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Abstract

Let A be a subgroup of a group G and X a non-empty subset of G. A is said to be X-s-
semipermutable in G if A has a supplement T in G such that A is X-permutable with every Sylow
subgroup of T . In this paper, some new criteria for a finite group G to be p-nilpotent or super-
soluble in terms of X-s-semipermutable subgroups are obtained. In particular, a characterization
of finite groups all of whose subgroups are G-s-semipermutable are presented.
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1 Introduction

In [9, 10, 11, 12, 14], Guo, Shum and Skiba introduced the following new concepts of generalized

permutable subgroups. Let A and B be subgroups of a group G and X a nonempty subset of G.

Then A is said to be X-permutable with B if there exists some element x in X such that ABx = BxA

(in particular, if X = G, then, in [10], A is said to be conditionally permutable with B); A is said to

be X-semipermutable in G if A is X-permutable with all subgroups of some supplement T of A in

G. Based on these generalized permutable subgroups, one has given a series of new and interesting

characterizations of the structure of finite groups (see [2, 6, 9, 10, 11, 12, 13, 14, 15, 16, 24]).

Later on, as a generalization of X-semipermutability, L. P. Hao et al introduced the concept of

X-s-semipermutability in [19]. Let A be a subgroup of a group G and X a non-empty subset of G.

Then A is said to be X-s-semipermutable in G if A is X-permutable with every Sylow subgroup

of some supplement T of A in G. Obviously, the X-semipermutability and S-permutability imply

the X-s-semipermutability. However, the converse does not hold. For example, let G = [〈a, b〉]〈α〉,

where a4 = 1, a2 = b2 = [a, b] and aα = b, bα = ab. Let A = 〈α〉 and X = 1. Clearly, A is X-s-

semipermutable in G. But A is not X-semipermutable in G. On the other hand, let G = [C5]C4,

∗Corresponding author.
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where C5 is a group of order 5 and C4 is the automorphism group of C5 of order 4. Let H be a

subgroup of C4 of order 2. Then H is G-s-semipermutable in G but not S-permutable in G.

Note that in [28], Li et al introduced the concept of SS-quasinormality. A subgroup H of a

group G is said to be SS-quasinormal in G if H has a supplement T in G such that H is permutable

with every Sylow subgroup of T . Clearly, SS-quasinormality implies that X-s-semipermutability,

where X = 1. But the converse does not hold in general. The group G = [C5]C4 mentioned in

the foregoing paragraph is a counterexample. Let H be a subgroup of C4 of order 2. Then H is

G-s-semipermutable in G, but not SS-quasinormal in G.

In [19, 20], Hao investigated the influence of X-s-semipermutable subgroups on the supersolubility

and p-nilpotency of finite groups. Our object in this paper is to study further this kind of generalized

permutable subgroups. Moreover, we will present some new characterizations of p-nilpotency and

supersolubility of finite groups under the assumption that some subgroups are X-s-semipermutable.

One of our results obtained in this paper characterizes the structure of groups G all of whose sub-

groups are all G-s-semipermutable.

All groups considered in this paper are finite. For notation and terminology not given in this

paper, the reader is referred to [18, 8, 22] if necessary. For some related topics, the reader is also

referred to [1, 5, 21, 25, 26, 27, 29, 33, 35, 36].

2 Preliminaries

We begin by stating some elementary facts about the classes of finite groups.

Let F be a class of groups. F is said to be a formation if F is a homomorph and every group

G has a smallest normal subgroup (denoted by GF) whose quotient is still in F. A formation F is

said to be saturated if G/Φ(G) ∈ F always implies G ∈ F. A chief factor H/K of a group G is

said to F-central (or F-eccentric) in G if [H/K](G/CG(H/K)) ∈ F (or [H/K](G/CG(H/K)) /∈ F

respectively). In this paper, ZF
∞(G) denotes the F-hypercenter of a group G, that is, the product of

all such normal subgroups H of G whose G-chief factors are F-central. We use N and U to denote

the class of all nilpotent groups and the class of all supersoluble groups, respectively.

Lemma 2.1. [19, Lemma 2.1] Let A and X be subgroups of a group G and let N be a normal

subgroup of G.

