SOME RESULTS ON NEARLY PAIRWISE COMPACT SPACES

Ajoy Mukharjee*and M. K. Bose

Department of Mathematics, St. Joseph's College, Darjeeling, W. Bengal - 734104, India

E-mail: ajoyjee@gmail.com

Department of Mathematics, University of North Bengal, Siliguri, W. Bengal - 734013, India

E-mail: manojkumarbose@yahoo.com

Abstract. The object of this paper is to obtain some results on a weaker separation axiom along with preservation theorems under some weaker form of continuity and openness of a function on spaces weaker than pairwise compactness. We also obtain some results concerning subspaces of a bitopological space.

2010 Mathematics Subject Classifications: 54D30, 54E55.

Keywords and phrases: $(\mathscr{P}_i, \mathscr{P}_j)$ regularly open; $(\mathscr{P}_i, \mathscr{P}_j)$ regularly closed; nearly pairwise compact; pairwise almost continuous; pairwise almost open.

1 Introduction

Kelly [5] introduced the notion of a bitopological space: the triple $(X, \mathcal{P}_1, \mathcal{P}_2)$ where \mathcal{P}_1 and \mathcal{P}_2 are two topologies on X, is called a bitopological space. Singal and Mathur [11] generalized the concept of compactness of a topological space, and introduced the notion of near compactness. The study of a product space is one among some interesting fields of study in general topology. Datta [3] (see also Swart [12]) introduced the notion of product bitopological spaces. Kiliçman and Salleh [6] studied the product properties for pairwise Lindelöf bitopological spaces [7]. Nandi [9] introduced a notion of near compactness in bitopological settings and he called it pairwise nearly compact. So it appears that the generalizations of topological concepts in a bitopological setting are among core areas of study by topologists. The notion of pairwise near compactness [9] is not a generalization of the notion of pairwise compactness. This motivates us to introduce a bitopological version

^{*}Corresponding author

of near compactness in [8] as a generalization of pairwise compactness, and we termed it as 'nearly pairwise compact' (Definition 2.6). We showed by examples in [8] (Example 2.1 and 2.2) that the notions of pairwise near compactness and near pairwise compactness are independent. Bose and Sinha introduced a weaker notion of pairwise continuity, namely pairwise almost continuity in [1], and a weaker notion of pairwise openness, namely pairwise almost oppeness in [2]. Here some characterizations of near pairwise compactness are discussed based on the definitions of pairwise almost continuity and pairwise almost openness of a function. We also obtain some results on near pairwise compactness considering a subspace of a bitopological space.

2 Preliminaries

Unless otherwise mentioned, X stands for the bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$ and Y stands for the bitopological space $(Y, \mathscr{Q}_1, \mathscr{Q}_2)$. (\mathscr{T}) intA (resp. (\mathscr{T}) clA) denotes the interior (resp. closure) of a set A in a topological space (X, \mathscr{T}) . For a topological space (X, \mathscr{T}) and $A \subset X$, we write (A, \mathscr{T}_A) to denote the subspace on A of (X, \mathscr{T}) . So the relative bitopological space for $(X, \mathscr{P}_1, \mathscr{P}_2)$ corresponding to $A \subset X$ is $(X, \mathscr{P}_{1A}, \mathscr{P}_{2A})$. Always $i, j \in \{1, 2\}$ and whenever i, j appear together, $j \neq i$. Throughout the paper, N denotes the set of natural numbers and R, the set of real numbers.

To make the article self-sufficient, we recall the following definitions.

Definition 2.1 (Kelly [5]). X is said to be pairwise Hausdorff if for each pair of distinct points x and y of X, there exist $U \in \mathscr{P}_1$ and $V \in \mathscr{P}_2$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 2.2 (Kelly [5]). X is said to be pairwise normal if for any pair of a (\mathscr{P}_i) closed set A and a (\mathscr{P}_j) closed set B with $A \cap B = \emptyset, i \neq j$, there exist $U \in \mathscr{P}_j$ and $V \in \mathscr{P}_i$ such that $A \subset U, B \subset V$ and $U \cap V = \emptyset$.

