ
n0
x ) ≤ 2αM

µ̄
. (3.7)

Let I = [ξn0
x , Tn0 ] and Ξ

(ex)′

I = {s ∈ I : (ex(s))′ ≥ 0}. It follows from system (3.1) that∫
Ξ
(ex)′
I

dex(s)

ds
ds =

∫
Ξ
(ex)′
I

(ex(s))′ ds =

∫
Ξ
(ex)′
I

λ

[
α(s)− µ(s)ex(s) − β(s)ex(s)ey(s)

k1 + k2ey(s)

]
ds

≤
∫
Ξ
(ex)′
I

λα(s) ds ≤
∫ Tn0

Tn0−ω0

α(s) ds

≤ αMω0. (3.8)

By Lemma 2.2, it follows from (3.7)-(3.8) that

ex(t) ≤ ex(ξ
n0
x ) +

∫
Ξ
(ex)′
I

dex(s)

ds
ds ≤ 2αM

µ̄
+ αMω0, ∀t ∈ [ξn0

x , Tn0 ],

which implies that

x(Tn0) ≤ ln

[
2αM

µ̄
+ αMω0

]
:= ρ1.

In view of (3.3), letting n0 → +∞ in the above inequality leads to

x∗ = lim
n0→+∞

x(Tn0) ≤ ρ1. (3.9)

Also, there exist ξn0
y ∈ [Pn0 −ω0, Pn0 ], ξ

n0
3 ∈ (−∞, Pn0 −ω0] and ξn0

4 ∈ [ξn0
3 +ω0,+∞) such

that

y(ξn0
3 ) = y(ξn0

4 ) and y(ξn0
y ) ≤ y(s), ∀s ∈ [ξn0

3 , ξn0
4 ]. (3.10)
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Integrating (3.2) from ξn0
3 to ξn0

4 leads to∫ ξ
n0
4

ξ
n0
3

[
β(s)ex(s)

k1 + k2ey(s)
− (µ(s) + γ(s))− σ(s)e−y(s)

]
ds = 0, (3.11)

which yields from (3.10) and (3.5) that

βMeρ1e−y(ξ
n0
y )(ξn0

4 − ξn0
3 )

k2
≥
∫ ξ

n0
4

ξ
n0
3

β(s)ex(s)

k1 + k2ey(s)
ds ≥

∫ ξ
n0
4

ξ
n0
3

(µ(s)+γ(s)) ds ≥ (
µ̄

2
+γl)(ξn0

4 −ξn0
3 ),

which implies that

ey(ξ
n0
y ) ≤ 2βMeρ1

k2(µ̄+ 2γl)
⇐⇒ y(ξn0

y ) ≤ ln

[
2βMeρ1

k2(µ̄+ 2γl)

]
. (3.12)

Let Î = [ξn0
y , Pn0 ] and Ξẏ

Î
= {s ∈ Î : ẏ(s) ≥ 0}. Similar to the argument as that in (3.8), it

follows from the second equation of system (3.2) that∫
Ξẏ

Î

ẏ(s) ds ≤
∫
Ξẏ

Î

β(s)ex(s)

k1 + k2ey(s)
ds ≤

∫ Pn0

Pn0−ω0

β(s)ex(s)

k1 + k2ey(s)
ds ≤ βMeρ1ω0

k1
. (3.13)

By Lemma 2.2, it follows from (3.12)-(3.13) that

y(t) ≤ y(ξn0
y ) +

∫
Ξẏ

Î

ẏ(s) ds

≤ ln

[
2βMeρ1

k2(µ̄+ 2γl)

]
+

βMeρ1ω0

k1
:= ρ2, ∀t ∈ [ξn0

y , Pn0 ],

which implies that

y(Pn0) ≤ ρ2.

In view of (3.4), letting n0 → +∞ in the above inequality leads to

y∗ = lim
n0→+∞

y(Pn0) ≤ ρ2. (3.14)

For ∀n0 ∈ Z, by Lemma 2.4, there exist ηn0
x ∈ [n0ω̂, n0ω0 + ω0], η

n0
1 ∈ (−∞, n0ω0] and

ηn0
2 ∈ [ηn0

1 + ω0,+∞) such that

x(ηn0
1 ) = x(ηn0

2 ) and x(ηn0
x ) ≥ x(s), ∀s ∈ [ηn0

1 , ηn0
2 ].

