
Orthogonal polynomials approach to the
Hankel transform of sequences based on

Motzkin numbers

Radica Bojičić
University of Prǐstina, Faculty of Economy, Serbia

E-mail: tallesboj@gmail.com

Marko D. Petković∗
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Abstract

In this paper we use a method based on orthogonal polynomials to give closed-form
evaluations of the Hankel transform of sequences based on the Motzkin numbers. It
includes linear combinations of consecutive two, three and four Motzkin numbers. In
some cases, we were able to derive the closed-form evaluation of the Hankel transform,
while in the others we showed that the Hankel transform satisfies a particular difference
equation. As a corollary, we reobtain known results and show some new results regarding
the Hankel transform of Motzkin and shifted Motzkin numbers. Those evaluations also
give an idea on how to apply the method based on orthogonal polynomials on the sequences
having zero entries in their Hankel transform.
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1 Introduction

The Motzkin number mn is the number of different ways of drawing non-intersecting chords
on a circle between n points. It is denoted by A001006 in the On-Line Encyclopedia of Integer
Sequences [22] and the first few members are given by 1, 1, 2, 4, 9, 21, 51, 127, . . .. The sequence of
Motzkin numbers has very diverse applications in geometry, combinatorics and number theory
[1]. It satisfies the following recurrence relation:

mn+1 = mn +
n−1∑
i=0

mi ·mn−1−i =
2n+ 3

n+ 3
·mn +

3n

n+ 3
·mn−1

∗Corresponding author.
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It is also known that

mn =

[n/2]∑
k=0

n!

k!(k + 1)!(n− 2k)!
.

The generating function M(x) =
∑∞

k=0mkx
k, is given by

M(x) =
1− x−

√
1− 2x− 3x2

2x2
(1)

and satisfies M(x) = 1 + xM(x) + x2M2(x).

Motzkin numbers represent the number of planar paths which do not descend below the
x-axis, starting at (0, 0) and ending at (n, 0), where allowed steps are (1, 0), (1, 1) and (1,−1).
Adding a weight t to (1, 0) steps and weight 1 to (1, 1) and (1,−1) steps, one obtains a weighted
version of Motzkin numbers, called t-Motzkin numbers and denoted by mt

n. If we avoid the
condition that the path do not descend below the x-axis, then such paths are counted by
the sequence of central trinomial coefficients cn. Recall that cn is the coefficient of xn in the
expansion (1+x+x2)n. In the literature, there are a lot of papers dealing with the (generalized)
central trinomial coefficients and their Hankel transform [12, 21, 19]. There is a similar situation
with the Motzkin and weighted Motzkin numbers [8, 4, 14, 15].

In a recent paper [4], Cameron and Yip evaluated the Hankel transform of the sequences
mt
n +mt

n+1 and mt
n+1 +mt

n+2 using the combinatorial Gessel-Viennot-Lindstrom (GVL) metod
[12]. On the other hand, method based on orthogonal polynomials is successfully applied
on the similar sequences involving (generalized) Catalan numbers [6, 20] and (generalized)
central trinomial coefficients [19]. The aim of this paper is to consider the Hankel transform
evaluation of some linear combinations of two, three and four consecutive Motzkin numbers.
Using these results, we can reobtain known Hankel transform evaluations of the Motzkin and
shifted Motzkin numbers, and also show some new interesting evaluations involving concrete
linear combinations of Motzkin numbers. This paper also gives an idea of how to apply the
method based on orthogonal polynomials on the sequences which have zero entries in their
Hankel transforms.

2 Hankel transform of the moment sequences

The Hankel transform is an important not invertible transform on integer sequences that has
been studied much recently [6, 17, 19].

Definition 2.1. The Hankel transform of a given sequence a = (an)n∈N0
is the sequence of

Hankel determinants (hn)n∈N0
where hn = det[ai+j−2]ni,j=1, i.e

a = (an)n∈N0
=⇒H h = (hn)n∈N0

: hn = det


a0 a1 · · · an
a1 a2 an+1
...