Definition 2.3 (Fletcher, Hoyle III and Patty [4]). A cover \mathscr{U} of X is a pairwise open cover if $\mathscr{U} \subset \mathscr{P}_1 \cup \mathscr{P}_2$ and for each $i \in \{1, 2\}, \ \mathscr{U} \cap \mathscr{P}_i$ contains a nonempty set.

Definition 2.4 (Fletcher, Hoyle III and Patty [4]). A bitopological space X is pairwise compact if each pairwise open cover of X has a finite subcover.

Definition 2.5 (Singal and Singal [10]). A subset A of X is said to be $(\mathcal{P}_i, \mathcal{P}_j)$ regularly open if $A = (\mathcal{P}_i)int((\mathcal{P}_j)clA)$.

A subset of X is called $(\mathscr{P}_i, \mathscr{P}_j)$ regularly closed if its complement is $(\mathscr{P}_i, \mathscr{P}_j)$ regularly open. In other words, a set $A \subset X$ is $(\mathscr{P}_i, \mathscr{P}_j)$ regularly closed iff $A = (\mathscr{P}_i) cl((\mathscr{P}_j))$ int A).

Definition 2.6 (Mukharjee and Bose [8]). A bitopological space X is said to be nearly pairwise compact if for each pairwise open cover \mathscr{U} of X, there exists a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\{(\mathscr{P}_i)int((\mathscr{P}_j)cW) \mid V \in \mathscr{V} \cap \mathscr{P}_i, i \in \{1,2\}\}$ covers X.

Definition 2.7 (Mukharjee and Bose [8]). A bitopological space X is said to be almost pairwise compact if for each pairwise open cover \mathscr{U} of X, there exists a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\{(\mathscr{P}_j)cW \mid V \in \mathscr{V} \cap \mathscr{P}_i, i \in \{1,2\}\}$ covers X.

Definition 2.8 (Mukharjee and Bose [8]). A collection \mathscr{U} of subsets of X is said to be pairwise regularly open if each member of \mathscr{U} is $(\mathscr{P}_i, \mathscr{P}_j)$ regularly open for some $i \in \{1, 2\}$ and contains at least one $(\mathscr{P}_i, \mathscr{P}_j)$ regularly open set for each $i \in \{1, 2\}$. \mathscr{U} is said to be a pairwise regularly open cover if it covers X.

Definition 2.9 (Bose and Sinha [2]). A mapping $f : X \to Y$ is said to be pairwise almost open if the image of each $(\mathscr{P}_i, \mathscr{P}_j)$ regularly open set in X is (\mathscr{Q}_i) open in Y.

Definition 2.10 (Bose and Sinha [1]). A mapping $f : X \to Y$ is said to be pairwise almost continuous if inverse image of each $(\mathcal{Q}_i, \mathcal{Q}_j)$ regularly open set in Y is (\mathcal{P}_i) open in X.

In the sequel, we use the following theorems.

Theorem 2.11 (Mukharjee and Bose [8]). A bitopological space X is nearly pairwise compact iff each pairwise regularly open cover of X has a finite subcover.

Theorem 2.12 (Bose and Sinha [1]). For a map $f : X \to Y$, the following statements are equivalent:

- (i) f is pairwise almost continuous.
- (ii) $f^{-1}(A) \subset (\mathscr{P}_i)int(f^{-1}((\mathscr{Q}_i)int((\mathscr{Q}_j)clA)))$ for each (\mathscr{Q}_i) open subset A of Y.
- (iii) $(\mathscr{P}_i) cl(f^{-1}((\mathscr{Q}_i) cl((\mathscr{Q}_j) intB))) \subset f^{-1}(B)$ for each $(\mathscr{Q}_i) closed$ subset B of Y.

3 Near Pairwise Compactness

We begin with a note that a pairwise compact space is a nearly pairwise compact space. Here we give some examples to show that there are results which are not true (resp. true) for a pairwise compact space but true (resp. not true) for a nearly pairwise compact space.