Integrating the first equation of system (3.2) from ηn0
1 to ηn0

2 leads to

e−x(η
n0
x )

∫ η
n0
2

η
n0
1

α(s) ds ≤
∫ η

n0
2

η
n0
1

α(s)e−x(s) ds =

∫ η
n0
2

η
n0
1

[
µ(s) +

β(s)ey(s)

k1 + k2ey(s)

]
ds

≤
[
µM +

βMeρ2

k1 + k2eρ2

]
(ηn0

2 − ηn0
1 ),

which implies from (3.5) that

ex(η
n0
x ) ≥

(
2

ᾱ

[
µM +

βMeρ2

k1 + k2eρ2

])−1

:= ∆1. (3.15)

Further, we obtain from the first equation of system (3.2) that∫ n0ω0+ω0

n0ω0

∣∣∣∣dex(s)ds

∣∣∣∣ ds =

∫ n0ω0+ω0

n0ω0

λ

∣∣∣∣α(s)− µ(s)ex(s) − β(s)ex(s)ey(s)

k1 + k2ey(s)

∣∣∣∣ ds
9



≤
[
αM + µMeρ1 +

βMeρ1eρ2

k1 + k2eρ2

]
ω0 := Θ1. (3.16)

It follows from (3.15)-(3.16) that

ex(t) ≥ ex(η
n0
x ) −

∫ n0ω0+ω0

n0ω0

∣∣∣∣dex(s)ds

∣∣∣∣ ds ≥ ∆1 −Θ1 := ρ3, ∀t ∈ [n0ω0, n0ω0 + ω0]. (3.17)

Obviously, ρ3 is a constant independent of n0. So it follows from (3.17) that

x∗ = inf
s∈R

x(s) = inf
n0∈Z

{
min

s∈[n0ω0,n0ω0+ω0]
x(s)

}
≥ inf

n0∈Z
{ρ3} = ρ3. (3.18)

Also, there exist ηn0
y ∈ [n0ω0, n0ω0 + ω0], η

n0
3 ∈ (−∞, n0ω0] and ηn0

4 ∈ [ηn0
3 + ω0,+∞) such

that

y(ηn0
3 ) = y(ηn0

4 ) and y(ηn0
y ) ≥ y(s), ∀s ∈ [ηn0

3 , ηn0
4 ].

Integrating the second equation of system (3.2) from ηn0
3 to ηn0

4 , it leads to

e−y(η
n0
y )

∫ η
n0
4

η
n0
3

σ(s) ds ≤
∫ η

n0
4

η
n0
3

σ(s)e−y(s) ds ≤
∫ η

n0
4

η
n0
3

β(s)ex(s)

k1 + k2ey(s)
ds

≤ βMeρ1

k1
(ηn0

4 − ηn0
3 ).

Then

ey(η
n0
y ) ≥

[
2βMeρ1

k1σ̄

]−1

:= ∆2. (3.19)

In view of the second equation of system (3.2), it follows that∫ n0ω0+ω0

n0ω0

∣∣∣∣dey(s)ds

∣∣∣∣ ds =

∫ n0ω0+ω0

n0ω0

λ

∣∣∣∣β(s)ex(s)ey(s)k1 + k2ey(s)
− (µ(s) + γ(s))ey(s) − σ(s)

∣∣∣∣ ds
≤
[
βMeρ1eρ2

k1 + k2eρ2
+ (µM + γM)eρ2 + σM

]
ω0 := Θ2. (3.20)

Similar to the argument as that in (3.18), we obtain from (3.19)-(3.20) that

y∗ ≥ ∆2 +Θ2 := ρ4. (3.21)

Set K = |ρ1|+ |ρ2|+ |ρ3|+ |ρ4|+ 1, then ∥w∥ = ∥(x, y)T∥ < K. Clearly, K is independent
of λ ∈ (0, 1). Consider the algebraic equations QNw0 = 0 for w0 = (x0, y0)

T ∈ R2 as follows:{
m(α)e−x0 −m(µ)− m(β)ey0

k1+k2ey0
= 0,

m(β)ex0

k1+k2ey0
−m(µ+ γ)−m(σ)e−y0 = 0.