(1) If A is X-s-semipermutable in G, then AN/N is XN/N -s-semipermutable in G/N .

(2) If A is X-s-semipermutable in G, A ≤ D ≤ G and X ≤ D, then A is X-s-semipermutable in

D.

(3) If A is X-s-semipermutable in G and X ≤ D, then A is D-s-semipermutable in G.

Lemma 2.2. [23, Lemma 3.3] Let G be a group and X a normal p-soluble subgroup of G. Then G

is p-soluble if and only if a Sylow p-subgroup P of G is X-permutable with all Sylow q-subgroups of
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G, where q 6= p.

Lemma 2.3. [32, Lemma 2.10] Let G be a group. Suppose that p is the smallest prime dividing

the order of G and P is a non-cyclic Sylow p-subgroup of G. If every maximal subgroup of P has a

p-nilpotent supplement in G, then G is p-nilpotent.

Lemma 2.4. [31, Corollary 1] Let A be an S-permutable subgroup of a group G. Then A is subnormal

in G.

Lemma 2.5. [6, Lemma 2.8] Let G be a group, p a prime and (|G|, p − 1) = 1. If M is a subgroup

of G with index p, then M is normal in G.

Lemma 2.6. [17, Lemma 2.6] Let H be a nilpotent normal subgroup of a group G. If H 6= 1 and

H ∩ Φ(G) = 1, then H has a complement in G and H is a direct product of some minimal normal

subgroups of G.

Lemma 2.7. [29, Theorem 1.3] Let p be a prime dividing the order of a group G and P a Sylow

p-subgroup of G. If every maximal subgroup of P has a p-nilpotent supplement in G, then G is

p-nilpotent.

3 Main results

Theorem 3.1. Let F be a saturated formation containing all supersoluble groups. A group G ∈ F if

and only if G has a normal soluble subgroup E such that G/E ∈ F and for every non-cyclic Sylow

subgroup P of F (E), every cyclic subgroup of P of order prime or order 4 (if P is a non-abelian

2-group and H * Z∞(G)) not having a supersoluble supplement in G is G-s-semipermutable in G.

Proof. The necessity is clear and we need only to prove the sufficiency.

First, we claim that any chief factor of G below F (E) is of prime order. Assume that the assertion

is not true and let L/K be a counterexample with |K| minimal, that is, L/K is not of prime order but

for every chief factor U/V of G below F (E) with |V | < |K|, U/V is of prime order. Since E is soluble,

we see that L/K is a p-chief factor for some prime p. Noticing that L/K ≃ L ∩ Op(E)/K ∩ Op(E),

we obtain by the choice of L/K that L/K = L ∩ Op(E)/K ∩ Op(E) and so L ⊆ Op(E). Let P

be the Sylow p-subgroup of F (E). If P is cyclic, then L/K is cyclic of order p, a contradiction.

Hence we can assume that P is non-cyclic. Let R/K be a chief factor of Gp/K, where Gp is a Sylow

p-subgroup of G and R ⊆ L. Then R = 〈x〉K for any x ∈ R \ K. Now we assume that there is

some element x ∈ R \K of order p or 4 (if P is non-abelian 2-group and 〈x〉 * Z∞(G)) not having a

supersoluble supplement in G is G-s-semipermutable in G and prove that L/K is of order p, reaching

a contradiction. If x ∈ Z∞(G), then xK/K ∈ L/K ∩ Z∞(G/K) and so L/K ⊆ Z∞(G/K), which

implies that L/K is of order p, a contradiction. If 〈x〉 has a supersoluble supplement T in G, then

L/K ∩ TK/K = 1 or L/K. If L/K ∩ TK/K = L/K, then L/K is a chief factor of G/K = TK/K,

3



which is supersoluble. Therefore L/K is cyclic of order p, a contradiction. If L/K ∩ TK/K = 1,

then L/K = L/K ∩ (〈x〉K/K)(TK/K) = 〈x〉K/K(L/K ∩ TK/K) = 〈x〉K/K, a contradiction

again. These contradictions together with our hypothesis show that 〈x〉 is G-s-semipermutable in

G. Therefore G has a subgroup T such that 〈x〉 is G-permutable with every Sylow subgroup of

T . Let Tq be a Sylow q-subgroup of T , where q 6= p. Then 〈x〉(Tq)
g = (Tq)

g〈x〉 for some g ∈ G.

