On the third largest number of maximal independent sets of graphs*

Shuchao Li^{\dagger}, Huihui Zhang
Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China

Abstract

A maximal independent set is an independent set that is not a proper subset of any other independent set. In this paper, we determine the third largest number of maximal independent sets among all graphs of order $n \geqslant 3$ and identify the corresponding extremal graphs.

Keywords: Maximal independent set; Extremal graph
AMS subject classification: 05C69; 05C05

1. Introduction

Given a graph $G=\left(V_{G}, E_{G}\right)$, a set $I \subseteq V_{G}$ is independent if there is no edge of G between any two vertices of I. A maximal independent set is an independent set that is not a proper subset of any other independent set. The dual of an independent set is a clique, in the sense that clique corresponds to an independent set in the complement graph. The set of all maximal independent sets of a graph G is denoted by $\operatorname{MI}(G)$ and its cardinality by $\operatorname{mi}(G)$.

Given a simple graph $G=\left(V_{G}, E_{G}\right)$, the cardinality of V_{G} is called the order of $G . G-v$ denotes the graph obtained from G by deleting vertex $v \in V_{G}$ (this notation is naturally extended if more than one vertex is deleted). For $v \in V_{G}$, let $N_{G}(v)$ (or $N(v)$ for short) denote the set of all the adjacent vertices of v in G and $d(v)=\left|N_{G}(v)\right|$, the degree of v in G. In particular, let $\Delta(G)=\max \left\{d(x) \mid x \in V_{G}\right\}$ and $\delta(G)=\min \left\{d(x) \mid x \in V_{G}\right\}$. For convenience, let $N_{G}[x]=\{x\} \cup N_{G}(x)$. A leaf of G is a vertex of degree one. For any two graphs G and H, let $G \uplus H$ denote the disjoint union of G and H, and for any nonnegative integer t, let $t G$ stand for the disjoint union of t copies of G. For a connected graph H with maximum degree vertex x and a graph $G=G_{1} \uplus G_{2} \uplus \cdots \uplus G_{k}$ with u_{i} being the maximum degree vertex in $G_{i}, i=1,2, \ldots, k$, define the graph $H * G$ to be the graph with vertex set $V_{H * G}=V_{H} \cup V_{G}$ and edge set $E_{H * G}=E_{H} \cup E_{G} \cup\left\{x u_{i}: i=1,2, \ldots, k\right\}$. Throughout the text we denote by P_{n}, C_{n}, K_{n} and $K_{1, n-1}$ the path, cycle, complete graph and star on n vertices, respectively.

Further on we need the following lemmas.
Lemma 1.1 ([7]). For any vertex v in a graph G, the followings hold.
(i) $\operatorname{mi}(G) \leqslant \operatorname{mi}(G-v)+\operatorname{mi}\left(G-N_{G}[v]\right)$;
(ii) If v is a leaf adjacent to u, then $\operatorname{mi}(G)=\operatorname{mi}\left(G-N_{G}[v]\right)+\operatorname{mi}\left(G-N_{G}[u]\right)$.

Lemma 1.2 ([5]). If $n \geqslant 6$, then $\mathrm{mi}\left(C_{n}\right)=\operatorname{mi}\left(C_{n-2}\right)+\operatorname{mi}\left(C_{n-3}\right)$.
Lemma 1.3 ([7]). If $G=G_{1} \uplus G_{2}$, then $\mathrm{mi}(G)=\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right)$.
For $n \geqslant 2$, let $G(n), H(n)$ be two n-vertex graphs defined as

$$
G(n)= \begin{cases}s K_{3}, & \text { if } n=3 s ; \\ K_{4} \uplus(s-1) K_{3}, \text { or } 2 K_{2} \uplus(s-1) K_{3}, & \text { if } n=3 s+1 ; \\ K_{2} \uplus s K_{3}, & \text { if } n=3 s+2\end{cases}
$$

[^0]

Figure 1: Graphs $I_{5}^{1}, I_{7}^{1}, H_{1}$ and H_{2}.
and

$$
H(n)= \begin{cases}2 K_{1}, & \text { if } n=2 ; \\ P_{3}, \text { or } K_{2} \uplus K_{1}, & \text { if } n=3 ; \\ I_{5}^{1}, P_{4}, K_{3} * K_{1}, \text { or } K_{3} \uplus K_{1}, & \text { if } n=4 ; \\ C_{5}, K_{5}, K_{3} * K_{2}, \text { or } I_{7}^{1}, & \text { if } n=5 ; \\ \left(K_{3} * K_{3}\right) \uplus(s-2) K_{3}, 3 K_{2} \uplus(s-2) K_{3}, \text { or } K_{4} \uplus K_{2} \uplus(s-2) K_{3}, & \text { if } n=3 s \geqslant 6 ; \\ \left(K_{3} * K_{4}\right) \uplus(s-2) K_{3}, & \text { if } n=3 s+1 \geqslant 7 ; \\ \left(K_{3} * K_{3}\right) \uplus K_{2} \uplus(s-2) K_{3}, 4 K_{2} \uplus(s-2) K_{3}, 2 K_{4} \uplus(s-2) K_{3}, \text { or } K_{4} \uplus 2 K_{2} \uplus(s-2) K_{3}, & \text { if } n=3 s+2 \geqslant 8,\end{cases}
$$

where I_{5}^{1} and I_{7}^{1} are depicted in Fig. 1. By Lemma 1.3, it is routine to check that

$$
g(n):=\operatorname{mi}(G(n))=\left\{\begin{array}{ll}
3^{s}, & \text { if } n=3 s ; \\
4 \cdot 3^{s-1}, & \text { if } n=3 s+1 ; \\
2 \cdot 3^{s}, & \text { if } n=3 s+2
\end{array} \quad \text { and } \quad h(n):=\operatorname{mi}(H(n))= \begin{cases}1, & \text { if } n=2 ; \\
2, & \text { if } n=3 ; \\
3, & \text { if } n=4 ; \\
5, & \text { if } n=5 ; \\
\frac{11}{12} g(n), & \text { if } n=3 s+1 \geqslant 6 \\
\frac{8}{9} g(n), & \text { otherwise }\end{cases}\right.
$$

Theorem 1.4 ([6]). If G is a graph with $n \geqslant 2$ vertices, then $\operatorname{mi}(G) \leqslant g(n)$ with the equality holding if and only if $G \cong G(n)$.
Theorem 1.5 ([3, 4]). If G is a graph with n vertices and $G \not \equiv G(n)$, then $\operatorname{mi}(G) \leqslant h(n)$ with the equality holding if and only if $G \cong H(n)$.