. . .

an an+1 a2n

 (2)

We denote Hankel transform by H and hence we write h = H(a).

Hankel determinants are sometimes also called persymmetric or Turanian determinants. Al-
though the determinants of Hankel matrices had been defined and explored before, the term
Hankel transform was introduced in 2001 by Layman [17]. Many different evaluations of the
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Hankel transform are known in the literature. We particularly denote method based on con-
tinued fractions [3], method based on the exponential generating function [13], method based
on differential-convolution equations [9, 10] and method based on the orthogonal polynomials
[6, 19, 20]. A concise review of different methods for determinant evaluations, including Hankel
determinants, is given in the papers of Krattenthaler [14, 15].

In this paper, we use the method based on the orthogonal polynomials for the Hankel
transform evaluation. This method was developed in [6] and later in [19, 20].

Let (an)n∈N0
be the moment sequence with respect to some measure dλ(x). In other words,

let

an =

∫
R
xndλ(x) (n = 0, 1, 2, . . .) . (3)

Then the Hankel transform h = H(a) of the sequence a = (an)n∈N0
can be expressed by the

following relation known as the Heilermann formula (for example, see Krattenthaler [15])

hn = an+1
0 βn1 β

n−1
2 · · · β2

n−1βn. (4)

The sequence (βn)n∈N0
appears as a sequence of coefficients in the three-term recurrence relation

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x), (5)

satisfied by the monic orthogonal polynomials (Pn(x))n∈N0
with respect to the measure dλ(x).

Weight function (measure) transformations are often used to derive the closed-form expression
for the coefficient βn.

3 Moment representation, orthogonal polynomials and

Hankel transform of the Motzkin numbers

In this section we introduce the moment representation of the Motzkin numbers and evaluate
its Hankel transform.

In the rest of the paper, we also deal with the shifted Motzkin numbers (m∗n)n∈N0
, (m∗∗n )n∈N0

and (m∗∗∗n )n∈N0
defined by m∗n = mn+1, m∗∗n = mn+2 and m∗∗∗n = mn+3. Furthermore, denote

by hn, h∗n, h∗∗n and h∗∗∗n the Hankel transforms of mn, m∗n, m∗∗n and m∗∗∗n respectively.

The following theorem gives an explicit expression of the weight function which moment
sequence is (mn)n∈N0

. Its formulation can be found for example in [22] or in the paper [2] where
the proof based on the Stieltjes-Perron inversion formula (see for example [5, 16]) is shown.

Theorem 3.1. [2] Motzkin numbers (mn)n∈N0
are moments of the weight function

w(x) =


1

2π

√
4− (x− 1)2, x ∈ [−1, 3]

0, otherwise
. (6)

To compute the Hankel transform hn using the Heilermann formula (4), we need the coef-
ficients αn and βn of the three-term recurrence relation, corresponding to the weight function
w(x). These coefficients will be obtained by applying weight function transformations. Lemma
3.2 and Lemma 3.3 provide relations between the coefficients αn and βn of the original and
transformed weight function.
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Lemma 3.2. Let w(x) and w̃(x) be the weight functions and denote by (πn(x))n∈N0
and

(π̃n(x))n∈N0
the corresponding orthogonal polynomials. Also denote by (αn)n∈N0

, (βn)n∈N0
and

(α̃n)n∈N0
,
(
β̃n

)
n∈N0

the three-term relation coefficients corresponding to w(x) and w̃(x) respec-

tively. The following transformation formulas are valid:

(1) If w̃(x) = Cw(x) where C > 0 then we have α̃n = αn for n ∈ N0 and β̃0 = Cβ0, β̃n = βn
for n ∈ N. Additionally holds π̃n(x) = πn(x) for all n ∈ N0.

