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1. Introduction

Given a graplG = (Vg,Eg), a setl C Vg is independent if there is no edge o6 between any two vertices of A maximal
independent set is an independent set that is not a proper subset of any attiepéndent set. The dual of an independent
set is a clique, in the sense that clique corresponds to @pértient set in the complement graph. The set of all maximal
independent sets of a graghis denoted by MIG) and its cardinality by n{iG).

Given a simple graps = (Vg, Eg), the cardinality oW is called theorder of G. G— v denotes the graph obtained from
G by deleting vertex € Vs (this notation is naturally extended if more than one veidadeleted). Fov € Vg, let Ng(v) (or
N(v) for short) denote the set of all the adjacent verticeg iof G andd(v) = |Ng(Vv)|, the degree of in G. In particular,
let A(G) = max{d(x)|x € Vg} andd(G) = min{d(x)|x € Vs }. For convenience, ldtlg[x] = {x} UNg(X). A leaf of Gis a
vertex of degree one. For any two graghandH, let GWH denote the disjoint union & andH, and for any nonnegative
integert, lettG stand for the disjoint union dfcopies ofG. For a connected grapgt with maximum degree vertexand a
graphG = G1w Gy W - - - W G with u; being the maximum degree vertex@i = 1,2,...,k, define the grapH + G to be the
graph with vertex sé¥y.c = Vn UV and edge seéf.c = EH UEgU {xu; : i = 1,2,...,k}. Throughout the text we denote
by Py, Cn, Kn andKy n_1 the path, cycle, complete graph and stanarertices, respectively.

Further on we need the following lemmas.

Lemma 1.1 ([7]). For any vertexvin agraph G, the followings hold.

(i) mi(G) < Mi(G—v)+mi(G— Ng[V]);
(i) If visaleaf adjacent to u, then mi(G) = mi(G — Ng[v]) + mi(G — Ng|[u]).

Lemma 1.2 ([5]). If n> 6, then mi(C,) = mi(Cp_2) + mi(Cy_3).
Lemma 1.3 ([7]). If G= G1 WGy, then mi(G) = mi(Gy) - mi(Gy).

Forn > 2, letG(n),H(n) be twon-vertex graphs defined as

G(n) =< Kaw(s—1)Kz,or Ko (s—1)Kg, if n=3s+1;
Ko W sKs, if n=3s+2
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Figure 1: Graphsl, 13, Hy andH,.

and

2K, if n=2;
Ps, orKo WKy, if n=3;
|517 P, K3x Kq, or Ksw Ky, if n=4;

H(n)={ Cs, Ks, K3xKp, orl}, if n=5;
(Kz* K3) W (s—2)Kz, 3KaW (s—2)Ks,0r Ky Ko (s— 2)Ks, if n=3s>6;
(K3 Kq) W (s—2)Ks, ifn=3s+1>7,;
(K3 * Kg) WKy (S— 2)K3, 4K, (S— 2)K3, 2K (S— 2)K3,0I’ Kqw2Ko W (S— 2)K3, ifn=3s+2>8,

Wherel51 andl7l are depicted in Fig. 1By Lemma 1.3, it is routine to check that

1, if n=2;
: 2, if n=3;
3, if n=3s, 3, if n=4;
g(n) :=mi(G(n)) =4 4-3°%, ifn=3s+1; and h(n):=mi(H(n))=1 5 if n=5:
2.3, ifn=3s+2 Bg(n), ifn=3s+1>6;
8g(n), otherwise.

Theorem 1.4 ([6]). If Gisagraphwith n> 2 vertices, then mi(G) < g(n) with the equality holding if and only if G =2 G(n).

Theorem 1.5 ([3, 4]). If G isa graph with n vertices and G 2 G(n), then mi(G) < h(n) with the equality holding if and
onlyif G2 H(n).

Further on, let(n),1’(n) be twon-vertex graphsr(> 8) defined, respectively, as

Kz * (KswWK3z) W (s— 3)Ks,0r (KgxKz) Ko W (s— 3)K3, if n=3s;
() = Ky (K3 * K3) W (s— 3)Ks, KgwW 3Ky W (s— 3)Ks, 2K WKy W (s— 3)K3,

(Kg*Kg)&JZKzﬂ'J(S—?))Kg,,OI’ 5K2H:|(S—3)K3, if n=3s+1;

(K4 * K4) W (S— 2)K3, (Kg * Kz) W (S— 1)K3, Ks W (S— ].)Kg7 G (S— 1)K3, or |71 W (S— 1)K3, if Nn=3s+2
and

I'(n) =< HaU(s—4)Ks, if n=23s+1;

H1UK2U(S—4)K3, if n=3s;
HiU2Ko,U (s—4)K3, if n=3s+2,

wherel, H; andH; are depicted in Fig. 1.
Seti(n) = mi(l(n)) andi’(n) = mi(I’(n)). By Lemma 1.3, it is easy to obtain that