Further on, let $I(n), I^{\prime}(n)$ be two n-vertex graphs ($n \geqslant 8$) defined, respectively, as

$$
I(n)= \begin{cases}K_{3} *\left(K_{3} \uplus K_{3}\right) \uplus(s-3) K_{3}, \text { or }\left(K_{4} * K_{3}\right) \uplus K_{2} \uplus(s-3) K_{3}, & \text { if } n=3 s ; \\ K_{4} \uplus\left(K_{3} * K_{3}\right) \uplus(s-3) K_{3}, K_{4} \uplus 3 K_{2} \uplus(s-3) K_{3}, 2 K_{4} \uplus K_{2} \uplus(s-3) K_{3}, & \text { if } n=3 s+1 ; \\ \left(K_{3} * K_{3}\right) \uplus 2 K_{2} \uplus(s-3) K_{3}, \text { or } 5 K_{2} \uplus(s-3) K_{3}, & \text { if } n=3 s+2 \\ \left(K_{4} * K_{4}\right) \uplus(s-2) K_{3},\left(K_{3} * K_{2}\right) \uplus(s-1) K_{3}, K_{5} \uplus(s-1) K_{3}, C_{5} \uplus(s-1) K_{3}, \text { or } I_{7}^{1} \uplus(s-1) K_{3}, & \end{cases}
$$

and

$$
I^{\prime}(n)= \begin{cases}H_{1} \cup K_{2} \cup(s-4) K_{3}, & \text { if } n=3 s \\ H_{2} \cup(s-4) K_{3}, & \text { if } n=3 s+1 \\ H_{1} \cup 2 K_{2} \cup(s-4) K_{3}, & \text { if } n=3 s+2\end{cases}
$$

where I_{7}^{1}, H_{1} and H_{2} are depicted in Fig. 1.
Set $i(n)=\operatorname{mi}(I(n))$ and $i^{\prime}(n)=\operatorname{mi}\left(I^{\prime}(n)\right)$. By Lemma 1.3, it is easy to obtain that

$$
i(n)=\left\{\begin{array}{ll}
\frac{22}{27} g(n), & \text { if } n=3 s ; \tag{1.1}\\
\frac{8}{9} g(n), & \text { if } n=3 s+1 ; \\
\frac{5}{6} g(n), & \text { if } n=3 s+2
\end{array} \quad \text { and } \quad i^{\prime}(n)= \begin{cases}\frac{3}{4} g(n), & \text { if } n=3 s+1 ; \\
\frac{2}{3} g(n), & \text { otherwise }\end{cases}\right.
$$

Note that Hua and Hou [1] obtained that $i^{\prime}(n)=\frac{97}{108} g(n)$ if $n=3 s+1$ and $\frac{70}{81} g(n)$ otherwise, which is not correct by direct calculation. It is easy to see

$$
\begin{equation*}
i^{\prime}(n)<i(n) . \tag{1.2}
\end{equation*}
$$

$(\diamond)([$ Theorem 3.1, 1]) If G is a graph with $n \geqslant 3$ vertices and $G \not \nexists G(n), H(n)$, then

$$
\operatorname{mi}(G) \leqslant \begin{cases}\frac{97}{108} g(n), & \text { if } n=3 s+1 ; \tag{1.3}\\ \frac{70}{81} g(n), & \text { otherwise } .\end{cases}
$$

Furthermore, each of the equalities in (1.3) holds if and only if $G \cong I^{\prime}(n)$.
Note that $I(n) \not \approx G(n), H(n)$, hence in view of (1.2), Theorem 3.1 in [1] is not true. The following result characterizes the third largest number of maximal independent sets of n-vertex graphs $(n \geqslant 3)$, the corresponding extremal graphs are identified.

Theorem 1.6. Let G be an n-vertex graph with $n \geqslant 3$.
(i) If $G \not \approx G(n), H(n)$ with $3 \leqslant n \leqslant 10$, then G is the graph with the third largest number of maximal independent set if and only if $G \in I^{\prime \prime}(n)$, where

$$
I^{\prime \prime}(n)= \begin{cases}3 K_{1}, & \text { if } n=3 ; \\ 2 K_{1} \uplus K_{2}, K_{1} \uplus P_{3}, K_{1,3}, \text { or } C_{4}, & \text { if } n=4 ; \\ K_{1} \uplus 2 K_{2}, K_{1} \uplus K_{4}, K_{2} \uplus P_{3}, P_{5}, K_{4} * K_{1}, I_{5}^{1} * K_{1}, I_{5}^{2}, I_{5}^{3}, I_{5}^{4}, \text { or } I_{5}^{5}, & \text { if } n=5 ; \\ K_{4} * K_{2}, I_{6}^{1}, I_{6}^{2}, I_{6}^{3}, \text { or } I_{6}^{4}, & \text { if } n=6 ; \\ K_{5} \uplus K_{2}, C_{5} \uplus K_{2},\left(K_{3} * K_{2}\right) \uplus K_{2}, I_{7}^{1} \uplus K_{2}, I_{7}^{2}, I_{7}^{3}, I_{7}^{4}, \text { or } I_{7}^{5}, & \text { if } n=7 ; \\ K_{4} * K_{4},\left(K_{3} * K_{2}\right) \uplus K_{3}, K_{5} \uplus K_{3}, C_{5} \uplus K_{3}, \text { or } I_{7}^{1} \uplus K_{3}, & \text { if } n=8 ; \\ K_{3} *\left(K_{3} \uplus K_{3}\right), \text { or }\left(K_{4} * K_{3}\right) \uplus K_{2}, & \text { if } n=9 ; \\ K_{4} \uplus\left(K_{3} * K_{3}\right), K_{4} \uplus 3 K_{2}, 2 K_{4} \uplus K_{2},\left(K_{3} * K_{3}\right) \uplus 2 K_{2}, \text { or } 5 K_{2}, & \text { if } n=10 .\end{cases}
$$

where $I_{5}^{2}, I_{5}^{3}, I_{5}^{4}, I_{5}^{5}, I_{6}^{1}, I_{6}^{2}, I_{6}^{3}, I_{6}^{4}, I_{7}^{2}, I_{7}^{3}, I_{7}^{4}$ and I_{7}^{5} are depicted in Fig. 2.
(ii) If $G \not \approx G(n), H(n)$ with $n \geqslant 8$, then $\operatorname{mi}(G) \leqslant i(n)$ with equality if and only if $G \cong I(n)$.

Figure 2: Graphs $I_{5}^{2}, I_{5}^{3}, I_{5}^{4}, I_{5}^{5}, I_{6}^{1}, I_{6}^{2}, I_{6}^{3}, I_{6}^{4}, I_{7}^{2}, I_{7}^{3}, I_{7}^{4}$ and I_{7}^{5}.

2. Proof of Theorem 1.6

We show Theorem 1.6 according to the following two possible cases.

Case 1. $3 \leqslant n \leqslant 10$.

It is straightforward to check that $I^{\prime \prime}(n) \not \not 二 G(n), H(n)$ and $\mathrm{mi}\left(I^{\prime \prime}(n)\right)=h(n)-1$ if $n=3,4,5,6,7,8,10$ and $\mathrm{mi}\left(I^{\prime \prime}(9)\right)=$ $h(9)-2$. Suppose $G(\nexists G(n), H(n))$ is a graph of order $n, 3 \leqslant n \leqslant 10$, such that $\mathrm{mi}(G)$ is as large as possible. By Theorem 1.5, we have that $h(n)-1=\operatorname{mi}\left(I^{\prime \prime}(n)\right) \leqslant \operatorname{mi}(G) \leqslant h(n)-1$ for $n=3,4,5,6,7,8,10$. Hence, $\operatorname{mi}(G)=h(n)-1$. For $n=9$, by Theorem 1.5, we have that $h(9)-2=\operatorname{mi}\left(I^{\prime \prime}(9)\right) \leqslant \operatorname{mi}(G) \leqslant h(9)-1$, thus $\operatorname{mi}(G)=h(9)-2$, or $h(9)-1$. If $n=3$, note that $g(3)=3$, hence we get just one extremal graph $3 K_{1}$. In the following, assume $n \geqslant 4$ and prove our results according to the following four subcases.