Fletcher et al. [4] showed that if X is pairwise compact and $C \subset X$ is (\mathscr{P}_1) closed then C is (\mathscr{P}_2) compact. But this is not true in a nearly pairwise compact space.

Example 3.1 (Mukharjee and Bose [8]). Let b be a fixed real number. We define

$$\begin{aligned} \mathscr{P}_1 &= \{ \emptyset, R \} \bigcup \{ (-\infty, b], (b, \infty) \}, \\ \mathscr{P}_2 &= \{ \emptyset, R \} \cup \{ (b, \infty) \} \bigcup \left\{ \left(b + \frac{1}{n}, \infty \right) \mid n \in N \right\}. \end{aligned}$$

 $(R, \mathscr{P}_1, \mathscr{P}_2)$ is nearly pairwise compact but it is not pairwise compact. Also (b, ∞) is (\mathscr{P}_1) closed but it is not (\mathscr{P}_2) compact.

Since in a nearly pairwise compact space, a (\mathscr{P}_1) closed set may not be (\mathscr{P}_2) compact, a (\mathscr{P}_1) closed set may not be (\mathscr{P}_2) closed in presence of Hausdorffness of (X, \mathscr{P}_2) . So the following result due to Fletcher et al. [4] is not true in general in a nearly pairwise compact space: if (X, \mathscr{P}_1) and (X, \mathscr{P}_2) are Hausdorff spaces and $(X, \mathscr{P}_1, \mathscr{P}_2)$ is pairwise compact, then $\mathscr{P}_1 = \mathscr{P}_2$.

Now we consider Example 4.2 (Swart [12]): the bitopological space is $(X, \mathscr{P}, \mathscr{Q})$ where X = [0, 1], $\mathscr{P} = \{\emptyset, X\} \cup \{[0, b) \mid b \in [0, 1]\}$ and $\mathscr{Q} = \{\emptyset, X, \{1\}\}$. It is not pairwise compact but the spaces (X, \mathscr{P}) and (X, \mathscr{Q}) are compact. The bitopological space of the example is nearly pairwise compact.

Example 3.2. For a fixed real number b, we define

$$\begin{split} \mathscr{P}_1 &= \ \{ \emptyset, R \} \bigcup \{ (b - \frac{1}{n}, \infty) \mid n \in N \} \cup [b, \infty), \\ \mathscr{P}_2 &= \ \{ \emptyset, R \} \bigcup \{ (-\infty, b - \frac{1}{n}) \mid n \in N \} \cup (-\infty, b). \end{split}$$

 $(R, \mathscr{P}_1, \mathscr{P}_2)$ is not nearly pairwise compact although the spaces (X, \mathscr{P}_1) and (X, \mathscr{P}_2) are compact.

Thus a bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$ may not be nearly pairwise compact even if the spaces (X, \mathscr{P}_1) and (X, \mathscr{P}_2) are compact.

The above discussions epitomize that the notion of near pairwise compactness is not merely generalization of pairwise compactness but it is a striking notion within the framework of bitopological settings. Some results on nearly pairwise compact spaces

Theorem 3.3. Let there exist a pairwise almost continuous, pairwise almost open mapping $f : X \to Y$ with f(X) = Y. Then Y is nearly pairwise compact if X is so.

Proof. Suppose X is nearly pairwise compact, and $\mathscr{U}^{(Y)} = \{U_{\alpha} \mid \alpha \in A\}$ is a pairwise regularly open cover of Y. Then using pairwise almost continuity of f, we see $\mathscr{U}^{(X)} = \{f^{-1}(U_{\alpha}) \mid \alpha \in A\}$ is a pairwise open cover of X. Since X is nearly pairwise compact, there exists a finite subcollection $\mathscr{V}^{(X)} = \{f^{-1}(U_{\alpha_k}) \mid \alpha_k \in A, k = 1, 2, ..., n\}$ such that $\{(\mathscr{P}_i) \operatorname{int}((\mathscr{P}_j) \operatorname{cl}(f^{-1}(U_{\alpha_k})) \mid U_{\alpha_k} \in \mathscr{U}^{(Y)} \cap \mathscr{Q}_i, k = 1, 2, ..., n\}$ covers X. Now we have