22 : .
52g(n), ifn=3s,
_ 279" _ _ 39(n), ifn=3s+1;
in)=1< 3g(n), ifn=3s+1; and i'(n)= _ (1.1)
_ 2g(n), otherwise.
2g(n), ifn=3s+2

Note that Hua and Hou [1] obtained th&n) = %g(n) if n=3s+1 andg—gg(n) otherwise, which is not correct by direct
calculation. It is easy to see

i"(n) <i(n). (1.2)



() ([Theorem 3.1, 1]) If Gisa graph with n > 3 verticesand G 2 G(n), H(n), then

{ 2=a(n), ifn=3s+1;

mi(G) <
©) 2g(n), otherwise.

(1.3)

Furthermore, each of the equalitiesin (1.3) holdsif and only if G = 1'(n).

Note thatl (n) 2 G(n),H(n), hence in view of (1.2), Theorem 3.1 in [1] is not true. Thddwing result characterizes
the third largest number of maximal independent sets-eértex graphsr(> 3), the corresponding extremal graphs are
identified.

Theorem 1.6. Let G be an n-vertex graphwithn > 3.

() If G2 G(n),H(n) with 3 < n< 10, then G is the graph with the third largest number of maximal independent set if
and only if G € 1”(n), where

3Ky, ifn=3;
2K1 WKy, K1 W Ps, K1)3, orCy, ifn=4;
K1w2Ko, K1 WKy, KowPs, Ps, Kax Ky, 125 Kq, 12,1312, 0r12, ifn=5;
() = Kax Ko, 13,12,13, or 12, if n=6;
Ks W Kz, Cs Ky, (Kg* Ka) WKy, 13w Ky, 12,1314, or 13, ifn=7;
Kax Ky, (KgxKa)wKs, KswWKs, CswKs,or 13 5Ks, ifn=8;
K3*(K3LﬂK3),or (K4>k K3)L‘HK2, ifn=09;
K4L‘H(K3>k K3), KsW 3Ky, 2Ka W Kz,(K3* K3)L‘HZK2,0F 5K, ifn=10.

wherel2, 13, 12,12, 12,12, 13,12, 12,13, 12 and |3 are depicted in Fig. 2.
(i) 1f G2 G(n),H(n) with n > 8, then mi(G) < i(n) with equality if and only if G2 I (n).

7

Figure 2: Graph#2, 13, 12, 12, 13,12, 13, 13,12, 13, 1 andI3.

2. Proof of Theorem 1.6

We show Theorem 1.6 according to the following two possiblses.
Casel.3<n<10.

It is straightforward to check th&t (n) 2 G(n), H(n) and m{l”(n)) =h(n) —1if n=3,4,5,6,7,8,10 and m{l”(9)) =
h(9) — 2. Supposé& (2 G(n), H(n)) is a graph of orden, 3< n < 10, such that niiG) is as large as possible. By Theorem
1.5, we have thai(n) — 1= mi(l”(n)) < mi(G) < h(n) —1forn=3,4,5,6,7,8,10. Hence, miG) = h(n) — 1. Forn =9,
by Theorem 1.5, we have thiaf9) — 2 = mi(1”(9)) < mi(G) < h(9) — 1, thus m{G) = h(9) — 2, orh(9) — 1. If n= 3, note
thatg(3) = 3, hence we get just one extremal graphy 3In the following, assuma > 4 and prove our results according to
the following four subcases.



Subcase 1.1. (G) =0.

In this subcase, we take a vertex Vg such thatl(x) = 0. Thus, we get niiG) = mi(G — x).

If n=4, note thag(4) = 4, thus m{G) = mi(G —x) = 2 and|Vs_x| = 3. Hence, we obtain th& — x> P; or K, WKy,
i.e.,G=P;WK; or Kow2K;.

If n= 5, note thag(5) = 6, thus m{G) = mi(G — x) = 4 and|Vs_x| = 4. Hence, by Theorem 1.4, we haBe- x = K4
or 2Ky, which is equivalent t@ =~ K4 WK1 or 2K, wK;j.

If 6 < n< 7, then, on the one hand, (@) = mi(G —x) = h(n) — 1; on the other hand, by Theorem 1.4, we get
mi(G—x) < g(n—1). Thus, we geg(n) —2< g(n—1). But, in fact 6= g(5) < h(6) —1=7 and 9= g(6) < h(7) — 1= 10,
a contradiction.

If n= 8, then by Theorem 1.4, @) = mi(G — x) and m{G — x) < g(7) = 12 Hence, m{G) < 12< 15=h(8) — 1,
this is a contradiction. Similarly, we can also get a coritiéoh, respectively, fon = 9,10, which is omitted here.

Subcase 1.2. 5(G) = 1.