Since R/K = 〈x〉K/K is subnormal in G/K, 〈x〉K/K is subnormal in (〈x〉K/K)((Tq)
gK/K) and so

〈x〉K/K is normalized by (Tq)
gK/K. Now one can see that R/K = 〈x〉K/K is normal in G/K and

therefore L/K = R/K is cyclic. This contradiction means that all elements of R \ K of order p or

order 4 (if P is a nonabelian 2-group) are contained in K. Since L/K = (R/K)G/K = RG/K, we

have that all elements of L of order p or 4 (if P is a non-abelian 2-group) are contained in K.

Let U/V be any chief factor of G below K. Then, by the choice of L/K, U/V is of order p

and so G/CG(U/V ) is abelian of exponent dividing p − 1. Put X =
⋂

U⊆K CG(U/V ). Then X is

normal in G and G/X is abelian of exponent dividing p − 1. Let Q be any Sylow q-subgroup of X,

where q 6= p. Then Q acts trivially on K by [18, Lemma 3.2.3]. Moreover, since all elements of L of

order p or 4 (if P is a non-abelian 2-group) are contained in K, Q acts trivially on L/K by the well

known Blackburn’s theorem, from which we conclude that X/CX(L/K) is a p-group. It follows that

X ⊆ CG(L/K) as Op(G/CG(L/K)) = 1 by [18, Lemma 1.7.11] and thereby G/CG(L/K) is abelian

of exponent dividing p − 1. Now, by [34, I, Lemma 1.3], we have that L/K is of order p, which

contradicts our assumption for L/K. Hence our claim holds. Thus F (E) ⊆ ZU
∞(G) and thereby

F (E) ⊆ ZF
∞(G) (see [18, Theorem 3.1.6]).

Let M/N be any chief factor of G below F (E) and put C =
⋂

CE(M/N). Then F (E) ⊆ C

since F (G) ⊆ CG(M/N). We assert that F (E) = C. Suppose that it is not true and let R/F (E)

be a minimal normal subgroup of G/F (E) with F (E) < R ≤ C. Then R ⊆ Z∞(R) and R/F (E) is

an elementary group as E is soluble. It follows that R is nilpotent and consequently R ⊆ F (E), a

contradiction. Hence F (E) = C. Since G/CG(M/N) is abelian by the preceding argument and F is

a saturated formation, G/F (E) = G/C ∈ F. Since F (E) ⊆ ZF
∞(G), we obtain that G ∈ F. Thus the

proof is complete.

By Theorem 3.1, we have the following corollary.

Corollary 3.2. (Asaad, Csörgö [3].) Let F be a saturated formation containing all supersoluble

groups. Then a group G ∈ F if and only if G has a normal soluble subgroup E such that G/E ∈ F

and the subgroups of prime order or order 4 of F (E) are S-permutable in G.

Theorem 3.3. Let G be a group and F a saturated formation containing all supersoluble groups.

Then G ∈ F if and only if G has a normal soluble subgroup E such that G/E ∈ F and every maximal

subgroup of each non-cyclic Sylow subgroup of the Fitting subgroup F (E) not having a supersoluble

supplement in G is G-s-semipermutable in G.

Proof. The necessity part is obvious. We only need to prove the sufficiency part. Assume that the
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assertion is false and let G be a counterexample of minimal order. Then

(1) Φ(G) ∩ E = 1.

Suppose that Φ(G)∩E 6= 1. Let p be a prime divisor of |Φ(G)∩E| and P a Sylow p-subgroup of

Φ(G)∩E. Since Φ(G)∩E is a nilpotent normal subgroup of G, P is normal in G and so P ≤ F (E).

Consider the factor group G/P . It is clear that F (E/P ) = F (E)/P (see [18, Lemma 1.8.1]) and

(G/P )/(E/P ) ≃ G/E is contained in F by the hypothesis. Then by Lemma 2.1(2), we can see that

G/P satisfies the hypothesis. Hence G/P ∈ F by the choice of G. It follows that G ∈ F as F is a

saturated formation, a contradiction.