Similar to the arguments as that in (3.9), (3.14), (3.18) and (3.21), we can easily obtain that

ρ3 ≤ x∗ ≤ x∗ ≤ ρ1, ρ4 ≤ y∗ ≤ y∗ ≤ ρ2.

Then ∥w0∥ = |x0| + |y0| < K. Let Ω = {w ∈ X : ∥w∥ < K}, then Ω satisfies conditions (a)
and (b) of Lemma 3.1.

Finally, we will show that condition (c) of Lemma 3.1 is satisfied. Let us consider the
homotopy

H(ι, w) = ιQNw + (1− ι)Fw, (ι, w) ∈ [0, 1]×R2,

10



where

Fw = F

(
x
y

)
=

(
m(α)e−x −m(µ)

−m(µ+ γ)−m(σ)e−y

)
.

From the above discussion it is easy to verify that H(ι, w) ̸= 0 on ∂Ω ∩KerL, ∀ι ∈ [0, 1]. By
the invariance property of homotopy, direct calculation produces

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
QN,Ω ∩KerL, 0

)
= deg

(
F,Ω ∩KerL, 0

)
̸= 0,

where deg(·, ·, ·) is the Brouwer degree and J is the identity mapping since ImQ = KerL.
Obviously, all the conditions of Lemma 3.1 are satisfied. Therefore, system (3.1) has one
almost periodic solution, that is, system (1.3) has at least one positive almost periodic solution.
This completes the proof.

Next, we shall investigate the stability of positive almost periodic solution of system (1.3).

Lemma 3.5. [23] Assume that for y(t) > 0, t ≥ t0, it holds that

ẏ(t) ≤ a− by(t),

with initial condition y(t0) ≥ 0, where a, b are positive constants. Then

lim
t→+∞

sup y(t) ≤ a

b
.

Lemma 3.6. For any positive solution (S(t), I(t))T of system (1.3) satisfies

lim sup
t→∞

S(t) ≤ αM

µl
:= S0.

Proof. In view the first equation of system (1.3), we have

Ṡ(t) ≤ αM − µlS(t),

which implies from Lemma 3.5 that

lim
t→+∞

supS(t) ≤ αM

µl
.

This completes the proof.

Theorem 3.2. Assume that (H1) holds. Suppose further that

(H2) k2µ
l > 2βM and k1(µ

l + γl) > 2βMS0, where S0 :=
αM

µl .

Then the almost periodic solution of system (1.3) is globally asymptotically stable.

Proof. From Theorem 3.1, we know that system (1.3) has at least one positive almost periodic
solution (S, I)T . Suppose that (S̄, Ī)T is another positive solution of system (1.3).

By Lemma 3.6 and (H2), for ∀ϵ > 0 small enough, there exist positive constants T0 and θ
such that

max{S(t), S̄(t)} ≤ S0 + ϵ, , ∀t ≥ T0

and

min

[
µl − 2βM

k2
, µl + γl − 2βM(S0 + ϵ)

k1

]
> θ.

11



Define

V (t) = |S(t)− S̄(t)|+ |I(t)− Ī(t)|, t ≥ T0.

By calculating the upper right derivative of V along the solution of system (1.3), it follows
from the mean value theorem for multivariate function that

D+V (t) = sgn[S(t)− S̄(t)][Ṡ(t)− ˙̄S(t)] + sgn[I(t)− Ī(t)][İ(t)− ˙̄I(t)]

≤
[
− µl|S(t)− S̄(t)|+ βM

k2
|S(t)− S̄(t)|+ βM(S0 + ϵ)

k1
|I(t)− Ī(t)|

]
+

[
− (µl + γl)|I(t)− Ī(t)|+ βM

k2
|S(t)− S̄(t)|+ βM(S0 + ϵ)

k1
|I(t)− Ī(t)|

]
= −

[
µl − 2βM

k2

]
|S(t)− S̄(t)| −

[
µl + γl − 2βM(S0 + ϵ)

k1

]
|I(t)− Ī(t)|

≤ −θ{|S(t)− S̄(t)|+ |I(t)− Ī(t)|}, t ≥ T0.