In this subcase, we take a vertex Vg such thad(x) = 1 andxy € Eg. Let Gy = G—x—Yy. Note thatG— NJy] is a
subgraph of51, then 1< mi(G — NJy]) < mi(Gy).

First considelG; =2 G(n—2). If n=3s(s= 2,3), then we obtain thaG; =~ K, (s—2)Kz or 2Ky W (s— 2)K3. If
G—N[y] 2 KqW (s—2)K3 or 2K, W (s— 2)K3, thenG = H(n), a contradiction. Sd& — NJy] is a proper subgraph of
KaW (s—2)Ksz, i.e. G— NJy] is a subgraplis— 1)Ks, Ks W Kz W (s— 3)K3, or Ky WKy W (s— 2)Ks. By a simple calculation,
we have miG—N[y]) < max{35~%, 8.353 2.35-3} =351, By Lemma 1.1(ii), we have i) = mi(Gy) +mi(G—NJy]) <
4.3524351=7.352 the equality holds if and only i& — N[y] = (s— 3)K3. Note that m{G) = 7 forn= 6 and m{G) > 21
forn=9. In conclusionn =6, G = K4 x Ko.

If n=3s+1(s=1,2,3), then we obtain thaB; = Koy W (s— 1)Kz. If G— N[y] 2 Ky (s— 1)Kz, thenG = G(n), a
contradiction. S — N[y] is a proper subgraph ¢ W (s— 1)K3 , i.e. G— NJy] is a subgrapk; & (s— 1)Kz or 2K, 0 (s—
2)K3. By a simple calculation, we have<dmi(G — N[y]) < max{3%~%, 4.352} = 4.352, By Lemma 1.1(ii), we have

3<2-33 14+ 1< mi(G) =mi(Gy) + mi(G—NJy]) <2-3514+4.352-10.352,

the equality holds if and only i& — N[y] = 2K, W (s— 2)K3. Note that m{G) = h(n) — 1 holds fom=4,7,10. In conclusion,
n=7andG = (Kz xKy) W Ks.

If n=3s+2(s=1,2), then we obtain thab; = sK3. There are two such grapKg = K, Ié x Ky forn=5. By a simple
calculation, we geKy x K andl51 x K1 are extremal graphs. In the following, we considet 8. If G— N[y|] = sK3, then
G = G(n), a contradiction. Henceés — N[y] is a proper subgraph &Kz , i.e. G—N[y] is a subgraplK; & (s— 1)Kz or
Ko (s— 1)Kz. By a simple calculation, we havetmi(G — NJy]) < max{3%~1 2.35°1} = 2.35"1, By Lemma 1.1(ii), we
have m{G) = mi(Gy) +mi(G—N[y]) < 3%+2.351=5.3%"1 the equality holds if and only i& — N[y] = K ¥ (s— 1)K3.
Note that m{G) = 15 forn = 8. In conclusionn = 8 andG = (K3 *x K3) W K.

Next consideiG; = H(n—2). If n=4, itis easy to get thaG; = 2K;. As §(G) = 1, we obtain thaG = Ky 3. For
n> 5, note thatG — N[y] is a subgraph oB1, we have miG — N[y]) < mi(G1) = h(n—2). By Lemma 1.1(ii) and Theorem
1.5, we have n{iG) = mi(G1) + mi(G — N[y]) < 2h(n— 2), the equality holds if and only i — N[y] = H(n—2). Note
that m(G) = 2 forn=4 andh(4—2) = h(4—4) = 1, we get extremal grap 3. Note that m{G) = h(n) — 1 holds for
n=>5,6,7,8,10 and m{G) > h(n) — 2 holds forn = 9. In conclusion, we also get extremal graphss K3, Ks WK;, Cs ¢
Ko, (K3 * Kz) WKy, |71L'H Ko, (K4 * Kg) WKy, Kgw 3Ky, 2K4W Ky, (Kg * Kg) W 2Ky, 5Ko.

Now consideiG; 2 G(n—2), H(n—2). By Theorem 1.5, we have if1) =1 forn=4 and m{G;) < h(n—2) -1
for 5< n < 10. By Lemma 1.1(ii) and Theorem 1.5, we havé®)i= mi(G;) + mi(G—N[y]) < 2h(n—2)—-2< h(n) -1
forn=5, 6, 7, 8, 10 and m{G) = mi(G1) + mi(G— N[y]) < 2h(7) —2 < h(9) — 2 for n = 9. Thus there does not exist
extremal graph in this subcase.

Subcase 1.3. (G) = 2 andA(G) = 2.

In this subcaseG = C,. By direct calculation, n{Cs) = 2, mi(Cs) =5 > 4, mi(Cs) =5 < 7, mi(C7) = 7 < 10,
mi(Cg) = 10< 15, mi(Cg) = 12 < 22, mi(C1g) = 17 < 32. Hence, we get the extremal grafihsandCs b Ks.