(2) If w̃(x) = w(ax + b) where a, b ∈ R and a 6= 0 there holds α̃n = αn−b
a

for n ∈ N0 and

β̃0 = β0

|a| and β̃n = βn

a2 for n ∈ N. Additionally holds π̃n(x) = 1
anπn(ax+ b).

Proof. In both cases, we directly check the orthogonality of π̄n(x) and obtain the coefficients
ᾱn and β̄n by putting π̄n(x) in the three-term recurrence relation for πn(x).

Lemma 3.3. (Linear multiplier transformation) [11] Consider the same notation as in
Lemma 3.2. Let the sequence (rn)n∈N0

be defined by

r0 = c− α0, rn = c− αn −
βn
rn−1

(n ∈ N0). (7)

If w̃(x) = (x− c)w(x) where c < inf sup(w), there holds

β̃0 =

∫
R
w̃(x) dx, β̃n = βn

rn
rn−1

, (n ∈ N),

α̃n = αn+1 + rn+1 − rn, (n ∈ N0).

(8)

In the following theorem, we give a new proof of the well-known result about the Hankel
transform of the Motzkin numbers (see for example [1, 4]). The proof is based on the weight
function transformation shown in Lemma 3.2. Derived expressions for the coefficients αn and
βn will be used for the further evaluations shown in the latter sections.

Theorem 3.4. The Hankel transform of the sequence Motzkin numbers (mn)n∈N0
is the sequence

of all 1’s. Coefficients αn and βn of the three-term recurrence relation are given by:

αn = βn = 1, (n ∈ N0).

Proof. The monic Chebyshev polynomials of the second kind

Q(1)
n (x) = Sn(x) =

sin
(
(n+ 1) arccosx

)
2n ·
√

1− x2

are orthogonal with respect to the weight w(0)(x) =
√

1− x2. The corresponding coefficients in
three-term relation are

β
(1)
0 =

π

2
, β(1)

n =
1

4
(n ≥ 1), α(1)

n = 0 (n ≥ 0) .

Let us introduce new weight function w(1)(x) =
√

1−
(
x−1

2

)2
. It satisfies w(1)(x) = w(0)(ax+b),

where a = 1/2 and b = −1/2. Hence we get (see Lemma 3.2):

β
(1)
0 = π, β(1)

n = 1 (n ∈ N), α(1)
n = 1 (n ∈ N0) .

Since w(x) = 1
π
w(1)(x), Lemma 3.2 implies β0 = 1

π
β

(1)
0 = 1, βn = β

(1)
n = 1 for n ≥ 1 and

αn = α
(1)
n = 1. The expression for the Hankel transform of the Motzkin numbers now follows

directly from the Heilermann formula (4).
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4 Linear combination of two consecutive Motzkin num-

bers

The advantage of the method based on orthogonal polynomials is the fact that, by knowing the
coefficients αn and βn corresponding to some sequence, we can effectively obtain the coefficients
and the Hankel transform of the linear combination of consecutive members of that sequence.
That is demonstrated on the sequence of Motzkin numbers.

Theorem 4.1. The Hankel transform h̄n(c) of the sequence (mn+1 − c ·mn)n∈N0
, where (mn)n∈N0

is the sequence of Motzkin numbers and c ∈ R, is given by:

h̄n(c) =
1√

c2 − 2c− 3
·

[(
1− c+

√
c2 − 2c− 3

2

)n+2

−
(

1− c−
√
c2 − 2c− 3

2

)n+2
]

(9)

Proof. We start the proof by introducing the following weight function transformation

w̄(x) = (x− c)w(x)

and by applying Lemma 3.3. The coefficients ᾱn and β̄n are given by

ᾱn = αn+1 + r̄n+1 − r̄n = 1 + r̄n+1 − r̄n, n ≥ 0, (10)

β̄0 =

∫ 3

−1

w̄(x)dx = 1− c, β̄n = βn
r̄n
r̄n−1

=
r̄n
r̄n−1

, n ≥ 1, (11)

where the sequence (r̄n)n∈N0
is determined by the following recurrence relation:

r̄0 = c− 1, r̄n = c− αn −
βn
r̄n−1

= c− 1− 1

r̄n−1

, n ≥ 1. (12)

Using previous expression we obtain r̄1 = c − 1 − 1
c−1

, r̄2 = c − 1 − c−1
c(c−2)

= (c−1)(c2−3c+1)
c(c−2)

.