Subcase 1.1. $\boldsymbol{\delta}(G)=0$.
In this subcase, we take a vertex $x \in V_{G}$ such that $d(x)=0$. Thus, we get $\operatorname{mi}(G)=\operatorname{mi}(G-x)$.
If $n=4$, note that $g(4)=4$, thus $\operatorname{mi}(G)=\operatorname{mi}(G-x)=2$ and $\left|V_{G-x}\right|=3$. Hence, we obtain that $G-x \cong P_{3}$ or $K_{2} \uplus K_{1}$, i.e., $G \cong P_{3} \uplus K_{1}$ or $K_{2} \uplus 2 K_{1}$.

If $n=5$, note that $g(5)=6$, thus $\operatorname{mi}(G)=\operatorname{mi}(G-x)=4$ and $\left|V_{G-x}\right|=4$. Hence, by Theorem 1.4, we have $G-x \cong K_{4}$ or $2 K_{2}$, which is equivalent to $G \cong K_{4} \uplus K_{1}$ or $2 K_{2} \uplus K_{1}$.

If $6 \leqslant n \leqslant 7$, then, on the one hand, $\operatorname{mi}(G)=\operatorname{mi}(G-x)=h(n)-1$; on the other hand, by Theorem 1.4, we get $\operatorname{mi}(G-x) \leqslant g(n-1)$. Thus, we get $g(n)-2 \leqslant g(n-1)$. But, in fact $6=g(5)<h(6)-1=7$ and $9=g(6)<h(7)-1=10$, a contradiction.

If $n=8$, then by Theorem $1.4, \operatorname{mi}(G)=\operatorname{mi}(G-x)$ and $\operatorname{mi}(G-x) \leqslant g(7)=12$. Hence, $\operatorname{mi}(G) \leqslant 12<15=h(8)-1$, this is a contradiction. Similarly, we can also get a contradiction, respectively, for $n=9,10$, which is omitted here.

Subcase 1.2. $\boldsymbol{\delta}(G)=1$.
In this subcase, we take a vertex $x \in V_{G}$ such that $d(x)=1$ and $x y \in E_{G}$. Let $G_{1}=G-x-y$. Note that $G-N[y]$ is a subgraph of G_{1}, then $1 \leqslant \operatorname{mi}(G-N[y]) \leqslant \operatorname{mi}\left(G_{1}\right)$.

First consider $G_{1} \cong G(n-2)$. If $n=3 s(s=2,3)$, then we obtain that $G_{1} \cong K_{4} \uplus(s-2) K_{3}$ or $2 K_{2} \uplus(s-2) K_{3}$. If $G-N[y] \cong K_{4} \uplus(s-2) K_{3}$ or $2 K_{2} \uplus(s-2) K_{3}$, then $G \cong H(n)$, a contradiction. So $G-N[y]$ is a proper subgraph of $K_{4} \uplus(s-2) K_{3}$, i.e. $G-N[y]$ is a subgraph $(s-1) K_{3}, K_{4} \uplus K_{2} \uplus(s-3) K_{3}$, or $K_{1} \uplus K_{2} \uplus(s-2) K_{3}$. By a simple calculation, we have $\operatorname{mi}(G-N[y]) \leqslant \max \left\{3^{s-1}, 8 \cdot 3^{s-3}, 2 \cdot 3^{s-3}\right\}=3^{s-1}$. By Lemma 1.1(ii), we have $\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right)+\operatorname{mi}(G-N[y]) \leqslant$ $4 \cdot 3^{s-2}+3^{s-1}=7 \cdot 3^{s-2}$, the equality holds if and only if $G-N[y] \cong(s-3) K_{3}$. Note that $\mathrm{mi}(G)=7$ for $n=6$ and $\operatorname{mi}(G)>21$ for $n=9$. In conclusion, $n=6, G \cong K_{4} * K_{2}$.

If $n=3 s+1(s=1,2,3)$, then we obtain that $G_{1} \cong K_{2} \uplus(s-1) K_{3}$. If $G-N[y] \cong K_{2} \uplus(s-1) K_{3}$, then $G \cong G(n)$, a contradiction. So $G-N[y]$ is a proper subgraph of $K_{2} \uplus(s-1) K_{3}$, i.e. $G-N[y]$ is a subgraph $K_{1} \uplus(s-1) K_{3}$ or $2 K_{2} \uplus(s-$ 2) K_{3}. By a simple calculation, we have $1 \leqslant \operatorname{mi}(G-N[y]) \leqslant \max \left\{3^{s-1}, 4 \cdot 3^{s-2}\right\}=4 \cdot 3^{s-2}$. By Lemma 1.1(ii), we have

$$
3 \leqslant 2 \cdot 3^{s-1}+1 \leqslant \operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right)+\operatorname{mi}(G-N[y]) \leqslant 2 \cdot 3^{s-1}+4 \cdot 3^{s-2}=10 \cdot 3^{s-2}
$$

the equality holds if and only if $G-N[y] \cong 2 K_{2} \uplus(s-2) K_{3}$. Note that $\operatorname{mi}(G)=h(n)-1$ holds for $n=4,7,10$. In conclusion, $n=7$ and $G \cong\left(K_{3} * K_{2}\right) \uplus K_{2}$.

If $n=3 s+2(s=1,2)$, then we obtain that $G_{1} \cong s K_{3}$. There are two such graphs $K_{4} * K_{1}, I_{5}^{1} * K_{1}$ for $n=5$. By a simple calculation, we get $K_{4} * K_{1}$ and $I_{5}^{1} * K_{1}$ are extremal graphs. In the following, we consider $n=8$. If $G-N[y] \cong s K_{3}$, then $G \cong G(n)$, a contradiction. Hence, $G-N[y]$ is a proper subgraph of $s K_{3}$, i.e. $G-N[y]$ is a subgraph $K_{1} \uplus(s-1) K_{3}$ or $K_{2} \uplus(s-1) K_{3}$. By a simple calculation, we have $1 \leqslant \operatorname{mi}(G-N[y]) \leqslant \max \left\{3^{s-1}, 2 \cdot 3^{s-1}\right\}=2 \cdot 3^{s-1}$. By Lemma 1.1(ii), we have $\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right)+\operatorname{mi}(G-N[y]) \leqslant 3^{s}+2 \cdot 3^{s-1}=5 \cdot 3^{s-1}$, the equality holds if and only if $G-N[y] \cong K_{2} \uplus(s-1) K_{3}$. Note that $\operatorname{mi}(G)=15$ for $n=8$. In conclusion, $n=8$ and $G \cong\left(K_{3} * K_{2}\right) \uplus K_{3}$.

Next consider $G_{1} \cong H(n-2)$. If $n=4$, it is easy to get that $G_{1} \cong 2 K_{1}$. As $\delta(G)=1$, we obtain that $G \cong K_{1,3}$. For $n \geqslant 5$, note that $G-N[y]$ is a subgraph of G_{1}, we have $\operatorname{mi}(G-N[y]) \leqslant \operatorname{mi}\left(G_{1}\right)=h(n-2)$. By Lemma 1.1(ii) and Theorem 1.5 , we have $\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right)+\operatorname{mi}(G-N[y]) \leqslant 2 h(n-2)$, the equality holds if and only if $G-N[y] \cong H(n-2)$. Note that $\operatorname{mi}(G)=2$ for $n=4$ and $h(4-2)=h(4-4)=1$, we get extremal graph $K_{1,3}$. Note that $\operatorname{mi}(G)=h(n)-1$ holds for $n=5,6,7,8,10$ and $\operatorname{mi}(G) \geqslant h(n)-2$ holds for $n=9$. In conclusion, we also get extremal graphs $K_{2} \uplus K_{3}, K_{5} \uplus K_{2}, C_{5} \uplus$ $K_{2},\left(K_{3} * K_{2}\right) \uplus K_{2}, I_{7}^{1} \uplus K_{2},\left(K_{4} * K_{3}\right) \uplus K_{2}, K_{4} \uplus 3 K_{2}, 2 K_{4} \uplus K_{2},\left(K_{3} * K_{3}\right) \uplus 2 K_{2}, 5 K_{2}$.