Subcase 1.4. 5(G) > 2 andA(G) > 3.

In this subcase, we take a vertex Vg such thatd(x) = A(G) > 3. LetGy = G—NI[x]. If n=4, it is routine to check
thatG = I51 sinceG % Ky, i.e., m(G) = 3, a contradiction. In the following, assume that 5.
First conside\(G) = 3 according to the following subcases.



e n=>5. Inthis subcase we hagés) = 6 andG, =Ky, hence 3 mi(G—x) < g(n—1)=4,i.e.,G—x=Ky, 2Ky, Py, I%, KsW
Ky or K3+ Ky. Thus, we geG = |2.

e n=6. Inthis subcase, we ha® = 2K; orKy. If G, = 2K;, then6=7—-1< mi(G—x) < g(n—1) =6, i.e., m{(G—x) =6,
i.e.,G—x2KzwKj,. Butthere is no such graph.® >~ K;, then5=7-2<mi(G—x) <g(n—1)=6,i.e., mM{(G—x) =5
or 6, which is equivalent t& — x =2 Kz WKy, Cs, Ks, K3 Ky, orld. Thus, we geG = I} or 2.

e n=7. In this subcase, we ha@® =~ Ks, P;, Ky WK or 3K;j. If G = K3, note that miG) = 10 andG 2 G(n), H(n),
hence there is no such graph.G$ = P; or K; WKj, then m{G;) =2 and 8=10-2< mi(G—x) <g(h—1) =9, i.e.,
mi(G —x) = 8 or 9, which is equivalent t& — x = 2Kz, K3z x K3z, 3Ky or K4wKy. Thus, we get the only grapB, but
mi(G) = 9 < 10, this is a contradiction. B, = 3Kz, then 9=10—1< mi(G—x) <g(h—1)=9,i.e., m(G—x) =9, i.e,,
G — x = 2K3. But such graph does not exist.

e n=_8. Note thailG —x 2 H(7) = Ky * K3 sinceA(G) = 3. If G—x= G(7) = K4 WKz, or 2K WK3, asA(G) = 3, we get
G = 2K4 = H(8), which is a contradiction. 16 —x 2 G(7), H(7), by Theorem 1.5, we get if6 — x) < h(7) — 1 = 10.
Note that|Vg,| = 8 —4 = 4, by Theorem 1.4, we have (8>) < g(4) = 4. By Lemma 1.1(i), we obtain that (@) <

mi(G — x) + mi(Gz) < 10+ 4= 14 < 15, a contradiction.

en=29. If G—x=G(8) = Kyw 2Kz, observe thaf\(G) = 3, then we geG = (K3 xK3) WKz = H(9), a contradiction.
If G—x2H(8), note thatA(G) = 3, we getG — x = (K3 xK3) WKy, i.e., G = Wp; see Fig. 3. By direct calculation,
mi(G) = 21< 22=h(9) — 2, a contradiction. If5 —x 2 G(8), H(8), by Theorem 1.5, we get it — x) < h(8) — 1= 15.
Note that|Vg,| = 9—4 =5, by Theorem 1.4, we have (8,) < g(5) = 6. By Lemma 1.1(i), we obtain that (@) <
mi(G—x) + mi(Gz) < 15+ 6=21< 22=h(9) — 2, a contradiction.
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Figure 3: Graph®\p, Wi, Wo, Wz, W), andWk.

e n=10. If G—x= G(9) = 3Kg, then it is routine to check th& = K; « 3Kz or Wy W Kz directly, whereW; is depicted
in Fig. 3. By elementary calculation, (@) = 27 < 32, a contradiction. If5—x2 H(9), observe thafA\(G) = 3, we get
G —x= (K3 xK3) WKz or Ky WKz WKy, which impliesG must be isomorphic téb, Ws, W) (see Fig. 3) ofKsxKz) WKy, By
direct calculation, mM.) = 26 < 32, mi(Ws) = mi(Wy) = 24 < 32, mi((K3*Kz) W K4) = 32. Thus, we get the extremal
graph(Ks « K3) WKy, as desired. IIG—x 2 G(9), H(9), by Theorem 1.5, we get i — x) < h(9) — 1= 23. In this
subcase, note thafs | = 6, hence ifG — N[x] 2 G(6) for some vertex with d(x) = 3, then by Theorem 1.4, we have
mi(G—N[x]) <g(6) —1=8. Thus, by Lemma 1.1(i), we get (@) < mi(G—x)+mi(Gz) < 23+8=31<32=h(10)—1,

a contradiction. If, for any vertexof degree 3, satisfyinG — N[x| 22 G(6), then there is only one such grafiy * 2K3) WKs.
By direct computing, mi(Ky * 2K3) W K3) = 27 < 32, a contradiction.