According to the Heilermann formula (4) there holds

h̄n+1(c)

h̄n(c)
= β̄0 · β̄1 · β̄2 · · · β̄n+1 = −r̄n+1.

Using the recurrence relation (12) along with the previous expression, we obtain the following
difference equation

h̄n(c) + (c− 1)h̄n−1(c) + h̄n−2(c) = 0, n ≥ 2 (13)

with initial values
h̄0(c) = 1− c, h̄1(c) = c2 − 2c.

By solving linear difference equation (13), we get (9).

As a direct corollary of the previous theorem, we re-obtain the Hankel transform of the
shifted sequence m∗n = mn+1. This result appears in [4], and with several other extensions,
using the G-V-L method, in [18].
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Corollary 4.2. The Hankel transform of the sequence shifted Motzkin numbers (m∗n)n∈N0
is

given by:

h∗n =


1, n = 6k or n = 6k + 5

0, n = 6k + 1 or n = 6k + 4

−1, n = 6k + 2 or n = 6k + 3

(k ∈ N0) (14)

Proof. If we put c = 0 in the expression (9) we have:

h∗n = h̄n(0) =
−1 + i

√
3

2i
√

3

(
1 + i

√
3

2

)n

+
1 + i

√
3

2i
√

3

(
1− i

√
3

2

)n

(15)

which is equivalent to (14).

Moreover, the expression (9) contains some other nice evaluations, given in the next example.

Example 4.1. Consider the special cases of (9), providing the following Hankel transform
evaluations:

1. c = 1. The Hankel transform of mn+1 −mn is h̄(1) = (0,−1, 0, 1, . . .).

2. c = 2. The Hankel transform of mn+1 − 2mn is: h̄(2) = (−1, 0, 1,−1, 0, 1, . . .).

3. By direct evaluation using (9), it can be shown that h̄n(−c) = (−1)n+1h̄n(2 + c).

4. Taking a limit of (9) when c → −1 we find that the Hankel transform of mn+1 + mn is
given by h̄n(−1) = n+ 2. This also follows from [4, Theorem 4.4].

5. Similarly, when c → 3, we find that the Hankel transform of mn+1 − 3mn is given by
h̄n(−3) = (−1)n+1(n+ 2).

5 Linear combination of three consecutive Motzkin num-

bers

Let us consider the linear combination of three consecutive Motzkin numbers, i.e., the sequence
mn+2 − a ·mn+1 + b ·mn, where a and b are arbitrary constants. Denote its Hankel transform
by ĥn(a, b). Theorem 5.1 shows that ĥn(a, b) satisfies a particular difference equation (as it was
the case in the previous section).

Theorem 5.1. For arbitrary a, b ∈ R, the Hankel transform ĥn(a, b) of the sequence

(mn+2 − a ·mn+1 + b ·mn)n∈N0

satisfies difference equation(
h̄n−1(a, b)

)2 · ĥn(a, b)−
[√

a2 − 4b · h̄n−1(a, b) · h̄n(a, b)

+
(
h̄n−1(a, b)

)2
+
(
h̄n(a, b)

)2
]
· ĥn−1(a, b) +

(
h̄n(a, b)

)2 · ĥn−2(a, b) = 0

(16)

with initial values: ĥ0(a, b) = 2− a+ b, ĥ1(a, b) = 2− a+ 5b− 2ab+ b2 where h̄n(a, b) = h̄n(c)

is given by (9) and c = a+
√
a2−4b
2

.
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Proof. Given sequence has weight function

ŵ(x) =

(
x− a−

√
a2 − 4b

2

)
·
(
x− a+

√
a2 − 4b

2

)
· w(x) =

(
x− a−

√
a2 − 4b

2

)
· w̄(x).