Now consider $G_{1} \not \nexists G(n-2), H(n-2)$. By Theorem 1.5, we have $\operatorname{mi}\left(G_{1}\right)=1$ for $n=4$ and $\operatorname{mi}\left(G_{1}\right) \leqslant h(n-2)-1$ for $5 \leqslant n \leqslant 10$. By Lemma 1.1(ii) and Theorem 1.5, we have $\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right)+\operatorname{mi}(G-N[y]) \leqslant 2 h(n-2)-2<h(n)-1$ for $n=5,6,7,8,10$ and $\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right)+\operatorname{mi}(G-N[y]) \leqslant 2 h(7)-2<h(9)-2$ for $n=9$. Thus there does not exist extremal graph in this subcase.

Subcase 1.3. $\delta(G)=2$ and $\Delta(G)=2$.
In this subcase, $G \cong C_{n}$. By direct calculation, $\operatorname{mi}\left(C_{4}\right)=2, \operatorname{mi}\left(C_{5}\right)=5>4, \operatorname{mi}\left(C_{6}\right)=5<7, \operatorname{mi}\left(C_{7}\right)=7<10$, $\mathrm{mi}\left(C_{8}\right)=10<15, \mathrm{mi}\left(C_{9}\right)=12<22, \mathrm{mi}\left(C_{10}\right)=17<32$. Hence, we get the extremal graphs C_{4} and $C_{5} \uplus K_{3}$.

Subcase 1.4. $\delta(G) \geqslant 2$ and $\Delta(G) \geqslant 3$.
In this subcase, we take a vertex $x \in V_{G}$ such that $d(x)=\Delta(G) \geqslant 3$. Let $G_{2}=G-N[x]$. If $n=4$, it is routine to check that $G \cong I_{5}^{1}$ since $G \nsubseteq K_{4}$, i.e., $\operatorname{mi}(G)=3$, a contradiction. In the following, assume that $n \geqslant 5$.

First consider $\Delta(G)=3$ according to the following subcases.
$\bullet n=5$. In this subcase we have $g(5)=6$ and $G_{2}=K_{1}$, hence $3 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=4$, i.e., $G-x \cong K_{4}, 2 K_{2}, P_{4}, I_{5}^{1}, K_{3} \uplus$ K_{1} or $K_{3} * K_{1}$. Thus, we get $G \cong I_{5}^{2}$.
$\bullet n=6$. In this subcase, we have $G_{2} \cong 2 K_{1}$ or K_{2}. If $G_{2} \cong 2 K_{1}$, then $6=7-1 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=6$, i.e., $\operatorname{mi}(G-x)=6$, i.e., $G-x \cong K_{3} \uplus K_{2}$. But there is no such graph. If $G_{2} \cong K_{2}$, then $5=7-2 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=6$, i.e., $\operatorname{mi}(G-x)=5$ or 6 , which is equivalent to $G-x \cong K_{3} \uplus K_{2}, C_{5}, K_{5}, K_{3} * K_{2}$, orI I_{7}^{1}. Thus, we get $G \cong I_{6}^{1}$ or I_{6}^{2}.

- $n=7$. In this subcase, we have $G_{2} \cong K_{3}, P_{3}, K_{2} \uplus K_{1}$ or $3 K_{1}$. If $G_{2} \cong K_{3}$, note that $\operatorname{mi}(G)=10$ and $G \nsubseteq G(n), H(n)$, hence there is no such graph. If $G_{2} \cong P_{3}$ or $K_{2} \uplus K_{1}$, then $\operatorname{mi}\left(G_{2}\right)=2$ and $8=10-2 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=9$, i.e., $\operatorname{mi}(G-x)=8$ or 9 , which is equivalent to $G-x \cong 2 K_{3}, K_{3} * K_{3}, 3 K_{2}$ or $K_{4} \uplus K_{2}$. Thus, we get the only graph G, but $\operatorname{mi}(G)=9<10$, this is a contradiction. If $G_{2} \cong 3 K_{1}$, then $9=10-1 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=9$, i.e., $\operatorname{mi}(G-x)=9$, i.e., $G-x \cong 2 K_{3}$. But such graph does not exist.
- $n=8$. Note that $G-x \nsupseteq H(7)=K_{4} * K_{3}$ since $\Delta(G)=3$. If $G-x \cong G(7)=K_{4} \uplus K_{3}$, or $2 K_{2} \uplus K_{3}$, as $\Delta(G)=3$, we get $G \cong 2 K_{4}=H(8)$, which is a contradiction. If $G-x \not \approx G(7), H(7)$, by Theorem 1.5 , we get $\operatorname{mi}(G-x) \leqslant h(7)-1=10$. Note that $\left|V_{G_{2}}\right|=8-4=4$, by Theorem 1.4, we have $\operatorname{mi}\left(G_{2}\right) \leqslant g(4)=4$. By Lemma 1.1(i), we obtain that mi $(G) \leqslant$ $\mathrm{mi}(G-x)+\operatorname{mi}\left(G_{2}\right) \leqslant 10+4=14<15$, a contradiction.
- $n=9$. If $G-x \cong G(8)=K_{2} \uplus 2 K_{3}$, observe that $\Delta(G)=3$, then we get $G \cong\left(K_{3} * K_{3}\right) \uplus K_{3}=H(9)$, a contradiction. If $G-x \cong H(8)$, note that $\Delta(G)=3$, we get $G-x \cong\left(K_{3} * K_{3}\right) \uplus K_{2}$, i.e., $G \cong W_{0}$; see Fig. 3. By direct calculation, $\operatorname{mi}(G)=21<22=h(9)-2$, a contradiction. If $G-x \not \approx G(8), H(8)$, by Theorem 1.5 , we get $\operatorname{mi}(G-x) \leqslant h(8)-1=15$. Note that $\left|V_{G_{2}}\right|=9-4=5$, by Theorem 1.4, we have $\operatorname{mi}\left(G_{2}\right) \leqslant g(5)=6$. By Lemma 1.1(i), we obtain that mi $(G) \leqslant$ $\operatorname{mi}(G-x)+\operatorname{mi}\left(G_{2}\right) \leqslant 15+6=21<22=h(9)-2$, a contradiction.

Figure 3: Graphs $W_{0}, W_{1}, W_{2}, W_{3}, W_{4}$ and W_{5}.