Next consideA(G) = 4.

If n= 15, then we geG is a connected graph. By elementary calculation, we obteiremal graphsg, |g, orlg, as
desired.

If n=6, then we hav&; =K; and 6=7—-1<mi(G—x) < g(n—1)=6,i.e., m(G—x) =86, i.e.,G—x= KzwK,.
Thus, we get the extremal gra@

If n=7, we haveG, = 2K; or Ky. If Gy = 2Ky, then 9=10— 1< mi(G—x) < g(h—1) =9. Hence, miG—x) =9,
i.e.,G—x=2K3. Thus, we get the only graphs (see Fig. 3) with mi\Ws) = 9 < 10, a contradiction. I3, = K5, then
8=10-2< mi(G—x) < g(n—1) =9, which implies m{G—x) =8 or 9, i.e.,G—x = 2K3, K3x Kz, KgwWKj, or 3Ks.
Thus, we get the extremal graplfsand|?.

If n= 8, note thatVg,| = 3, by Theorem 1.4, we have ;) < g(3) = 3. If G—x= G(7) = K4 WKz, or 2K, W Ks,
then m{G —x) = 12. Thus, by Lemma 1.1(i), 6G) < mi(G —x) + mi(Gz) < 12+ 3 = 15, the equality holds if and only
if Go=Ks,i.e.,,G=KyxKy, KswKsor I71LJ_rJ Ks. If G—x2 G(7), then by Theorem 1.5, we have (Gi—x) < h(7) = 11.
Thus, by Lemma 1.1(i), niG) < mi(G — x) + mi(G2) < 114 3= 14 < 15, a contradiction.

Similarly, we can show, wheA(G) = 4, G = Kz« 2K3 if n=9; whereass does not exist ih = 10, which is omitted
here.



Now conside?\(G) > 5. In this casen > 6 and|Vg,| < n—6. At first we considen =6, 7 with A(G) =5. If n=6, we
get6=7-1<mi(G-x) <g(n—1)=6,i.e., M(G—X) =6, i.e.,G—x=KzwKp, which impliesG = I. If n=7, we get
mi(Gz) =1and 9=10-1< mi(G—Xx) < g(n—1)=9,i.e, m{G—x) =9, i.e.,G—x= 2Kz, which impliesG = |3.

If A(G) =6, then we have=7. By Theorem 1.4, %= 10— 1< mi(G—x) < g(n—1) =9, hence m(iG —x) = 9, which
impliesG — x = 2K3. Thus, we get extremal gra|1>$1

Now we considen = |Vg| =8, 9, 10 forA(G) > 5.

If n=8, then by Lemma 1.1(i) and Theorem 1.4, we havé@hiK mi(G —x) +mi(Gy) < g(7) +g(2) = 14< 15=
h(8) — 1, a contradiction. Similarly, we can also get a contradittrespectively, fon = 9,10, which is omitted here.

This completes the proof of Theorem 1.6(i).

Case?2. n>8.

In this case, it is easy to see thaénh) % G(n),H(n) and m{l(n)) = i(n) for n > 8. We prove it by induction om. For
n=38,9,10, in view of (i), our result holds. In what follows, we conside 11 and assume our result holds for 1. We
proceed to show our result holds ferWe first show the following two claims.

Claim 1. If Gisa connected graph with 5(G) = 1, then mi(G) < i(n).

Proof. Note thatd(G) = 1, hence we take a leaf, sayof G. Lety € Ng(x), thend(y) > 2. Thus, by Lemma 1.1(ii) and
Theorem 1.4, we have itG) = mi(G— N[x]) + mi(G—N[y]) <g(n—2) +g(n—3).

e n=3s. In this caseg(n—2) = 4-352,g(n—3) = 3. Then we have niG) < g(n—2)+g(n—3)=4.3524351=
7-35°2=Ig(n) < 32g(n) =i(n).

e n=3s+1. Inthis caseg(n—2) = 2-3%1, g(n—3) = 4-352, Then we have niG) < g(n—2)+g(n—3)=2-35"14
4.35°2=10-3%2=2g(n) < §g(n) =i(n).
e n=3s+2. In this caseg(n—2) = 3% g(n—3) = 2-3>L. Then we have niG) = mi(G — N[x]) + mi(G — N[y]) <
gn—2)+g(n—3) =35+2.351=5.3"1 = 2g(n) = i(n). Thus m{G) = 2g(n) if and only if G—N[X = G(n—2)
andG — NJy] = G(n— 3), which impliesG = Kz« K, andn = 5. Obviously, this is a contradiction for> 11. Therefore,
mi(G) < 29(n) if n > 11.

This completes the proof of Claim 1. O

Claim 2. If G=C,withn> 8, thenmi(G) < i(n).