(2) F (E) = N1 × N2 × · · · × Nt, where Ni is a minimal normal subgroup of G, for i = 1, 2, ..., t.

This follows directly from Lemma 2.6 and (1).

(3) Ni is a cyclic group of prime order, for all i ∈ {1, 2, ..., t}.

Without loss of generality, we may assume that P = N1 × N2 × · · · × Ns is a Sylow p-subgroup

of F (E), where s ≤ t. Let L1 be a maximal subgroup of N1 such that L1 is normal in some Sylow

p-subgroup Gp of G and write B = N2 × · · · × Ns. Then L = L1B is a maximal subgroup of P . If

P is cyclic, then clearly N1 = P is cyclic of order p. Hence we assume that P is not cyclic. Now, by

the hypothesis, L has a supersoluble supplement in G or is G-s-semipermutable in G. Suppose that

L has a supersoluble supplement T in G. Then (N1 ∩ BT )G = (N1 ∩ BT )L1BT ⊆ N1 ∩ BT and so

N1 ∩ BT = 1 or N1. If N1 ∩ BT = 1, then N1 = N1 ∩ L1BT = L1(N1 ∩ BT ) = L1, a contradiction.

If N1 ∩ BT = N1, then G = BT and therefore G/B is supersoluble. Since N1B/B is a chief factor

of G/B, N1 ≃ N1B/B is of order p, as desired. Now assume that L is G-s-semipermutable in G.

Then G has a subgroup T such that L is G-permutable with every Sylow subgroup of T . Let Tq be

a Sylow q-subgroup of T , where q 6= p. Then, for some element g of G, L(Tq)
g = (Tq)

gL. Since L is

subnormal in G, L is subnormal in L(Tq)
g and so L is normalized by (Tq)

g. Since L is also normalized

by Gp, we conclude that L is normal in G. Consequently L1 = L1(N1 ∩ B) = N1 ∩ L1B = N1 ∩L is

normal in G, which implies that N1 is cyclic of order p. Similarly we can prove that Ni is a cyclic

group of prime order for i = 2, ..., t.

(4) Final contradiction.

By (3), we see that G/CG(Ni) is abelian, where i = 1, 2, ..., t. Hence G′ ≤ CG(Ni) and so

G′ ≤ CG(F (E)). It follows that G′ ∩ E ≤ CH(F (E)) = F (E). Hence by (2) and (3), every G-chief

factor below G′∩E is cyclic, from which we have that every chief factor of G below G′∩E is F-central.

On the other hand, since F is a saturated formation, G/(G′ ∩E) ∈ F. This induces that G ∈ F. The

final contradiction completes the proof.

The corollaries below follow from Theorem 3.3.

Corollary 3.4. (Ramadan [30].) Assume that G is a soluble group and every maximal subgroup of

the Sylow subgroups of F (G) is normal in G. Then G is supersoluble.
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Corollary 3.5. (Asaad, Ramadan, Shaalan [4].) A soluble group G is supersoluble if and only if G

has a normal subgroup E such that G/E is supersoluble and every maximal subgroup of each Sylow

subgroup of F (E) is normal in G.

Corollary 3.6. (Asaad, Ramadan, Shaalan [4].) Let G be a group with a normal supersoluble

subgroup E such that G/E is supersoluble. If all maximal subgroups of any Sylow subgroup of F (H)

is S-permutable in G, then G is supersoluble.

Corollary 3.7. (Chen, Li [6].) A group G is supersoluble if and only if G has a normal soluble

subgroup E such that G/E is supersoluble and every maximal subgroup of each Sylow subgroup of

F (E) is F (E)-semipermutable in G.

Now, we can characterize the structure of groups G with all subgroups G-s-semipermutable in

the light of the preceding results.

Theorem 3.8. Let G be a group. Every subgroup of G is G-s-semipermutable in G if and only if

(1) G = [H]K, where H = GN is a nilpotent Hall subgroup of G with odd order, and

(2) G = HNG(L) for every subgroup L of H.

Proof. We first prove the necessity. Suppose that each subgroup of G is G-s-semipermutable in G.