- $n=10$. If $G-x \cong G(9)=3 K_{3}$, then it is routine to check that $G \cong K_{1} * 3 K_{3}$ or $W_{1} \uplus K_{3}$ directly, where W_{1} is depicted in Fig. 3. By elementary calculation, $\operatorname{mi}(G)=27<32$, a contradiction. If $G-x \cong H(9)$, observe that $\Delta(G)=3$, we get $G-x \cong\left(K_{3} * K_{3}\right) \uplus K_{3}$ or $K_{4} \uplus K_{3} \uplus K_{2}$, which implies G must be isomorphic to W_{2}, W_{3}, W_{4} (see Fig. 3) or $\left(K_{3} * K_{3}\right) \uplus K_{4}$. By direct calculation, $\operatorname{mi}\left(W_{2}\right)=26<32, \operatorname{mi}\left(W_{3}\right)=\operatorname{mi}\left(W_{4}\right)=24<32$, $\operatorname{mi}\left(\left(K_{3} * K_{3}\right) \uplus K_{4}\right)=32$. Thus, we get the extremal graph $\left(K_{3} * K_{3}\right) \uplus K_{4}$, as desired. If $G-x \nsupseteq G(9), H(9)$, by Theorem 1.5 , we get $\operatorname{mi}(G-x) \leqslant h(9)-1=23$. In this subcase, note that $\left|V_{G-N[x]}\right|=6$, hence if $G-N[x] \nexists G(6)$ for some vertex x with $d(x)=3$, then by Theorem 1.4, we have $\operatorname{mi}(G-N[x]) \leqslant g(6)-1=8$. Thus, by Lemma 1.1(i), we get $\operatorname{mi}(G) \leqslant \operatorname{mi}(G-x)+\operatorname{mi}\left(G_{2}\right) \leqslant 23+8=31<32=h(10)-1$, a contradiction. If, for any vertex x of degree 3 , satisfying $G-N[x] \cong G(6)$, then there is only one such graph $\left(K_{1} * 2 K_{3}\right) \uplus K_{3}$. By direct computing, $\operatorname{mi}\left(\left(K_{1} * 2 K_{3}\right) \uplus K_{3}\right)=27<32$, a contradiction.

Next consider $\Delta(G)=4$.
If $n=5$, then we get G is a connected graph. By elementary calculation, we obtain extremal graphs I_{5}^{3}, I_{5}^{4}, or I_{5}^{5}, as desired.

If $n=6$, then we have $G_{2}=K_{1}$ and $6=7-1 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=6$, i.e., $\operatorname{mi}(G-x)=6$, i.e., $G-x \cong K_{3} \uplus K_{2}$. Thus, we get the extremal graph I_{6}^{3}.

If $n=7$, we have $G_{2} \cong 2 K_{1}$ or K_{2}. If $G_{2} \cong 2 K_{1}$, then $9=10-1 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=9$. Hence, $\operatorname{mi}(G-x)=9$, i.e., $G-x \cong 2 K_{3}$. Thus, we get the only graph W_{5} (see Fig. 3) with $\operatorname{mi}\left(W_{5}\right)=9<10$, a contradiction. If $G_{2} \cong K_{2}$, then $8=10-2 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=9$, which implies $\operatorname{mi}(G-x)=8$ or 9 , i.e., $G-x \cong 2 K_{3}, K_{3} * K_{3}, K_{4} \uplus K_{2}$, or $3 K_{2}$. Thus, we get the extremal graphs I_{7}^{4} and I_{7}^{5}.

If $n=8$, note that $\left|V_{G_{2}}\right|=3$, by Theorem 1.4, we have $\operatorname{mi}\left(G_{2}\right) \leqslant g(3)=3$. If $G-x \cong G(7)=K_{4} \uplus K_{3}$, or $2 K_{2} \uplus K_{3}$, then $\operatorname{mi}(G-x)=12$. Thus, by Lemma 1.1(i), $\operatorname{mi}(G) \leqslant \operatorname{mi}(G-x)+\operatorname{mi}\left(G_{2}\right) \leqslant 12+3=15$, the equality holds if and only if $G_{2} \cong K_{3}$, i.e., $G \cong K_{4} * K_{4}, K_{5} \uplus K_{3}$ or $I_{7}^{1} \uplus K_{3}$. If $G-x \nsupseteq G(7)$, then by Theorem 1.5, we have $\operatorname{mi}(G-x) \leqslant h(7)=11$. Thus, by Lemma 1.1(i), $\operatorname{mi}(G) \leqslant \operatorname{mi}(G-x)+\operatorname{mi}\left(G_{2}\right) \leqslant 11+3=14<15$, a contradiction.

Similarly, we can show, when $\Delta(G)=4, G \cong K_{3} * 2 K_{3}$ if $n=9$; whereas G does not exist if $n=10$, which is omitted here.

Now consider $\Delta(G) \geqslant 5$. In this case, $n \geqslant 6$ and $\left|V_{G_{2}}\right| \leqslant n-6$. At first we consider $n=6,7$ with $\Delta(G)=5$. If $n=6$, we get $6=7-1 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=6$, i.e., $\operatorname{mi}(G-x)=6$, i.e., $G-x \cong K_{3} \uplus K_{2}$, which implies $G \cong I_{6}^{4}$. If $n=7$, we get $\operatorname{mi}\left(G_{2}\right)=1$ and $9=10-1 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=9$, i.e., $\operatorname{mi}(G-x)=9$, i.e., $G-x \cong 2 K_{3}$, which implies $G \cong I_{7}^{3}$.

If $\Delta(G)=6$, then we have $n=7$. By Theorem $1.4,9=10-1 \leqslant \operatorname{mi}(G-x) \leqslant g(n-1)=9$, hence $\operatorname{mi}(G-x)=9$, which implies $G-x \cong 2 K_{3}$. Thus, we get extremal graph I_{7}^{2}.

Now we consider $n=\left|V_{G}\right|=8,9,10$ for $\Delta(G) \geq 5$.
If $n=8$, then by Lemma 1.1(i) and Theorem 1.4, we have $\operatorname{mi}(G) \leqslant \operatorname{mi}(G-x)+\operatorname{mi}\left(G_{2}\right) \leqslant g(7)+g(2)=14<15=$ $h(8)-1$, a contradiction. Similarly, we can also get a contradiction, respectively, for $n=9,10$, which is omitted here.

This completes the proof of Theorem 1.6(i).
Case 2. $n \geqslant 8$.
In this case, it is easy to see that $I(n) \not \approx G(n), H(n)$ and $\operatorname{mi}(I(n))=i(n)$ for $n \geqslant 8$. We prove it by induction on n. For $n=8,9,10$, in view of (i), our result holds. In what follows, we consider $n \geqslant 11$ and assume our result holds for $n-1$. We proceed to show our result holds for n. We first show the following two claims.
Claim 1. If G is a connected graph with $\delta(G)=1$, then $\operatorname{mi}(G)<i(n)$.
Proof. Note that $\delta(G)=1$, hence we take a leaf, say x, of G. Let $y \in N_{G}(x)$, then $d(y) \geqslant 2$. Thus, by Lemma 1.1(ii) and Theorem 1.4, we have $\operatorname{mi}(G)=\operatorname{mi}(G-N[x])+\operatorname{mi}(G-N[y]) \leqslant g(n-2)+g(n-3)$.