Proof. Forn > 8, we have

$g(n), ifn=3s;
mi(Ch) = mi(Ch2)+mi(Ch3) < 30(n), ifn=3s+1;
Dg(n), if n=3s+2.

The last inequality follows from [4]. Hence, in view of themession of(n) in (1.1) we have m{C) < i(n). This completes
the proof of Claim 2. O

Now we come back to the proof of Theorem 1.6(ii). It sufficeshiow the following three subcases.
Subcase2.1. n= 3s.

Firstly, we consider thab is disconnected. Obviously, we can always find two vertesyeitit graphs; andG; such
thatG = G1 WGy, where|Vg, | = Ny, |Vg,| = n. Without loss of generality, assume timat= 3s; andn, = 3s, orny =3s;+ 1
andny, = 3s, + 2.

For the subcase; = 3s; andn; = 3s,. If G122 G(ny), thenG; 22 G(ny), H(ny) sinceG % G(n), H(n). Thus, we obtain

mi(G) = mi(Gy) -mi(Gy) (by Lemma 1.3)
< g(m)i(ng) (by Theorem 1.4 and induction hypothesis) (2.1)

22 5 o
27 $-3
22 .
2—79(n):'(n)-



The equality in (2.1) holds if and only ; = G(n;) = $1K3 andG; = 1 (ny), which impliesG 2 1 (n), as desired.
Similarly, if G, =2 G(ny), we can also geB = I (n), as desired. So, we may assume Batz G(n;) andG; 2 G(ny).
Then, by Lemma 1.3 and Theorem 1.5, we have

64 64 22
i = i . i < = — Sl . 52 = — _— = i .
mi(G) = mi(Gy) - Mi(G) < h(ny)h(ny) = o= -3%-3% = Zg(n) < Tg(n) =i(n)
Now we consider for case, = 3s; + 1 andn, = 3s; + 2. If s, = 0, then m{G) = mi(Gy) < g(nz) = 39(n) < 32g(n) =
i(n). So, we assume that > 1 in the following.
If G1 22 G(ny), thenG; 2 G(ny) sinceG 2 H(n). Thus, we obtain that

mi(G) = mi(Gy) - mi(Gz) < g(np)h(ny) = g 4.3171.2.3% = %‘g(n) < z—ig(n) =i(n).
If G, = G(ny), thenG; 2 G(n;) sinceG 2 H(n). Thus, we have
mi(G) = mi(Gy) mi(Gy) (by Lemma 1.3)
< h(ny)g(ny) (by Theorems 1.4 and 1.5) (2.2)
= %4.35171.2.352
= Zym =it

The equality in (2.2) holds if and only &1 = H(n;) = (K3 Ky) W (51 — 1)Kz andG; =2 G(ny) = Ky W 5Kz, which implies
thatG = (K3 x Ks) W Ko W (s— 3)K3, as desired.
If G1 22 G(n) andG; 2 G(ny), then by Lemma 1.3 and Theorem 1.4, we get

. : : 11 8 22 8 22 .
mi(G) = mi(Gy) - Mi(Gz) < h(ny)h(n) = 50(m) - 59(n2) = 55+ 20(n) < Z=g(n) = i(n)
Secondly, we consider th& is connected. From Claims 1 and 2, it suffices to consider éise thatd(G) > 2 and
A(G) > 3. Choose a vertexe Vg such thatd(x) = A(G).
If d(x) > 4, then we get

mi(G) < mi(G—x)+mi(G—N[x]) (by Lemma 1.1(i))
< gin—1)4+g(n-5) (by Theorem 1.4) (2.3)
= 2:35144.3°
22 .
= o =i(n).

The equality in (2.3) holds if and only & — x = G(n— 1) = Ky W (s— 1)Kz andG — N[x] 2 G(n— 5) = Ky W (s— 3)K3. But
there is no such graph sin@— N[x] is a subgraph o6 — x, hence miG) < i(n).
Now assume that(x) = 3. If G—x= G(n—1), then we hav& = (K3« K3) W (s— 2)K3, i.e.,G = H(n), a contradiction.
If G—x2 G(n—1), then by Lemma 1.1 and Theorems 1.4 and 1.5, we get

mi(G) mi(G — x) +mi(G— Nx]) (by Lemma 1.1(i))
h(n—1)+g(n—4) (by Theorems 1.4 and 1.5) (2.4)

16-35342.3572
22 .
2—79(n) =i(n).

[ I/ANN/AN

The equality in (2.4) holds if and only @ — x>~ H(n— 1) = (K3xK3) Ko W (s— 3)K3, 4Ky W (s— 3)K3, Ky W 2Ko W (s— 3)K3,
or 2Kp W (s—3)Kz andG— N[x = G(n—4) = Ko W (s— 2)K3. But there is no such graph siné¢G) > 2 andd(x) = 3,
hence miG) < i(n).