Then G has a Hall {p, q}-subgroup for different primes p and q dividing the order of G. By the

well-known Arad’s result, we see that G is soluble. Moreover, by Theorem 3.1, G is supersoluble. It

follows that GN is nilpotent. We claim that GN is of odd order. If not, assume that 2 ∈ π(GN) and

let P be a Sylow 2-subgroup of GN. Then, P is normal in G and every chief factor of G below P is

of order 2. Thus, P ≤ Z∞(G). Let D be a Hall p′-subgroup of GN. Then GN is contained in D, a

contradiction. Hence GN is of odd order.

Let H = GN. We prove H is a Hall subgroup of G by induction. It is trivial if H = 1 and so we

suppose H > 1. Let N be a minimal normal subgroup of G contained in H and |N | = p, where p is

a prime. Assume that G has a minimal normal subgroup R of prime order q with q 6= p. Since the

hypothesis holds for the factor group G/R, (G/R)N=GNR/R=HR/R is a Hall subgroup of G/R by

induction. Then the Sylow p-subgroup of H is also a Sylow p-subgroup of G. If there exists r ∈ π(H)

with r 6= p, then, by considering the factor group G/N , we conclude that the Sylow r-subgroup of H

is a Sylow r-subgroup of G. Therefore, H is a Hall subgroup of G. Hence we can suppose that every

minimal normal subgroup of G is a p-subgroup. Since G is supersoluble, Op(G) is a Sylow p-subgroup

of G and consequently H ≤ Op(G). If N < H, then, by induction, we see that H is a Hall subgroup

of G. Hence, we now assume that H = N is a minimal normal subgroup of G. If H = Op(G),

then the conclusion is obvious. Thus, we suppose H is a proper subgroup of Op(G). We assert that

Φ = Φ(Op(G)) = 1. Assume this is not true. Then (G/Φ)N=HΦ/Φ is a Sylow p-subgroup of G.

Since the class of all nilpotent groups ia a saturated formation, we have that H is not contained

in Φ. Therefore HΦ is a Sylow p-subgroup of G, which implies that H is a Sylow p-subgroup of
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G, a contradiction. Hence Φ = 1 and so Op(G) is elementary abelian. Let L be any subgroup of

Op(G). We show that L is normal in G. By the hypothesis, L has a supplement T in G and L is

G-permutable with the Sylow subgroups of T . Let Tq be a Sylow q-subgroup of T , where q 6= p.

Then, for some x ∈ G, LT x
q is a subgroup. Since L is subnormal in G, L is normal in LT x

q , which

means that T x
q normalizes L. In addition, since Op(G) is an elementary abelian Sylow p-subgroup,

L is normal in G, as wanted. Let Op(G) = 〈a〉 × 〈a2〉 × · · · × 〈at〉 and H = 〈a〉, where |a| = |ai| = p

for all i = 2, · · · , t. Set a1 = aa2 · · · at. Then we have that Op(G) = 〈a1〉 × 〈a2〉 × · · · × 〈at〉. Since

1 6= H ≤ Op(G), Op(G) is not contained in Z(G). Hence there exists an index i ∈ {1, 2, · · · , t} such

that ai is not contained in Z(G). Pick a p′-element g ∈ G\CG(ai). Then y = [ai, g] 6= 1. Since G/H

is nilpotent, we know that y = [ai, g] ∈ H. On the other hand, y = [ai, g] ∈ 〈ai〉 as 〈ai〉 is normal in

G. Hence 〈ai〉 = H, a contradiction. Therefore H = GN is a Hall subgroup of G.

By the well known Shur-Zassenhaus theorem, we see that H has a complement K in G. Since G/H

is nilpotent, K is a Hall nilpotent subgroup in G and G = [H]K, and therefore (1) holds. Finally, let

L be any subgroup of H. By the preceding argument, NG(L) contains a Hall π-subgroup of G, where

π = π(K). It follows that Kx ≤ NG(L) for some element x in G. Thus, G = HK=HKx=HNG(L),

completing the proof of (2).

From now on, we prove the sufficiency. Suppose that G is a group satisfying (1) and (2). We

will show that every subgroup of G is G-permutable with all Sylow subgroups of G and so is G-s-

semipermutable in G. Let π = π(H) and π′ the set of all primes not in π. Let D be an arbitrary

subgroup of G. By the hypothesis, G is soluble and so D = D1D2, where D1 and D2 are Hall

subgroups of D with π(D1) ⊆ π and π(D2) ⊆ π′. Let P be any Sylow p-subgroup of G.