- $n=3 s$. In this case, $g(n-2)=4 \cdot 3^{s-2}, g(n-3)=3^{s-1}$. Then we have $\operatorname{mi}(G) \leqslant g(n-2)+g(n-3)=4 \cdot 3^{s-2}+3^{s-1}=$ $7 \cdot 3^{s-2}=\frac{7}{9} g(n)<\frac{22}{27} g(n)=i(n)$.
- $n=3 s+1$. In this case, $g(n-2)=2 \cdot 3^{s-1}, g(n-3)=4 \cdot 3^{s-2}$. Then we have $\operatorname{mi}(G) \leqslant g(n-2)+g(n-3)=2 \cdot 3^{s-1}+$ $4 \cdot 3^{s-2}=10 \cdot 3^{s-2}=\frac{5}{6} g(n)<\frac{8}{9} g(n)=i(n)$.
- $n=3 s+2$. In this case, $g(n-2)=3^{s}, g(n-3)=2 \cdot 3^{s-1}$. Then we have $\operatorname{mi}(G)=\operatorname{mi}(G-N[x])+\operatorname{mi}(G-N[y]) \leqslant$ $g(n-2)+g(n-3)=3^{s}+2 \cdot 3^{s-1}=5 \cdot 3^{s-1}=\frac{5}{6} g(n)=i(n)$. Thus $\operatorname{mi}(G)=\frac{5}{6} g(n)$ if and only if $G-N[x] \cong G(n-2)$ and $G-N[y] \cong G(n-3)$, which implies $G \cong K_{3} * K_{2}$ and $n=5$. Obviously, this is a contradiction for $n \geqslant 11$. Therefore, $\operatorname{mi}(G)<\frac{5}{6} g(n)$ if $n \geqslant 11$.

This completes the proof of Claim 1.
Claim 2. If $G \cong C_{n}$ with $n \geqslant 8$, then $\operatorname{mi}(G)<i(n)$.
Proof. For $n \geqslant 8$, we have

$$
\operatorname{mi}\left(C_{n}\right)=\operatorname{mi}\left(C_{n-2}\right)+\operatorname{mi}\left(C_{n-3}\right) \leqslant \begin{cases}\frac{19}{27} g(n), & \text { if } n=3 s \\ \frac{3}{4} g(n), & \text { if } n=3 s+1 \\ \frac{20}{27} g(n), & \text { if } n=3 s+2\end{cases}
$$

The last inequality follows from [4]. Hence, in view of the expression of $i(n)$ in (1.1) we have $\mathrm{mi}\left(C_{n}\right)<i(n)$. This completes the proof of Claim 2.

Now we come back to the proof of Theorem 1.6(ii). It suffices to show the following three subcases.
Subcase 2.1. $n=3 s$.
Firstly, we consider that G is disconnected. Obviously, we can always find two vertex-disjoint graphs G_{1} and G_{2} such that $G=G_{1} \uplus G_{2}$, where $\left|V_{G_{1}}\right|=n_{1},\left|V_{G_{2}}\right|=n_{2}$. Without loss of generality, assume that $n_{1}=3 s_{1}$ and $n_{2}=3 s_{2}$, or $n_{1}=3 s_{1}+1$ and $n_{2}=3 s_{2}+2$.

For the subcase $n_{1}=3 s_{1}$ and $n_{2}=3 s_{2}$. If $G_{1} \cong G\left(n_{1}\right)$, then $G_{2} \nsupseteq G\left(n_{2}\right), H\left(n_{2}\right)$ since $G \not \approx G(n), H(n)$. Thus, we obtain

$$
\begin{align*}
\operatorname{mi}(G) & =\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \quad(\text { by Lemma 1.3) } \\
& \leqslant g\left(n_{1}\right) i\left(n_{2}\right) \quad \text { (by Theorem } 1.4 \text { and induction hypothesis) } \tag{2.1}\\
& =\frac{22}{27} \cdot 3^{s_{1}} \cdot 3^{s_{2}} \\
& =\frac{22}{27} g(n)=i(n) .
\end{align*}
$$

The equality in (2.1) holds if and only if $G_{1} \cong G\left(n_{1}\right)=s_{1} K_{3}$ and $G_{2} \cong I\left(n_{2}\right)$, which implies $G \cong I(n)$, as desired.
Similarly, if $G_{2} \cong G\left(n_{2}\right)$, we can also get $G \cong I(n)$, as desired. So, we may assume that $G_{1} \nsupseteq G\left(n_{1}\right)$ and $G_{2} \nsupseteq G\left(n_{2}\right)$. Then, by Lemma 1.3 and Theorem 1.5, we have

$$
\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \leqslant h\left(n_{1}\right) h\left(n_{2}\right)=\frac{64}{81} \cdot 3^{s_{1}} \cdot 3^{s_{2}}=\frac{64}{81} g(n)<\frac{22}{27} g(n)=i(n) .
$$

Now we consider for case $n_{1}=3 s_{1}+1$ and $n_{2}=3 s_{2}+2$. If $s_{1}=0$, then $\operatorname{mi}(G)=\operatorname{mi}\left(G_{2}\right) \leqslant g\left(n_{2}\right)=\frac{2}{3} g(n)<\frac{22}{27} g(n)=$ $i(n)$. So, we assume that $s_{1} \geqslant 1$ in the following.

If $G_{1} \cong G\left(n_{1}\right)$, then $G_{2} \not \approx G\left(n_{2}\right)$ since $G \not \nexists H(n)$. Thus, we obtain that

$$
\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \leqslant g\left(n_{1}\right) h\left(n_{2}\right)=\frac{8}{9} \cdot 4 \cdot 3^{s_{1}-1} \cdot 2 \cdot 3^{s_{2}}=\frac{64}{81} g(n)<\frac{22}{27} g(n)=i(n)
$$

If $G_{2} \cong G\left(n_{2}\right)$, then $G_{1} \nsubseteq G\left(n_{1}\right)$ since $G \nsubseteq H(n)$. Thus, we have

$$
\begin{align*}
\operatorname{mi}(G) & =\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \quad(\text { by Lemma 1.3) } \\
& \leqslant h\left(n_{1}\right) g\left(n_{2}\right) \quad(\text { by Theorems 1.4 and 1.5) } \tag{2.2}\\
& =\frac{11}{12} 4 \cdot 3^{s_{1}-1} \cdot 2 \cdot 3^{s_{2}} \\
& =\frac{22}{27} g(n)=i(n) .
\end{align*}
$$

The equality in (2.2) holds if and only if $G_{1} \cong H\left(n_{1}\right)=\left(K_{3} * K_{4}\right) \uplus\left(s_{1}-1\right) K_{3}$ and $G_{2} \cong G\left(n_{2}\right)=K_{2} \uplus s_{2} K_{3}$, which implies that $G \cong\left(K_{3} * K_{4}\right) \uplus K_{2} \uplus(s-3) K_{3}$, as desired.

If $G_{1} \not \not G\left(n_{1}\right)$ and $G_{2} \not \nexists G\left(n_{2}\right)$, then by Lemma 1.3 and Theorem 1.4, we get

$$
\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \leqslant h\left(n_{1}\right) h\left(n_{2}\right)=\frac{11}{12} g\left(n_{1}\right) \cdot \frac{8}{9} g\left(n_{2}\right)=\frac{22}{27} \cdot \frac{8}{9} g(n)<\frac{22}{27} g(n)=i(n)
$$

Secondly, we consider that G is connected. From Claims 1 and 2, it suffices to consider the case that $\delta(G) \geqslant 2$ and $\Delta(G) \geqslant 3$. Choose a vertex $x \in V_{G}$ such that $d(x)=\Delta(G)$.