Therefore, V is non-increasing. Integrating of the last inequality from T0 to t leads to

V (t) + θ

∫ t

T0

|S(t)− S̄(t)| dt+ θ

∫ t

T0

|I(t)− Ī(t)| dt ≤ V (T0) < +∞, ∀t ≥ T0,

that is, ∫ +∞

T0

|S(t)− S̄(t)| dt < +∞,

∫ +∞

T0

|I(t)− Ī(t)| dt < +∞,

which implies that
lim

t→+∞
|S(t)− S̄(t)| = lim

t→+∞
|I(t)− Ī(t)| = 0.

This completes the proof.

4 A multiplicity result

Now we present and prove our main result of this section on the existence of at least two
positive almost periodic solutions for system (1.3).

Lemma 4.1. [20] Assume that x ∈ AP (R) ∩ C1(R) with ẋ ∈ C(R), for ∀ϵ > 0, we have the
following conclusions:

(I) there is a point ξϵ ∈ [0,+∞) such that x(ξϵ) ∈ [x∗ − ϵ, x∗] and ẋ(ξϵ) = 0;

(II) there is a point ηϵ ∈ [0,+∞) such that x(ηϵ) ∈ [x∗, x∗ + ϵ] and ẋ(ηϵ) = 0.

Let

o1 := ln
αM

µl
, ς = βleo1 − k1κ− k2σ

M , κ = µM + γM .

We introduce some assumptions and two numbers as follows:

(P1) µl > 0 and βM > 0.

(P2)
βMeo1−(µl+γl)

k2(µl+γl)
< αM

µl .

(P3) ς > 2
√
k1k2σMκ.
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l± =
ς ±

√
ς2 − 4k1k2σMκ

2k2κ
.

Theorem 4.1. Assume that (P1)-(P3) hold, then system (1.3) admits at least two positive
almost periodic solutions.

Proof. Similar to Theorem 3.1, we consider the operator equation (3.2). Suppose that
(x, y)T ∈ DomL ⊆ X is a solution of system (3.2) for some λ ∈ (0, 1), where DomL =
{(x, y)T ∈ X : x, y ∈ C1(R), ẋ, ẏ ∈ C(R)}. By Lemma 4.1, for ∀ϵ ∈ (0, 1), there are four

points ξ
(1)
ϵ , η

(1)
ϵ , ξ

(2)
ϵ , η

(2)
ϵ ∈ [0,+∞) such that

ẋ(ξ(1)ϵ ) = 0, x(ξ(1)ϵ ) ∈ [x∗ − ϵ, x∗]; ẏ(ξ(2)ϵ ) = 0, y(ξ(2)ϵ ) ∈ [y∗ − ϵ, y∗], (4.1)

ẋ(η(1)ϵ ) = 0, x(η(1)ϵ ) ∈ [x∗, x∗ + ϵ]; ẏ(η(2)ϵ ) = 0, y(η(2)ϵ ) ∈ [y∗, y∗ + ϵ], (4.2)

where x∗ = sups∈R x(s), x∗ = infs∈R x(s), y∗ = sups∈R y(s), y∗ = infs∈R y(s). In view of (3.2),
it follows from (4.1)-(4.2) that

0 = α(ξ(1)ϵ )e−x(ξ
(1)
ϵ ) − µ(ξ(1)ϵ )− β(ξ

(1)
ϵ )ey(ξ

(1)
ϵ )

k1 + k2ey(ξ
(1)
ϵ )

, (4.3)

0 =
β(ξ

(2)
ϵ )ex(ξ

(2)
ϵ )

k1 + k2ey(ξ
(2)
ϵ )

− (µ(ξ(2)ϵ ) + γ(ξ(2)ϵ ))− σ(ξ(2)ϵ )e−y(ξ
(2)
ϵ ), (4.4)

0 = α(η(1)ϵ )e−x(η
(1)
ϵ ) − µ(η(1)ϵ )− β(η

(1)
ϵ )ey(η

(1)
ϵ )

k1 + k2ey(η
(1)
ϵ )

, (4.5)

0 =
β(η

(2)
ϵ )ex(η

(2)
ϵ )

k1 + k2ey(η
(2)
ϵ )

− (µ(η(2)ϵ ) + γ(η(2)ϵ ))− σ(η(2)ϵ )e−y(η
(2)
ϵ ). (4.6)

From (4.3) and (4.5), we obtain that

x(ξ(1)ϵ ) < ln
αM

µl
:= o1 and x(η(1)ϵ ) > ln

αl

µM + βM/k2
:= o2.