$$Y = f(X)$$

$$= f\left(\bigcup_{k=1}^{n} \left\{ (\mathscr{P}_{i}) \operatorname{int}((\mathscr{P}_{j}) \operatorname{cl}(f^{-1}(U_{\alpha_{k}}))) \mid f^{-1}(U_{\alpha_{k}}) \in \mathscr{V}^{(X)} \cap \mathscr{P}_{i} \right\} \right)$$

$$= \bigcup_{k=1}^{n} \left\{ f\left((\mathscr{P}_{i}) \operatorname{int}((\mathscr{P}_{j}) \operatorname{cl}(f^{-1}(U_{\alpha_{k}}))) \right) \mid f^{-1}(U_{\alpha_{k}}) \in \mathscr{V}^{(X)} \cap \mathscr{P}_{i} \right\}.$$

$$(3.1)$$

Also, $f((\mathscr{P}_i)\operatorname{int}((\mathscr{P}_j)\operatorname{cl}(f^{-1}(U_{\alpha_k})))) \subset f((\mathscr{P}_j)\operatorname{cl}(f^{-1}(U_{\alpha_k})))$ and $f((\mathscr{P}_i)\operatorname{int}((\mathscr{P}_j)\operatorname{cl}(f^{-1}(U_{\alpha_k}))))$ is (\mathscr{Q}_i) open in Y. Thus we have,

$$f\left((\mathscr{P}_i)\operatorname{int}((\mathscr{P}_j)\operatorname{cl}(f^{-1}(U_{\alpha_k})))\right) \subset (\mathscr{Q}_i)\operatorname{int}\left(f\left((\mathscr{P}_j)\operatorname{cl}(f^{-1}(U_{\alpha_k}))\right)\right). \quad (3.2)$$

Now we put $V_{\alpha_k} = (\mathscr{Q}_j) \mathrm{cl} U_{\alpha_k}$. Hence we have

$$U_{\alpha_k} \subset V_{\alpha_k} \Rightarrow U_{\alpha_k} \subset (\mathscr{Q}_j) \mathrm{cl}((\mathscr{Q}_i) \mathrm{int} V_{\alpha_k}).$$

Therefore from (3.2) we obtain

$$f\left((\mathscr{P}_{i})\operatorname{int}((\mathscr{P}_{j})\operatorname{cl}(f^{-1}(U_{\alpha_{k}})))\right)$$

$$\subset \qquad (\mathscr{Q}_{i})\operatorname{int}\left(f\left((\mathscr{P}_{j})\operatorname{cl}(f^{-1}(U_{\alpha_{k}}))\right)\right)$$

$$\subset \qquad (\mathscr{Q}_{i})\operatorname{int}\left(f(f^{-1}(V_{\alpha_{k}}))\right) \quad \text{(by Theorem 2.12)}$$

$$= \qquad (\mathscr{Q}_{i})\operatorname{int}V_{\alpha_{k}} \quad (\text{since } f \text{ is onto})$$

$$= \qquad U_{\alpha_{k}}.$$

$$(3.3)$$

Hence from (3.1) we obtain,

$$Y \subset \bigcup_{k=1}^n U_{\alpha_k}.$$

Therefore Y is nearly pairwise compact.

Lemma 3.4. A bitopological space X is almost pairwise compact iff each pairwise regularly open cover \mathscr{U} of X has a finite subfamily \mathscr{V} such that $\{(\mathscr{P}_i) c | V \in \mathscr{V} \cap \mathscr{P}_i\}$ covers X.