Suppose D2 = 1. Then D = D1. If p ∈ π, then P is normal in G by the hypothesis and therefore

DP = PD. If p ∈ π′, then by condition (2), there exists an element x in G such that P x ≤ NG(D).

It follows that DP x = P xD. Hence, in this case, D is G-permutable with all Sylow subgroups of G.

Similarly, one can show that D is G-permutable with every Sylow subgroup of G provided D = D2.

Hence, we suppose that D1 and D2 are non-trivial. Note that D1 ≤ H by (1). Since D1

is subnormal in D by condition (1), D1 is normal in D. This means that D ≤ NG(D1). Since

G = HNG(D1) by (2), NG(D1) contains a nilpotent Hall π′-subgroup of G by the solubility of G, B

say. Without loss of generality, we may suppose that D2 ≤ B. If p ∈ π, then, clearly, PD = DP as

P is normal in G. If p ∈ π′, then G has an element x such that P x ≤ B. Since B is nilpotent, P xD2

is a subgroup of NG(D1) and consequently P xD2D1 = P xD is a subgroup of G. Thus, in this case,

D is also G-permutable with all Sylow subgroups of G, completing the proof of the sufficiency.

Lemma 3.9. Let p be a prime dividing the order of a group G with (|G|, p − 1) = 1, P a Sylow

p-subgroup of G and X = Op′p(G). Then G is p-nilpotent if and only if every maximal subgroup of

P not having a p-nilpotent supplement in G is X-s-semipermutable in G.

Proof. The necessity is obvious and we only need to prove the sufficiency. Suppose that the result is
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false and let G be a counterexample of minimal order. Then

(1) P is not cyclic.

Assume that P is cyclic. Then NG(P )/CG(P ) is a p′-group. Since NG(P )/CG(P ) is isomorphic

to a subgroup of Aut(P) and (|G|, p−1) = 1, we have NG(P ) = CG(P ) and therefore G is p-nilpotent

by [22, IV, Theorem 2.6], a contradiction.

(2) Op′(G) = 1.

Suppose that Op′(G) 6= 1. Then, by Lemma 2.1, it is easy to see that G/Op′(G) satisfies the

hypothesis. The minimal choice of G implies that G/Op′(G) is p-nilpotent and so G is p-nilpotent,

a contradiction.

(3) Op(G) 6= 1.

If not, then Op(G) = 1 and so X = 1. First, we assume that every maximal subgroup of P

has a p-nilpotent supplement in G. If p = 2, then by Lemma 2.3, G is p-nilpotent, a contradiction.

Hence p is an odd prime and so G is also p-nilpotent by Lemma 2.7. Therefore, by the hypothesis,

some maximal subgroup R of P is X-s-semipermutable in G. Then G has a subgroup T such that

G = RT and R is X-permutable with every Sylow subgroup of T . Indeed, one can easily see that

R is permutable with every Sylow q-subgroup of G, where q 6= p. We claim that R ∩ T is an

S-permutable subgroup of T . In fact, let Q be a Sylow subgroup of T . Then RQ = QR, whence

(R∩T )Q = Q(R∩T ), as claimed. Thus, by Lemma 2.4, R∩P is subnormal in T and so R∩T ≤ Op(T )

by [7, A, Lemma 8.6]. Since |T : R∩T | = |RT : R| = |G : R|, |T/Op(T )| ≤ p. Similar to (1), we have

that T/Op(T ) is p-nilpotent. It follows that T is p-soluble. Let K be a Hall p′-subgroup of T . Then

RK = KR since R is permutable with every Sylow subgroup of T . The fact that |G : RK| = p and

(|G|, p − 1) = 1 imply that RK is normal in G by Lemma 2.5. Since R is permutable with all Sylow

q-subgroups of G, where q 6= p, it follows from Lemma 2.2 that RK is p-soluble, which implies that

either Op′(RK) 6= 1 or Op(RK) 6= 1. Consequently Op(G) 6= 1 by (2), a contradiction. Thus (3)

holds.

(4) Op(G) is a minimal normal subgroup of G.