It follows (4.1)-(4.2) that

x∗ < o1 + ϵ and x∗ > o2 − ϵ. (4.7)

Letting ϵ → 0 in (4.7) leads to

x∗ ≤ o1 and x∗ ≥ o2. (4.8)

From (4.4) and (4.6), we obtain that

ey(ξ
(2)
ϵ ) <

β(ξ
(2)
ϵ )ex(ξ

(2)
ϵ )ey(ξ

(2)
ϵ ) − (µ(ξ

(2)
ϵ ) + γ(ξ

(2)
ϵ ))

(k1 + k2ey(ξ
(2)
ϵ ))(µ(ξ

(2)
ϵ ) + γ(ξ

(2)
ϵ ))

<
βMeo1 − (µl + γl)

k2(µl + γl)
(4.9)

and

σ(η(2)ϵ )e−y(η
(2)
ϵ ) <

β(η
(2)
ϵ )ex(η

(2)
ϵ )

k1 + k2ey(η
(2)
ϵ )

<
βMeo1

k1
, (4.10)
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which implies that

y(ξ(2)ϵ ) < ln
βMeo1 − (µl + γl)

k2(µl + γl)
:= o3 and y(η(2)ϵ ) > ln

k1σ
l

βMeo1
:= o4.

It follows (4.1)-(4.2) that

y∗ < o3 + ϵ and y∗ > o4 − ϵ. (4.11)

Letting ϵ → 0 in (4.11) leads to

y∗ ≤ o3 and y∗ ≥ o4. (4.12)

By (4.4), we have

0 =
β(ξ

(2)
ϵ )ex(ξ

(2)
ϵ )+y(ξ

(2)
ϵ )

k1 + k2ey(ξ
(2)
ϵ )

− (µ(ξ(2)ϵ ) + γ(ξ(2)ϵ ))ey(ξ
(2)
ϵ ) − σ(ξ(2)ϵ ), (4.13)

which yields that

k2(µ
M + γM)e2y(ξ

(2)
ϵ ) −

[
βleo1 − k1(µ

M + γM)− k2σ
M
]
ey(ξ

(2)
ϵ ) + k1σ

M > 0. (4.14)

Under the hypothesis of (P3), we have

y(ξ(2)ϵ ) > ln l+ or y(ξ(2)ϵ ) < ln l−.

It follows (4.1) that

y∗ > ln l+ or y∗ < ln l− + ϵ. (4.15)

Letting ϵ → 0 in (4.15) leads to

y∗ ≥ ln l+ or y∗ ≤ ln l−. (4.16)

Similarly, from (4.6), we obtain a parallel argument to (4.16)

y∗ ≥ ln l+ or y∗ ≤ ln l−. (4.17)

Therefore, it follows from (4.16)-(4.17) that

o4 ≤ y(t) ≤ ln l− or ln l+ ≤ y(t) ≤ o3, ∀t ∈ R. (4.18)

Obviously, ln l±, o1, o2, o3 and o4 are independent of λ. Let ε = ln l+−ln l−
4

and

Ω1 =

{
w = (x, y)T ∈ X : o2 − 1 < x(t) < o1 + 1, o4 − 1 < y(t) < ln l− + ε,∀t ∈ R

}
,

Ω2 =

{
w = (x, y)T ∈ X : o2 − 1 < x(t) < o1 + 1, ε− ln l+ < y(t) < o3 + 1,∀t ∈ R

}
.

Then Ω1 and Ω2 are bounded open subsets of X, Ω1 ∩ Ω2 = ∅. Therefore, Ω1 and Ω2 satisfies
condition (a) of Lemma 3.1.