If $d(x) \geqslant 4$, then we get

$$
\begin{array}{rlrl}
\operatorname{mi}(G) & \leqslant \operatorname{mi}(G-x)+\operatorname{mi}(G-N[x]) & & \text { (by Lemma 1.1(i)) } \\
& \leqslant g(n-1)+g(n-5) & & \text { (by Theorem 1.4) } \tag{2.3}\\
& =2 \cdot 3^{s-1}+4 \cdot 3^{s-3} & \\
& =\frac{22}{27} g(n)=i(n) &
\end{array}
$$

The equality in (2.3) holds if and only if $G-x \cong G(n-1)=K_{2} \uplus(s-1) K_{3}$ and $G-N[x] \cong G(n-5)=K_{4} \uplus(s-3) K_{3}$. But there is no such graph since $G-N[x]$ is a subgraph of $G-x$, hence $\operatorname{mi}(G)<i(n)$.

Now assume that $d(x)=3$. If $G-x \cong G(n-1)$, then we have $G \cong\left(K_{3} * K_{3}\right) \uplus(s-2) K_{3}$, i.e., $G \cong H(n)$, a contradiction.
If $G-x \not \approx G(n-1)$, then by Lemma 1.1 and Theorems 1.4 and 1.5 , we get

$$
\begin{array}{rlr}
\operatorname{mi}(G) & \leqslant \operatorname{mi}(G-x)+\operatorname{mi}(G-N[x]) \quad \text { (by Lemma 1.1(i)) } \\
& \leqslant h(n-1)+g(n-4) & \quad \text { (by Theorems 1.4 and 1.5) } \tag{2.4}\\
& =16 \cdot 3^{s-3}+2 \cdot 3^{s-2} \\
& =\frac{22}{27} g(n)=i(n) &
\end{array}
$$

The equality in (2.4) holds if and only if $G-x \cong H(n-1)=\left(K_{3} * K_{3}\right) \uplus K_{2} \uplus(s-3) K_{3}, 4 K_{2} \uplus(s-3) K_{3}, K_{4} \uplus 2 K_{2} \uplus(s-3) K_{3}$, or $2 K_{4} \uplus(s-3) K_{3}$ and $G-N[x] \cong G(n-4)=K_{2} \uplus(s-2) K_{3}$. But there is no such graph since $\delta(G) \geqslant 2$ and $d(x)=3$, hence $\operatorname{mi}(G)<i(n)$.

Subcase 2.2. $n=3 s+1$.

Firstly, we consider that G is disconnected. Obviously, we can always find two vertex-disjoint graphs G_{1} and G_{2} such that $G=G_{1} \uplus G_{2}$, where $\left|V_{G_{1}}\right|=n_{1},\left|V_{G_{2}}\right|=n_{2}$. Without loss of generality, assume that $n_{1}=3 s_{1}$ and $n_{2}=3 s_{2}+1$, or $n_{1}=3 s_{1}+2$ and $n_{2}=3 s_{2}+2$.

For the subcase $n_{1}=3 s_{1}$ and $n_{2}=3 s_{2}+1$. If $s_{2}=0$, then $\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right) \leqslant g\left(n_{1}\right)=\frac{3}{4} g(n)<\frac{8}{9} g(n)=i(n)$. So, we assume that $s_{2} \geqslant 1$ in the following.

If $G_{1} \cong G\left(n_{1}\right)$, then $G_{2} \nsupseteq G\left(n_{2}\right), H\left(n_{2}\right)$ since $G \nsupseteq G(n), H(n)$. Thus, we obtain that

$$
\begin{align*}
\operatorname{mi}(G) & =\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \quad \text { (by Lemma 1.3) } \\
& \leqslant g\left(n_{1}\right) i\left(n_{2}\right) \quad \text { (by Theorem 1.4 and induction hypothesis) } \tag{2.5}\\
& =\frac{8}{9} \cdot 3^{s_{1}} \cdot 4 \cdot 3^{s_{2}-1} \\
& =\frac{8}{9} g(n)=i(n) .
\end{align*}
$$

The equality in (2.5) holds if and only if $G_{1} \cong G\left(n_{1}\right)=s_{1} K_{3}$ and $G_{2} \cong I\left(n_{2}\right)$, this means $G \cong I(n)$.
If $G_{2} \cong G\left(n_{2}\right)$, then $G_{1} \nsupseteq G\left(n_{1}\right)$ since $G \not \not H(n)$. Thus, we have

$$
\begin{align*}
\operatorname{mi}(G) & =\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \quad \text { (by Lemma 1.3) } \\
& \leqslant h\left(n_{1}\right) g\left(n_{2}\right) \quad \text { (by Theorems 2.1 and 2.2) } \tag{2.6}\\
& =\frac{8}{9} \cdot 3^{s_{1}} \cdot 4 \cdot 3^{s_{2}-1} \\
& =\frac{8}{9} g(n)=i(n) .
\end{align*}
$$

The equality in (2.7) holds if and only if $G_{1} \cong H\left(n_{1}\right)$ and $G_{2} \cong G\left(n_{2}\right)$, this means $G \cong I(n)$.
If $G_{1} \not \not G\left(n_{1}\right)$ and $G_{2} \not \nexists G\left(n_{2}\right)$, then by Lemma 1.3 and Theorem 1.4, we get

$$
\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \leqslant h\left(n_{1}\right) h\left(n_{2}\right)=\frac{8}{9} \cdot 3^{s_{1}} \cdot \frac{11}{12} \cdot 4 \cdot 3^{s_{2}-1}=\frac{8}{9} \cdot \frac{11}{12} g(n)<\frac{8}{9} g(n)=i(n) .
$$

Now, we consider the subcase $n_{1}=3 s_{1}+2$ and $n_{2}=3 s_{2}+2$.
If $G_{1} \cong G\left(n_{1}\right)$, then $G_{2} \nsupseteq G\left(n_{2}\right)$ since $G \nsucceq G(n)$. Thus, we have

$$
\begin{align*}
\operatorname{mi}(G) & =\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \quad \text { (by Lemma 1.3) } \\
& \leqslant g\left(n_{1}\right) h\left(n_{2}\right) \quad \text { (by Theorems 2.1 and 2.2) } \tag{2.7}\\
& =\frac{8}{9} \cdot 2 \cdot 3^{s_{1}} \cdot 2 \cdot 3^{s_{2}} \\
& =\frac{8}{9} g(n)=i(n) .
\end{align*}
$$

The equality in (2.7) holds if and only if $G_{1} \cong G\left(n_{1}\right)=K_{2} \uplus s_{1} K_{3}$ and $G_{2} \cong H\left(n_{2}\right)$, this means $G \cong K_{4} \uplus 3 K_{2} \uplus(s-3) K_{3}$, $2 K_{4} \uplus K_{2} \uplus(s-3) K_{3},\left(K_{3} * K_{3}\right) \uplus 2 K_{2} \uplus(s-3) K_{3}$, or $5 K_{2} \uplus(s-3) K_{3}$.

Similarly, if $G_{2} \cong G\left(n_{2}\right)$, we can also get $G \cong K_{4} \uplus 3 K_{2} \uplus(s-3) K_{3}, 2 K_{4} \uplus K_{2} \uplus(s-3) K_{3},\left(K_{3} * K_{3}\right) \uplus 2 K_{2} \uplus(s-3) K_{3}$, or $5 K_{2} \uplus(s-3) K_{3}$.