As in the proof of the previous theorem, we start with the following transformation ŵ(x) =

(x − d)w̄(x) where d = a−
√
a2−4b
2

, and apply Lemma 3.3. Recall that w̄(x) = (x − c)w(x), as

well as r̄n, ᾱn and β̄n, are functions of c. By taking c = a+
√
a2−4b
2

, those expressions are now

functions of a and b. The coefficients α̂n and β̂n are given by

α̂n = ᾱn+1 + r̂n+1 − r̂n = 1 + r̄n+2 − r̄n+1 + r̂n+1 − r̂n, n ≥ 0, (17)

β̂0 =

∫ 3

−1

ŵ(x)dx = 2− a+ b, β̂n = β̄n ·
r̂n
r̂n−1

=
r̄n
r̄n−1

· r̂n
r̂n−1

, n ≥ 1, (18)

where the sequence (r̂n)n∈N0
is determined by the following recurrence relation:

r̂0 = d− ᾱ0 =
4− 2a+ 2b

a− 2 +
√
a2 − 4b

,

r̂n = d− ᾱn −
β̄n
r̂n−1

, n ≥ 1.

(19)

According to the previous expression and Heilermann formula (4) we have

ĥn+1(a, b)

ĥn(a, b)
= β̂0 · β̂1 · β̂2 · · · β̂n+1 = (2− a+ b) · r̄n+1

r̄0

· r̂n+1

r̂0

= − h̄n+1(a, b)

h̄n(a, b)
· r̂n+1

which implies

r̂n+1 = − ĥn+1(a, b)

ĥn(a, b)
· h̄n(a, b)

h̄n+1(a, b)
.

Using the recurrence relation (19), we obtain:

r̂n = d− ᾱn −
β̄n
r̂n−1

= d− (1 + r̄n+1 − r̄n)−
r̄n
r̄n−1

r̂n−1

= d− (1 + c− αn+1 −
βn
r̄n
− r̄n) +

r̄n
r̄n−1

· h̄n−1(a, b) · ĥn−2(a, b)

h̄n−2(a, b) · ĥn−1(a, b)

= −
√
a2 − 4b− h̄n−1(a, b)

h̄n(a, b)
− h̄n(a, b)

h̄n−1(a, b)
+

h̄n(a, b)

h̄n−1(a, b)
· ĥn−2(a, b)

ĥn−1(a, b)

which implies (16) with the initial values: ĥ0(a, b) = 2− a+ b and ĥ1(a, b) = 2− a+ 5b− 2ab+
b2.

Note that in general case, it is difficult to obtain the closed-form solution of the equation
(16). Therefore, we consider two special cases.

1. By putting b = 0 and a = c, our sequence reduces to the linear combination of two shifted
Motzkin numbers mn+2−c·mn+1 = m∗n+1−c·m∗n. Denote the Hankel transform of this sequence
by h̄∗n(c). The difference equation (16) is now reduced to[
h̄n−1(c)

]2 · h̄∗n(c)−
[(
h̄n−1(c)

)2
+
(
h̄n(c)

)2
+ c · h̄n−1(c) · h̄n(c)

]
· h̄∗n−1(c)+

[
h̄n(c)

]2 · h̄∗n−2(c) = 0

(20)
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with initial values: h̄∗0(c) = h̄∗1(c) = 2− c. Unfortunately, it is still difficult to find its solution
as the closed-form expression.

However, in the special case c = −1 it can be proven by mathematical induction that the
Hankel transform of mn+2 +mn+1 is given by

h̄∗n(−1) =


6k + 3, n = 6k or n = 6k + 1

−1, n = 6k + 2

−6(k + 1) n = 6k + 3 or n = 6k + 4

1, n = 6k + 5

(21)

Recall that we have already shown in the previous section that h̄n(−1) = n+ 2.