Proof. We need to prove only the sufficiency of the lemma. Let $\mathscr{G} = \{G_{\alpha} \mid \alpha \in A\}$ be any pairwise open cover of X. We write $H_{\alpha} = (\mathscr{P}_i)\operatorname{int}((\mathscr{P}_j)\operatorname{cl} G_{\alpha}), \alpha \in A$ whenever $G_{\alpha} \in \mathscr{G}$ is (\mathscr{P}_i) open. Then $\mathscr{H} = \{H_{\alpha} \mid \alpha \in A\}$ is a pairwise regularly open cover of X. Hence we have a finite subfamily $\mathscr{V} = \{H_{\alpha_k} \mid k = 1, 2, \ldots, n\}$ of \mathscr{H} such that $\{(\mathscr{P}_j)\operatorname{cl} H_{\alpha_k} \mid H_{\alpha_k} \in \mathscr{V} \cap \mathscr{P}_i\}$ covers X. Now $(\mathscr{P}_j)\operatorname{cl} H_{\alpha_k} = (\mathscr{P}_j)\operatorname{cl}((\mathscr{P}_i)\operatorname{int}((\mathscr{P}_j)\operatorname{cl} G_{\alpha_k})) \subset (\mathscr{P}_j)\operatorname{cl} G_{\alpha_k}.$ So $\{(\mathscr{P}_j)\operatorname{cl} G_{\alpha_k} \mid k = 1, 2, \ldots, n\}$ covers X.

Theorem 3.5. Let there exist a pairwise almost continuous mapping $f : X \to Y$ with f(X) = Y. Then Y is almost pairwise compact if X is almost pairwise compact.

Proof. Suppose $\mathscr{U} = \{U_{\alpha} \mid \alpha \in A\}$ is a pairwise regularly open cover of Y. Then $\mathscr{G} = \{f^{-1}(U_{\alpha}) \mid \alpha \in A\}$ is a pairwise open cover of X. Therefore \mathscr{G} has a finite subfamily $\mathscr{H} = \{f^{-1}(U_{\alpha_k}) \mid k = 1, 2, ..., n\}$ such that $\{(\mathscr{P}_j) \operatorname{cl}(f^{-1}(U_{\alpha_k})) \mid f^{-1}(U_{\alpha_k}) \in \mathscr{H} \cap \mathscr{P}_i\}$ covers X. Since f is pairwise almost continuous, on using the scheme we adopt to establish (3.4) of Theorem 3.3, we obtain $(\mathscr{P}_j)\operatorname{cl}(f^{-1}(U_{\alpha_k})) \subset f^{-1}((\mathscr{Q}_j)\operatorname{cl}U_{\alpha_k})$. Hence the finite subcollection $\{(\mathscr{Q}_j)\operatorname{cl}U_{\alpha_k}) \mid k = 1, 2, \ldots, n\}$ of \mathscr{U} covers Y. So by Lemma 3.4, Y is almost pairwise compact.

Theorem 3.6. Let A be (\mathscr{P}_i) open in X for each $i \in \{1, 2\}$. Then A is nearly pairwise compact iff each pairwise open cover \mathscr{U} with respect to $(X, \mathscr{P}_1, \mathscr{P}_2)$ of A has a finite subcollection \mathscr{V} of \mathscr{U} such that $\{(\mathscr{P}_i)int((\mathscr{P}_j)cW) \mid V \in \mathscr{V} \cap \mathscr{P}_i\}$ covers A.

Proof. Firstly, suppose A is nearly pairwise compact. Let $\mathscr{U} = \{U_{\alpha} \mid \alpha \in I\}$ be a pairwise open cover of A with respect to $(X, \mathscr{P}_1, \mathscr{P}_2)$. Now $A \cap U_{\alpha}$ is (\mathscr{P}_{iA}) open if U_{α} is (\mathscr{P}_i) open. So $\mathscr{U}^{(A)} = \{A \cap U_{\alpha} \mid \alpha \in I\}$ is a pairwise open cover of A with respect to $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$. Hence we obtain a finite subcollection $\mathscr{V}^{(A)} = \{A \cap U_{\alpha_k} \mid \alpha_k \in I, k = 1, 2, ..., n\}$ such that $\{(\mathscr{P}_{iA}) \operatorname{int}((\mathscr{P}_{jA}) \operatorname{cl}(A \cap U_{\alpha_k})) \mid U_{\alpha_k} \in \mathscr{P}_i, k = 1, 2, ..., n\}$ covers A. The 'only if' part now follows from the following relations.