It is easy to verify that G/Op(G) satisfies the hypothesis. The minimal choice of G implies that

G/Op(G) is p-nilpotent. It follows that G is p-soluble. Let N be a minimal normal subgroup of

G. Then N is an elementary ebelian p-group by (2). Obviously G/N satisfies the hypothesis and

so G/N is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation, N is the

unique minimal normal subgroup of G and Φ(G) = 1. Now it is easy to see that Op(G) = F (G) =

CG(N) = N . Hence Op(G) is a minimal normal subgroup of G.

Final contradiction.

Since G/Op(G) satisfies the hypothesis, G/Op(G) is p-nilpotent and so G is p-soluble. By (3)

and (4), we have that G = [Op(G)]M for some maximal subgroup of G. In view of Lemma 2.3

and Lemma 2.7, P has a maximal subgroup R not having a p-nilpotent supplement in G. By the
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hypothesis, R is Op(G)-s-semipermutable in G since X = Op(G) by (1). Hence G has a subgroup T

such that R is Op(G)-permutable with every Sylow subgroup of T . Since R is normalized by Op(G),

we can see that R is permutable with every Sylow subgroup of T . Let K be a Hall p′-subgroup

of T . Then RK is a subgroup of G of index p by the above arguments and so RK is normal in

G by Lemma 2.5. Consequently RK ∩ Op(G) = 1 or Op(G). Note that Op(G) is not contained in

R (if not, R has a p-nilpotent supplement M in G, a contradiction) and so P = Op(G)R. Now, if

Op(G) ∩ RK = Op(G), then Op(G) is contained in R, a contradiction. Therefore Op(G) ∩ RK = 1

and so Op(G) is of order p. Thus Op(G) is contained in Z(G) as G/CG(Op(G)) is isomorphic to a

subgroup of Aut(Op(G)) and (|G|, p − 1) = 1. Since G/Op(G) is p-nilpotent, it follows that G is

p-nilpotent, a final contradiction.

Theorem 3.10. Let p be a prime dividing the order of a group G with (|G|, p − 1) = 1 and F a

saturated formation containing all p-nilpotent groups. Then G ∈ F if and only if G has a normal

subgroup E such that G/E ∈ F and E has a Sylow p-subgroup P with the property that every

maximal subgroup of P not having a p-nilpotent supplement in G is X-s-semipermutable in G, where

X = Op′p(E).

Proof. The necessity is clear and it needs only to prove the sufficiency. By Lemma 3.9, we have that

E is p-nilpotent. Let K be a normal p-complement of E. If K 6= 1, then G/K satisfies the hypothesis

by Lemma 2.1 and so belongs to F by induction. Let A/B be a chief factor of G below K. Since K

is a p′-group, G/CG(A/B) is F-central by [18, §3.1, Example 2] and [18, Corollary 3.1.16]. It follows

that G ∈ F. Now assume that K = 1. Then E = P is a normal p-subgroup of G. Let Q be a Sylow

q-subgroup of G, where q 6= p. Then PQ is p-nilpotent by the hypothesis and Lemma 3.9. Therefore

Q ≤ CG(N). Let L/M be a chief factor of G with L ≤ E. Then QM/M ≤ CG/M (L/M) by above

argument. Let Gp be a Sylow p-subgroup of G. Then L/M ∩ Z(Gp/M) 6= 1 (see [8, II, Theorem

6.4]). Let L1/M be a subgroup of L/M ∩ Z(Gp/M) of order p. Then G/M ≤ CG/M (L1/M) and so

L1/M ≤ Z(G/M). Consequently, L/M = L1/M ≤ Z(G/M) as L/M is a chief factor of G, which

implies that E ⊆ Z∞(G). Since G/E ∈ F by the hypothesis, we have that G ∈ F by [18, Theorem

3.1.6] and so the theorem follows.

From Theorem 3.10, we have

Corollary 3.11. (Chen, Li [6].) Let p be a prime dividing the order of a group G with (|G|, p−1) = 1,

P a Sylow p-subgroup of G and X = Op′p(G). Then G is p-nilpotent if and only if every maximal

subgroup of P not having a p-nilpotent supplement in G is X-semipermutable in G.
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