2. By putting b = c2 and a = 2c, our sequence reduces to mn+2 − 2c ·mn+1 + c2 ·mn. Denote
its Hankel transform by ĥn(c), which satisfies the following difference equation[

h̄n−1(c)
]2 · ĥn(c)−

[(
h̄n−1(c)

)2
+
(
h̄n(c)

)2
]
· ĥn−1(c) +

[
h̄n(c)

]2 · ĥn−2(c) = 0. (22)

with the initial values: ĥ0(c) = c2 − 2c+ 2 and ĥ1(c) = c4 − 4c3 + 5c2 − 2c+ 2. This equation
can be solved in closed-form, which is proven by the following theorem.

Theorem 5.2. For arbitrary c ∈ R, the Hankel transform ĥn(c) of the sequence(
mn+2 − 2c ·mn+1 + c2 ·mn

)
n∈N0

is given by

ĥn(c) =
1

(c2 − 2c− 3)3/2

[
H2n+5

1 −H2n+5
2

]
− 5 + 2n

c2 − 2c− 3
(23)

where

H1 =
1− c+

√
c2 − 2c− 3

2
, H2 =

1− c−
√
c2 − 2c− 3

2
.

Proof. Consider the difference equation (22). From here, we conclude that is valid:

ĥn(c)− ĥn−1(c) =
(
ĥn−1(c)− ĥn−2(c)

)
·
(
h̄n(c)

)2(
h̄n−1(c)

)2

=
(
ĥ1(c)− ĥ0(c)

)
·
(
h̄2(c)

)2(
h̄1(c)

)2 ·
(
h̄3(c)

)2(
h̄2(c)

)2 · · ·
(
h̄n(c)

)2(
h̄n−1(c)

)2

=
(
ĥ1(c)− ĥ0(c)

)
·
(
h̄n(c)

)2(
h̄1(c)

)2 =
(
h̄n(c)

)2
.

(24)

Furthermore:

ĥn(c) = ĥn−1(c) +
(
h̄n(c)

)2

= ĥn−2(c) +
(
h̄n−1(c)

)2
+
(
h̄n(c)

)2

= ĥ0(c) +
(
h̄1(c)

)2
+
(
h̄2(c)

)2
+ . . .+

(
h̄n−1(c)

)2
+
(
h̄n(c)

)2
.

(25)
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Recall that h̄n(c) = D−1/2
[
Hn+2

1 −Hn+2
2

]
, where D = c2 − 2c − 3 (Theorem 4.1). Direct

computation yields to H1H2 = 1 and h̄n(c)2 = D−1
[
H2n+4

1 +H2n+4
2 − 2

]
. Replacing into (25)

we obtain:

ĥn(c) = ĥ0(c) +
1

D

[
H6

1

1−H2
1

(1−H2n
1 ) +

H6
2

1−H2
2

(1−H2n
2 )− 2n

]
.

The following simplifications can be made also by direct computation:

P =
H6

1

1−H2
1

+
H6

2

1−H2
2

= 1− 2c− 3c2 + 4c3 − c4

H1

1−H2
1

= − 1√
D

H2

1−H2
2

=
1√
D
.

Using these simplifications and ĥ0(c) = c2 − 2c− 2 we finally get:

ĥn(c) = ĥ0(c) +
1

D

[
P +

1√
D

(
H2n+5

1 −H2n+5
2

)
− 2n

]
=

1

D3/2

[
H2n+5

1 −H2n+5
2

]
− 2n+ 5

D

which completes the proof of the theorem.

Example 5.1. By taking specific values of c in (23), we obtain the following interesting Hankel
transform evaluations:

1. c = 1. The Hankel transform of mn+2 − 2mn+1 +mn is: (1, 2, 2, 3, 3, 4, 4, . . .).

2. c = 2, c = 0. The Hankel transform ofmn+2 andmn+2−4mn+1+4mn is: (2, 2, 3, 4, 4, 5, . . .).