$$A = \bigcup_{k=1}^{n} \{ (\mathscr{P}_{iA}) \operatorname{int}((\mathscr{P}_{jA}) \operatorname{cl}(A \cap U_{\alpha_k})) \}$$

=
$$\bigcup_{k=1}^{n} \{ (\mathscr{P}_i) \operatorname{int}((\mathscr{P}_j) \operatorname{cl}(A \cap U_{\alpha_k})) \} \text{ (since a } (\mathscr{P}_{iA}) \operatorname{open set in} (A, \mathscr{P}_{1A}, \mathscr{P}_{2A}) \text{ is a } (\mathscr{P}_i) \operatorname{open set in} (X, \mathscr{P}_1, \mathscr{P}_2))$$

$$\subset \bigcup_{k=1}^{n} (\mathscr{P}_i) \operatorname{int}((\mathscr{P}_j) \operatorname{cl}U_{\alpha_k}).$$

To prove the 'if' part, let $\mathscr{G} = \{G_{\alpha} \mid \alpha \in \Gamma\}$ be a pairwise open cover of A with respect to $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$. Then \mathscr{G} is also a pairwise open cover of A with respect to $(X, \mathscr{P}_1, \mathscr{P}_2)$, since A is (\mathscr{P}_i) open for each $i \in \{1, 2\}$. Hence we have a finite subcollection $\mathscr{H} = \{G_{\alpha_k} \mid k = 1, 2, \ldots, m\}$ such that $\{(\mathscr{P}_i) \operatorname{int}((\mathscr{P}_j) \operatorname{cl} G_{\alpha_k}) \mid G_{\alpha_k} \in \mathscr{H} \cap \mathscr{P}_i\}$ covers A. Now

$$A = \bigcup_{k=1}^{m} \{A \cap (\mathscr{P}_{i}) \operatorname{int}((\mathscr{P}_{j}) \operatorname{cl} G_{\alpha_{k}})\}$$

=
$$\bigcup_{k=1}^{m} \{(\mathscr{P}_{iA}) \operatorname{int}(A \cap (\mathscr{P}_{i}) \operatorname{int}((\mathscr{P}_{j}) \operatorname{cl} G_{\alpha_{k}}))\}$$

$$\subset \bigcup_{k=1}^{m} \{(\mathscr{P}_{iA}) \operatorname{int}((\mathscr{P}_{jA}) \operatorname{cl} G_{\alpha_{k}}))\}.$$

Hence A is nearly pairwise compact.

Lemma 3.7. Each proper subset of a pairwise Hausdorff bitopological space X has a nontrivial (\mathcal{P}_i) open cover.

Proof. Obvious.

Definition 3.8. A bitopological space $(X, \mathcal{P}_1, \mathcal{P}_2)$ is said to be mildly pairwise normal^{*} if for each pair of a $(\mathcal{P}_i, \mathcal{P}_j)$ regularly closed set A and a $(\mathcal{P}_j, \mathcal{P}_i)$ regularly closed set B with $A \cap B = \emptyset$, there exist a (\mathcal{P}_j) open set U and a (\mathcal{P}_i) open set V such that $A \subset U, B \subset V, U \cap V = \emptyset$, where either U is $(\mathcal{P}_j, \mathcal{P}_i)$ regularly open or V is $(\mathcal{P}_i, \mathcal{P}_j)$ regularly open in X.

Obviously, a pairwise normal space is mildly pairwise normal but converse is not true.