Now we show that condition (b) of Lemma 3.1 holds, i.e., we prove that QNw ̸= 0 for all
w = (x, y)T ∈ ∂Ωi ∩KerL = ∂Ωi ∩R2, i = 1, 2. If it is not true, then there exists at least one
constant vector w0 = (x0, y0)

T ∈ ∂Ωi (i = 1, 2) such that{
m(α)e−x0 −m(µ)− m(β)ey0

k1+k2ey0
= 0,

m(β)ex0

k1+k2ey0
−m(µ+ γ)−m(σ)e−y0 = 0.

Similar to the arguments as that in (4.8), (4.12) and (4.18), we can easily obtain that

o2 < x(t) < o1 and o4 < y(t) < ln l− or ln l+ < y(t) < o3, ∀t ∈ R.
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Then w0 ∈ Ω1 ∩R2 or w0 ∈ Ω2 ∩R2. This contradicts the fact that w0 ∈ ∂Ωi (i = 1, 2). This
proves that condition (b) of Lemma 3.1 holds.

Finally, we show that condition (c) of Lemma 3.1 holds. Let us consider the homotopy

H(ι, w) = ιQNw + (1− ι)Fw, (ι, w) ∈ [0, 1]×R2,

where

Fw = F

(
x
y

)
=

(
m(α)e−x −m(µ)− m(β)

k2(
m(β)ex −m(µ+ γ)

)
ey − k2m(µ+ γ)e2y −m(σ)

)
.

By a parallel argument to Theorem 3.1 in paper [1], we can obtain that Ω1 and Ω2 satisfy con-
dition (c) of Lemma 3.1. Obviously, all the conditions of Lemma 3.1 are satisfied. Therefore,
system (3.1) has two different almost periodic solutions, that is, system (1.3) has at least two
different positive almost periodic solutions. This completes the proof.

Remark 4.1. In system (1.3), let α(t) ≡ α, µ(t) ≡ µ, γ(t) ≡ γ, σ(t) ≡ σ and β be periodic,
then Theorem 4.1 in this section changes to Theorem 3.1 in paper [1]. Therefore, our result
extends the result obtained in paper [1].

5 Two examples and numerical simulations

Example 5.1. Consider the following almost periodic system:{
Ṡ(t) = | sin

√
10t| − sin2(

√
2t)S(t)− 5 cos2(

√
3t)S(t)I(t)

1+I(t)
,

İ(t) = 5 cos2(
√
3t)S(t)I(t)

1+I(t)
− (sin2(

√
2t) + 10)I(t)− | cos

√
9t|.

(5.1)

Corresponding to system (1.3), we have that ᾱ > 0, µ̄ > 0 and σ̄ > 0. Therefore, all the
conditions of Theorem 3.1 are satisfied. By Theorem 3.1, system (5.1) admits at least one
positive almost periodic solution(see Figure 1).

Figure 1 Almost periodicity of state variables (S, I)T of system (5.1)

Example 5.2. Consider the following almost periodic system:{
Ṡ(t) = | sin

√
10t| − 0.001[sin2(

√
2t) + 1]S(t)− 0.001S(t)I(t)

1+I(t)
,

İ(t) = 0.001S(t)I(t)
1+I(t)

− [0.001 sin2(
√
2t) + 0.002]I(t)− 0.009| cos

√
9t|.

(5.2)
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Corresponding to system (1.3), we have αM = 1, µl = 0.001, µM = 0.002, βl = βM = 0.001,
k1 = k2 = 1, γl = γM = 0.001, σl = 0 and σM = 0.009. By a simple computation, we can
easily verify that (P1)-(P3) of Theorem 4.1 are satisfied. By Theorem 4.1, system (5.2) admits
at least two positive almost periodic solutions(see Figure 2).

Figure 2 Two positive almost periodic solutions (S1, I1)
T and (S2, I2)

T of system (5.2)

6 Discussion

In this paper we have obtained the existence, multiplicity and stability of positive almost
periodic solution for a non-autonomous SIR model with almost periodic transmission rate and
a constant removal rate. The approach is based on the continuation theorem of coincidence
degree theory. And Lemma 4.1 in Section 4 is critical to study the multiplicity of positive
almost periodic solution of the model. It is important to notice that the approach used
in this paper can be extended to other types of epidemics model such as SEIR; SIRS and
other similar models of first order [24]. Future work will include models based on impulsive
differential equations and biological dynamic systems on time scales [25].
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