Subcase2.2. n=3s+ 1.



Firstly, we consider tha® is disconnected. Obviously, we can always find two vertesgedhit graphsG; andG, such
thatG = G, & Gy, where|Vg,| = ny, |Vg,| = np. Without loss of generality, assume that= 3s; andn; = 35, + 1, or
Ny = 3s; + 2 andny = 3s, + 2.

For the subcase; = 3s, andn, = 3s; + 1. If s, = 0, then m{G) = mi(G1) < g(n) = 3g(n) < &g(n) =i(n). So, we
assume thaf, > 1 in the following.

If G1 22 G(ny), thenG, 2 G(nz), H(ny) sinceG 2 G(n), H(n). Thus, we obtain that

mi(G) = mi(Gy)-mi(Gy) (by Lemma 1.3)
< g(m)i(ng) (by Theorem 1.4 and induction hypothesis) (2.5)
8
— 2.3%.4.32°1
9 31.4.3
= Sam =i,

The equality in (2.5) holds if and only &1 = G(n;) = K3 andG; 22 1 (ny), this mean$s = | (n).
If G2 22 G(ny), thenG; 2 G(ny) sinceG % H(n). Thus, we have

mi(G) = mi(Gy) -mi(Gy) (by Lemma 1.3)
< h(np)g(ny) (by Theorems 2.1 and 2.2) (2.6)
8 S1. 4. 3%~
= 5-3 4.3%271
8 :
= o) =i(n).

The equality in (2.7) holds if and only ; = H(n;) andG; = G(n;), this meanss = I (n).
If G122 G(n) andG; 2 G(ny), then by Lemma 1.3 and Theorem 1.4, we get
11

mi(G) = mi(Gy) - mi(Gz) < h(ny)h(ny) = g 3% 1—2~4- 3% 1= g : %g(n) < gg(n) =i(n).

Now, we consider the subcasge= 3s; + 2 andn, = 3s, + 2.
If G1 = G(ny), thenG; 2 G(ny) sinceG 2 G(n). Thus, we have

mi(G) = mi(Gy) -mi(Gyp) (by Lemma 1.3)
< g(np)h(ny) (by Theorems 2.1 and 2.2) 2.7)
8
= -.2.3%1.2.3%
5 2.31.2.3

Salm) = ().

The equality in (2.7) holds if and only 5; = G(n;) = Ko Ws1K3 andG, =2 H(ny), this meanss = K4 W 3K W (s— 3)K3,
2Ka W Ko (S— 3)K3, (Kg * Kg) W2Ko W (S— 3)K3, or 5K, (S— 3)K3.

Similarly, if G =2 G(n,), we can also geb = K, W 3Ko W (s— 3)K3, 2K WKy W (s— 3)K3, (K3 K3) W 2K, W (s— 3)Ks,
or 5Ky W (s— 3)Ks.

If G122 G(n1) andG, 2 G(ny). Then by Lemma 1.3 and Theorem 1.5, we get

mi(G) = mi(Gz) - mi(Gz) < h(np)h(ny) = g 2-3%. g 2:32= g—i'g(n) < gg(n) =i(n).
Next, we consider thab is connected. From Claims 1 and 2, we just need to considerabe thadd(G) > 2 and
A(G) > 3. Choose a vertexe Vg such thatd(x) = A(G).
Suppose thad(x) > 4. For the cas& — x> G(n— 1) = sK3, we getG— N[x] Z G(n—5) sinceG 2 H(n). If G— N[x] =
H(n—5), we getG — N[x] = 4K, W (s— 4)K3 sinceG — N[x] is a subgraph o6 — x. So, we can obtain that= 13, G 2
Ki *4Ks. By direct computing, we have i) = 81 < i(13) = 96. Hence, assume th@t— N[x] 2 H(n—5). By induction



hypothesis, we get 6 — N[x]) < max{g(n—6), i(n—5)} = max{4- 353, 5.353} =5.353, Thus, we obtain

mi(G) < mi(G—x)+mi(G—NIx|) (by Lemma 1.1(i))
< gin—1)+5.33 (by Theorem 1.4) (2.8)
= 32.353
8 .
= o =i(n).

The equality in (2.8) holds if and only & — x> G(n— 1) = sK3 andG — N[x] 2 | (n— 5). But there is no such graph since
G —NJ[x| is a subgraph o — x. Hence m{G) < i(n).

For the cas& —x 2 G(n—1), by Lemma 1.1(i) and Theorems 1.4 and 1.5, we gé¢@ni mi(G—x) + mi(G—N[x]) <
h(n—1)+g(n—5)=8-3%2+2.352= 2g(n) < &g(n) = i(n), which is impossible.