Example 3.9. Let R be the set of real numbers and $a, b \in R$ with b > a. We define

$$\begin{split} \mathscr{P}_1 &= & \{ \emptyset, R \} \cup \{ (-\infty, a], (-\infty, b) \}, \\ \mathscr{P}_2 &= & \{ \emptyset, R \} \cup \{ [a, \infty), [b, \infty) \}. \end{split}$$

Then the bitopological space $(R, \mathscr{P}_1, \mathscr{P}_2)$ is mildly pairwise normal but the space is not pairwise normal.

Theorem 3.10. A pairwise Hausdorff and nearly pairwise compact space X is mildly pairwise normal.

^{*}Probably M. K. Singal and A. R. Singal introduced a notion of pairwise mild normality. But we do not have the access to the paper.

Proof. Let A and B be $(\mathscr{P}_1, \mathscr{P}_2)$ regularly closed and $(\mathscr{P}_2, \mathscr{P}_1)$ regularly closed subsets of X respectively with $A \cap B = \emptyset$.

Firstly, we fixed a $y \in B$. Then for each $x \in A$, on using pairwise Hausdorffness of X, we obtain a (\mathscr{P}_2) open set U_x and a (\mathscr{P}_1) open set V_x such that $x \in U_x, y \in V_x$ with $U_x \cap V_x = \emptyset$. So $\mathscr{U} = \{U_x \mid x \in A\}$ is a (\mathscr{P}_2) open cover of A which in turn implies $\mathscr{U} \cup \{X - A\}$ is a pairwise open cover of X. So the near pairwise compactness of X ensures the existence of a finite subcollection \mathscr{G} of $\mathscr{U} \cup \{X - A\}$ such that $A \subset \bigcup \{(\mathscr{P}_i) \operatorname{int}((\mathscr{P}_j) \operatorname{cl} V) \mid V \in \mathscr{G} \cap \mathscr{P}_i\}$. But $(\mathscr{P}_1) \operatorname{int}((\mathscr{P}_2) \operatorname{cl}(X - A)) = X - A$. Hence $\mathscr{G}_A = \mathscr{G} - \{X - A\}$ is a finite subcollection of \mathscr{U} such that $A \subset \bigcup \{(\mathscr{P}_2) \operatorname{int}((\mathscr{P}_1) \operatorname{cl} V \mid V \in \mathscr{G}_A\}$. Let $\mathscr{G}_A = \{U_{x_k} \mid k = 1, 2, \ldots, n\}$. Then $y \in \bigcap_{k=1}^n V_{x_k}$ and

$$A \subset \bigcup_{k=1}^{n} (\mathscr{P}_{2}) \operatorname{int} ((\mathscr{P}_{1}) \operatorname{cl} U_{x_{k}})$$

$$\subset (\mathscr{P}_{2}) \operatorname{int} \left(\bigcup_{k=1}^{n} (\mathscr{P}_{1}) \operatorname{cl} U_{x_{k}} \right)$$

$$= (\mathscr{P}_{2}) \operatorname{int} \left((\mathscr{P}_{1}) \operatorname{cl} \left(\bigcup_{k=1}^{n} U_{x_{k}} \right) \right)$$

We write $U_y = (\mathscr{P}_2)$ int $((\mathscr{P}_1) cl (\bigcup_{k=1}^n U_{x_k}))$ and $V_y = \bigcap_{k=1}^n V_{x_k}$. Then U_y is $(\mathscr{P}_2, \mathscr{P}_1)$ regularly open with $A \subset U_y$ and V_y is (\mathscr{P}_1) open with $y \in V_y$. Now we show $U_y \cap V_y = \emptyset$. If possible, let $z \in U_y \cap V_y$. We note that $z \in U_y = (\mathscr{P}_2)$ int $((\mathscr{P}_1) cl (\bigcup_{k=1}^n U_{x_k})) \subset (\mathscr{P}_1) cl (\bigcup_{k=1}^n U_{x_k}) = \bigcup_{k=1}^n (\mathscr{P}_1) cl U_{x_k}$. Hence for some $l \in \{1, 2, \ldots, n\}, z \in (\mathscr{P}_1) cl U_{x_l}$. Since $z \in V_{x_k}$ for all $k = 1, 2, \ldots, n$ and $U_{x_l} \cap V_{x_l} = \emptyset$, we have $z \notin U_{x_l}$. Also $z \in V_{x_l}$ and V_{x_l} is (\mathscr{P}_1) open. Thus z cannot be a (\mathscr{P}_1) limit point of U_{x_l} which contradicts the fact, $z \in (\mathscr{P}_1) cl U_{x_l}$.