3. By direct evaluation using (23), it can be shown that ĥn(−c) = ĥn(2 + c).

4. By taking a limit of (23) when c → −1 we find that the Hankel transform of mn+2 +
2mn+1 + mn is given by ĥn(−1) = (30 + 37n + 15n2 + 2n3)/6. The same sequence is
obtained in the case c→ 3, i.e. mn+2 − 6mn+1 + 9mn.

The special case c = 0, i.e. the Hankel transform of the shifted Motzkin numbers m∗∗n =
mn+2, also follows from [4, Corollary 4.2]. For the sake of completeness, we state it as a separate
corollary.

Corollary 5.3. The Hankel transform of the sequence of shifted Motzkin numbers (m∗∗n )n∈N0
is

given by:

h∗∗n =



4k + 2, n = 6k or n = 6k + 1

4k + 3, n = 6k + 2

4k + 4, n = 6k + 3 or n = 6k + 4

4k + 5, n = 6k + 5

(k ∈ N0) (26)

Note that the difference equation (22) is similar to the equation (20). However, due to the
lack of one addend in the middle term, (22) can be solved analytically.

The following corollary gives the expressions for the three-term recurrence relation coeffi-
cients α̂n and β̂n, corresponding to the sequence mn+2 − 2c ·mn+1 + c2 ·mn. These expressions
will be further used in the following section.

9



Corollary 5.4. Coefficients α̂n and β̂n are given by:

α̂n = 1 +
(h̄n+1(c))2 − h̄n(c) · h̄n+2(c)

h̄n(c) · h̄n+1(c)

+
(ĥn(c))2 · h̄n−1(c) · h̄n+1(c)− (h̄n(c))2 · ĥn−1(c) · ĥn+1(c)

h̄n(c) · h̄n+1(c) · ĥn−1(c) · ĥn(c)
(27)

β̂n =
ĥn(c) · ĥn−2(c)(
ĥn−1(c)

)2 . (28)

6 Another linear combination and Hankel transform of

mn+3

Finally, consider the following linear combination of four consecutive Motzkin numbers

m̆n = mn+3 − 3c ·mn+2 + 3c2 ·mn+1 − c3 ·mn

which is the moment sequence of w̆(x) = (x − c)3w(x) = (x − c)ŵ(x). Denote its Hankel
transform by h̆n(c). Proceeding similarly as in the previous section, we can show that h̆n(c)
satisfies difference equation. This is demonstrated by the following theorem.

Theorem 6.1. The Hankel transform h̆n(c) of the sequence

(m̆n)n∈N0
=
(
mn+3 − 3c ·mn+2 + 3c2 ·mn+1 − c3 ·mn

)
n∈N0

satisfies difference equation[(
ĥn−1(c)

)2

· h̄n(c)

]
· h̆n(c)−

[
h̄n+1(c) ·

(
ĥn−1(c)

)2

+ h̄n−1(c) ·
(
ĥn(c)

)2
]
· h̆n−1(c)

+ h̄n(c) ·
(
ĥn(c)

)2

· h̆n−2(c) = 0.

(29)

with the initial values: h̆0(c) = 4−6c+3c2−c3 and h̆1(c) = 3−18c+21c2−20c3 +15c4−6c5 +c6.

Proof. We start with the transformation

w̆(x) = (x− c)3 · w(x) = (x− c) · ŵ(x)

and apply Lemma 3.3. The coefficients ᾰn and β̆n are equal to

ᾰn = α̂n+1 + r̆n+1 − r̆n, n ≥ 0, (30)

β̆0 =

∫ 3

−1

w̆(x)dx = 4− 6c+ 3c2 − c3, β̆n = β̂n ·
r̆n
r̆n−1

=
r̄n
r̄n−1

· r̂n
r̂n−1

· r̆n
r̆n−1

, n ≥ 1. (31)

The sequence (r̆n)n∈N0
is determined by

r̆n = c− α̂n −
β̂n
r̆n−1

, n ≥ 1, (32)
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with the initial value equal to

r0 = c− α̂0 =
c2 − 2c+ (c2 − 2c+ 2)2

(c− 1)(c2 − 2c+ 2)
.