Now assume thad(x) = 3. If G—x2 G(n— 1), sinceG is connectedG is of order at most 10, this is a contradiction.
If G—x2G(n—1) andG— N[x] 22 G(n—4). Thus, we get

mi(G) < mi(G—x)+mi(G—NIx|) (by Lemma 1.1(i))
< h(n=1)+h(n—-4) (by Theorem 1.5) (2.9)
8 ¢ 8.
8 .
= 59(”) =i(n).

The equality in (2.9) holds if and only & — x>~ H (n— 1) = sKz andG — N[X] 2 H (n— 4) = (s— 1)K3, this mean$ = K4,
this is a contradiction. Hence (@) < i(n).

Now, we just need to consider that for any ventex Vs such thad(v) = 3, we can assume th&— v G(h— 1) and
G —N[v] 2 G(n—4). SinceG is connectedG is of order at most 7, this is a contradiction.

Subcase 2.3. n = 3s+ 2.

Firstly we consider tha® is disconnected. Obviously, we can always find two vertesfettt graphss; andG; such
thatG = G1 WGy, where|Vg, | = ny, |Vg,| = n2. Without loss of generality, assume timt= 3s, + 1 andn, = 35, + 1, or
Ny = 3s; andny, = 35, + 2.

For the subcase; = 351+ 1 andny = 35, + 1. If 5y =0, then by Lemma 1.3 and Theorem 1.4, we havéGhi=
mi(Gy) < g(ny) =g(n—1) = %g(n) < %g(n) =i(n). Hence, assumg > 1 in what follows. Similarly, we assume that
S =1

If G122 G(ny), then we gety 2 G(ny) sinceG 2 H( ). By Lemma 1.3 and Theorems 1.4 and 1.5, we géti=
mi(Gy) - mi(Gy) < g(m)h(np) = 35-4-3%1-4.3% 71 = Hg(n) < Rg(n) =i(n).

If G1 2 G(n1), then by Lemma 1.3 and Theorems 1.4 and 1.5, we g)n mi(Gy) - mi(Gp) < h(n)g(ng) = 13- 4-
314321 = Zg(n) < 2g(n) =i(n).

Now, consider the subcasg = 3s; andny; = 35,4+ 2. If G; = G(ny), then we geiG; 2 G(ny), H(nz) sinceG 2
G(n), H(n). Thus, we obtain that

mi(G) = mi(Gy) -mi(Gy) (by Lemma 1.3)
< g(m)i(ny) (by Theorems 1.4 and 1.5) (2.10)
> S1.9.
= 53 2.3%
5 .
= 29(m) =i(n).

The equality in (2.10) holds if and only @; = G(n;) = 51K3 andG; 22 | (ny), this mean$ = 1 (n).

If G, = G(ny), then we get5y 2 G(ny), H(np) sinceG 2 G(n), H(n). By Lemma 1.3, Theorem 1.4 and induction
hypothesis, we get riB) = mi(Gy) - mi(G,) < i(n)g(np) = 32 - 3% -2.3% = 32g(n) < 2g(n) =i(n).

If Gp 2 G(nl) andG; 2 G(ny), then by Lemma 1.3 and Theorem 1.5, we gei@hi= mi(G1) - mi(G;) < h(n)h(np) =
81-3%-2.32 = &ig(n) < gg(n) =i(n).

Next, we consider thab is connected. From Claims 1 and 2, we just need to considerabe thad(G) > 2 and
A(G) > 3. Choose a vertexe Vg such thatd(x) = A(G).



If d(x) > 4, then we get

mi(G) < mi(G—x)+mi(G—NIx|) (by Lemma 1.1(i))
< g(n=1)4+g(n-5) (by Theorem 1.4) (2.11)
_ 4.35714_3571
5 .
= ég(n) =i(n).

The equality in (2.11) holds if and only @ — x = G(n— 1) = K4 W (s— 1)Kz andG — N[x] 2 G(n—5) = (s— 1)K3, which
impliesG = Ks W (s— 1)Kz or (Kg x Kg) & (s— 2)Ks.

Now assume thal(x) = 3. If G—x2 G(n— 1), then it is easy to see eith€— x> 2K, W (s— 1)Kz or Kg & (s— 1)Ks3.
Sinced(G) > 2 andA(G) = 3, it follows thatG — x 2 2Ky ¥ (s— 1)K3. SinceA(G) = 3 andG is connected, it follows that
G—x2Ka (s—1)Ka.

If G—x2 G(n—1), sinceA(H(n— 1)) = 4, we getG—x 2 H(n—1). By induction hypothesis, we get (8 — x) <
i(n—1). Thus by Lemma 1.1(i) and Theorem 1.4, we gef@&i< mi(G—x)+ mi(G—N[X) <i(n—1)+g(n—4) =
8.4.33°144.352= Zg(n) < 29(n) =i(n).

By Subcases 2.1-2.3, Theorem 1.6 (ii) holds. This comptéegproof.
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