Now we vary $y \in B$ over B. For each $y \in B$, we obtain a $(\mathscr{P}_2, \mathscr{P}_1)$ regularly open set U_y and a (\mathscr{P}_1) open set V_y such that $A \subset U_y, y \in V_y$ and $U_y \cap V_y = \emptyset$. So using the steps describe above, we obtain a finite family $\{V_{y_k} \mid k = 1, 2, \ldots, m\}$ of (\mathscr{P}_1) open sets with

$$B \subset \bigcup_{k=1}^{m} (\mathscr{P}_1) \operatorname{int}((\mathscr{P}_2) \operatorname{cl} V_{y_k}) \\ \subset (\mathscr{P}_1) \operatorname{int}\left((\mathscr{P}_2) \operatorname{cl}\left(\bigcup_{k=1}^{m} V_{y_k} \right) \right).$$

We put $U = \bigcap_{k=1}^{m} U_{y_k}$ and $V = (\mathscr{P}_1)$ int $((\mathscr{P}_2) \operatorname{cl}(\bigcup_{k=1}^{m} V_{y_k}))$. Thus U is (\mathscr{P}_2) open and V is $(\mathscr{P}_1, \mathscr{P}_2)$ regularly open with $A \subset U, B \subset V$ and $U \cap V = \emptyset$.

Corollary 3.11. Let X be a pairwise Hausdorff and nearly pairwise compact space. If $A \subset X$ is $(\mathcal{P}_j, \mathcal{P}_i)$ regularly closed then A is contained in a $(\mathcal{P}_i, \mathcal{P}_j)$ regularly open set.

Proof. Follows from Lemma 3.7 and Theorem 3.10.

Acknowledgement. The authors would like to thank the referees for useful comments and valuable suggestions for improvement of the paper.

REFERENCES

- S. Bose and D. Sinha, Pairwise almost continuous map and weakly continuous map in bitopological spaces, *Bull. Calcutta Math. Soc.* 74 (1982), 195–206.
- [2] S. Bose and D. Sinha, Almost open, almost closed, θ-continuous and almost quasi compact mappings in bitopological spaces, Bull. Calcutta Math. Soc. 73 (1981), 345–354.
- [3] M. C. Datta, Projective bitopological spaces, J. Austral. Math Soc. 13 (1972), 327–334.
- [4] P. Fletcher, H. B. Hoyle III and C. W. Patty, The comparison of topologies, *Duke Math. J.* 36 (1969), 325–331.
- [5] J. C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc. (3) 13 (1963), 71–89.
- [6] A. Kiliçman and Z. Salleh, Product properties for pairwise Lindelöf spaces, Bull. Malays. Math. Sci. Soc. (2) 34 (2) (2011), 231–246.
- [7] A. Kiliçman and Z. Salleh, On pairwise Lindelöf bitopological spaces, *Topology Appl.* 154 (2007), 1600–1607.
- [8] Ajoy Mukharjee and M. K. Bose, On nearly pairwise compact spaces, *Kyungpook Math. J.* 53 (2013), 125–133.
- [9] J. N. Nandi, Bitopological near compactness I: Characterizations, Bull. Calcutta Math. Soc. 85 (1993), 337–344.
- [10] M. K. Singal and A. R. Singal, Some more separation axioms in bitopological spaces, Ann. Soc. Sci. Brux. 84 (1970), 207–230.
- [11] M. K. Singal and A. Mathur, On nearly compact spaces, *Boll. Unione Mat. Ital.* (4) 6 (1969), 702–710.
- [12] J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, *Indag. Math.* 33 (1971), 135–145.