According to the previous expression and the Heilermann formula (4) we have:

h̆n(c)

h̆n−1(c)
= − ĥn(c)

ĥn−1(c)
· r̆n,

which implies

r̆n = − ĥn−1(c) · h̆n(c)

ĥn(c) · h̆n−1(c)
. (33)

Now by replacing (33) and (27)-(28) (Corollary 5.4) into (32), we obtain (29).

As the special case, we give closed-form evaluation of the Hankel transform of (mn+3)n∈N0
.

This is done by the following theorem.

Theorem 6.2. The Hankel transform of the sequence (mn+3)n∈N0
is given by:

h∗∗∗n =



4(2k + 1)2, n = 6k

(2k + 1)(4k + 3), n = 6k + 1

−2(k + 1)(4k + 3), n = 6k + 2

−16(k + 1)2, n = 6k + 3

−2(k + 1)(4k + 5), n = 6k + 4

(4k + 5)(2k + 3), n = 6k + 5

(k ∈ N0). (34)

Proof. By putting c = 0 in (29), we get:[(
h∗∗n−1

)2 · h∗n
]
· h∗∗∗n −

[
h∗n+1 ·

(
h∗∗n−1

)2
+ h∗n−1 · (h∗∗n )2

]
· h∗∗∗n−1 + h∗n · (h∗∗n )2 · h∗∗∗n−2 = 0. (35)

Denote by
h∗∗∗i,k = h∗∗∗6k+i, i ∈ {0, 1, . . . , 5}, k ∈ N0. (36)

Equation (35) now reduces to:

(4k + 2)2 · h∗∗∗2,k − (4k + 2)2 · h∗∗∗1,k + (4k + 3)2 · h∗∗∗0,k = 0

(4k + 3)2 · h∗∗∗3,k − (4k + 4)2 · h∗∗∗2,k + (4k + 4)2 · h∗∗∗1,k = 0

h∗∗∗4,k − h∗∗∗3,k + h∗∗∗2,k = 0

(4k + 4)2 · h∗∗∗5,k − (4k + 4)2 · h∗∗∗4,k + (4k + 45)2 · h∗∗∗3,k = 0

(4k + 5)2 · h∗∗∗0,k+1 − (4k + 6)2 · h∗∗∗5,k + (4k + 6)2 · h∗∗∗4,k = 0

h∗∗∗1,k+1 − h∗∗∗0,k+1 + h∗∗∗5,k = 0

(37)

Recall that expressions for h∗n and h∗∗n are given by (14) and (26) respectively. The solution of
the previous system is given by

h∗∗∗0,k = 4(2k + 1)2, h∗∗∗1,k = (2k + 1)(4k + 3), h∗∗∗2,k = −2(k + 1)(4k + 3),

h∗∗∗3,k = −16(k + 1)2, h∗∗∗4,k = −2(k + 1)(4k + 5), h∗∗∗5,k = (2k + 3)(4k + 5).

which can be proved by mathematical induction.
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7 Summary

At the end of the paper, we summarize the new Hankel transform evaluations in the following
table.

Sequence Dif. eq. Closed-form expr.
mn+1 − c ·mn (13) (9)

mn+2 − a ·mn+1 + b ·mn (16) (spec. cases)
mn+2 − c ·mn+1 (20) (21), for c = −1

mn+2 − 2c ·mn+1 + c2 ·mn (22) (23)
mn+3 − 3c ·mn+2 + 3c2 ·mn+1 − c3 ·mn (29) (spec. cases)

mn+3 (35) (34)

Hankel transform evaluation of the general form of the second, third and fifth sequence are
left as the open problems.
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