If $G_{1} \not \not G\left(n_{1}\right)$ and $G_{2} \not \not G\left(n_{2}\right)$. Then by Lemma 1.3 and Theorem 1.5 , we get

$$
\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \leqslant h\left(n_{1}\right) h\left(n_{2}\right)=\frac{8}{9} \cdot 2 \cdot 3^{s_{1}} \cdot \frac{8}{9} \cdot 2 \cdot 3^{s_{2}}=\frac{64}{81} g(n)<\frac{8}{9} g(n)=i(n) .
$$

Next, we consider that G is connected. From Claims 1 and 2 , we just need to consider the case that $\delta(G) \geqslant 2$ and $\Delta(G) \geqslant 3$. Choose a vertex $x \in V_{G}$ such that $d(x)=\Delta(G)$.

Suppose that $d(x) \geqslant 4$. For the case $G-x \cong G(n-1)=s K_{3}$, we get $G-N[x] \nsupseteq G(n-5)$ since $G \not \equiv H(n)$. If $G-N[x] \cong$ $H(n-5)$, we get $G-N[x] \cong 4 K_{2} \uplus(s-4) K_{3}$ since $G-N[x]$ is a subgraph of $G-x$. So, we can obtain that $n=13, G \cong$ $K_{1} * 4 K_{3}$. By direct computing, we have $\operatorname{mi}(G)=81<i(13)=96$. Hence, assume that $G-N[x] \not \not H(n-5)$. By induction
hypothesis, we get $\operatorname{mi}(G-N[x]) \leqslant \max \{g(n-6), i(n-5)\}=\max \left\{4 \cdot 3^{s-3}, 5 \cdot 3^{s-3}\right\}=5 \cdot 3^{s-3}$. Thus, we obtain

$$
\begin{array}{rlr}
\operatorname{mi}(G) & \leqslant \operatorname{mi}(G-x)+\operatorname{mi}(G-N[x]) \quad \text { (by Lemma 1.1(i)) } \\
& \leqslant g(n-1)+5 \cdot 3^{s-3} \quad \text { (by Theorem 1.4) } \tag{2.8}\\
& =32 \cdot 3^{s-3} & \\
& =\frac{8}{9} g(n)=i(n) . &
\end{array}
$$

The equality in (2.8) holds if and only if $G-x \cong G(n-1)=s K_{3}$ and $G-N[x] \cong I(n-5)$. But there is no such graph since $G-N[x]$ is a subgraph of $G-x$. Hence $\operatorname{mi}(G)<i(n)$.

For the case $G-x \not \approx G(n-1)$, by Lemma 1.1(i) and Theorems 1.4 and 1.5, we get $\operatorname{mi}(G) \leqslant \operatorname{mi}(G-x)+\operatorname{mi}(G-N[x]) \leqslant$ $h(n-1)+g(n-5)=8 \cdot 3^{s-2}+2 \cdot 3^{s-2}=\frac{5}{6} g(n)<\frac{8}{9} g(n)=i(n)$, which is impossible.

Now assume that $d(x)=3$. If $G-x \cong G(n-1)$, since G is connected, G is of order at most 10 , this is a contradiction. If $G-x \not \approx G(n-1)$ and $G-N[x] \not \nexists G(n-4)$. Thus, we get

$$
\begin{array}{rlr}
\operatorname{mi}(G) & \leqslant \operatorname{mi}(G-x)+\operatorname{mi}(G-N[x]) \quad \text { (by Lemma 1.1(i)) } \\
& \leqslant h(n-1)+h(n-4) \quad \text { (by Theorem 1.5) } \tag{2.9}\\
& =\frac{8}{9} \cdot 3^{s}+\frac{8}{9} 3^{s-1} \\
& =\frac{8}{9} g(n)=i(n)
\end{array}
$$

The equality in (2.9) holds if and only if $G-x \cong H(n-1)=s K_{3}$ and $G-N[x] \cong H(n-4)=(s-1) K_{3}$, this means $G \cong K_{4}$, this is a contradiction. Hence $\operatorname{mi}(G)<i(n)$.

Now, we just need to consider that for any vertex $v \in V_{G}$ such that $d(v)=3$, we can assume that $G-v \neq G(n-1)$ and $G-N[v] \cong G(n-4)$. Since G is connected, G is of order at most 7 , this is a contradiction.

Subcase 2.3. $n=3 s+2$.
Firstly we consider that G is disconnected. Obviously, we can always find two vertex-disjoint graphs G_{1} and G_{2} such that $G=G_{1} \uplus G_{2}$, where $\left|V_{G_{1}}\right|=n_{1},\left|V_{G_{2}}\right|=n_{2}$. Without loss of generality, assume that $n_{1}=3 s_{1}+1$ and $n_{2}=3 s_{2}+1$, or $n_{1}=3 s_{1}$ and $n_{2}=3 s_{2}+2$.

For the subcase $n_{1}=3 s_{1}+1$ and $n_{2}=3 s_{2}+1$. If $s_{1}=0$, then by Lemma 1.3 and Theorem 1.4, we have $\mathrm{mi}(G)=$ $\operatorname{mi}\left(G_{2}\right) \leqslant g\left(n_{2}\right)=g(n-1)=\frac{2}{3} g(n)<\frac{5}{6} g(n)=i(n)$. Hence, assume $s_{1} \geqslant 1$ in what follows. Similarly, we assume that $s_{2} \geqslant 1$.

If $G_{1} \cong G\left(n_{1}\right)$, then we get $G_{2} \not \approx G\left(n_{2}\right)$ since $G \not \approx H(n)$. By Lemma 1.3 and Theorems 1.4 and 1.5 , we get $\operatorname{mi}(G)=$ $\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \leqslant g\left(n_{1}\right) h\left(n_{2}\right)=\frac{11}{12} \cdot 4 \cdot 3^{s_{1}-1} \cdot 4 \cdot 3^{s_{2}-1}=\frac{22}{27} g(n)<\frac{5}{6} g(n)=i(n)$.

If $G_{1} \not \equiv G\left(n_{1}\right)$, then by Lemma 1.3 and Theorems 1.4 and 1.5 , we get $\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \leqslant h\left(n_{1}\right) g\left(n_{2}\right)=\frac{11}{12} \cdot 4$. $3^{s_{1}-1} \cdot 4 \cdot 3^{s_{2}-1}=\frac{22}{27} g(n)<\frac{5}{6} g(n)=i(n)$.

Now, consider the subcase $n_{1}=3 s_{1}$ and $n_{2}=3 s_{2}+2$. If $G_{1} \cong G\left(n_{1}\right)$, then we get $G_{2} \nsupseteq G\left(n_{2}\right), H\left(n_{2}\right)$ since $G \nsupseteq$ $G(n), H(n)$. Thus, we obtain that

$$
\begin{array}{rlr}
\operatorname{mi}(G) & =\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \quad \text { (by Lemma 1.3) } \\
& \leqslant g\left(n_{1}\right) i\left(n_{2}\right) & \quad \text { (by Theorems 1.4 and 1.5) } \tag{2.10}\\
& =\frac{5}{6} \cdot 3^{s_{1}} \cdot 2 \cdot 3^{s_{2}} \\
& =\frac{5}{6} g(n)=i(n) .
\end{array}
$$

The equality in (2.10) holds if and only if $G_{1} \cong G\left(n_{1}\right)=s_{1} K_{3}$ and $G_{2} \cong I\left(n_{2}\right)$, this means $G \cong I(n)$.
If $G_{2} \cong G\left(n_{2}\right)$, then we get $G_{1} \nsubseteq G\left(n_{1}\right), H\left(n_{1}\right)$ since $G \nsupseteq G(n), H(n)$. By Lemma 1.3, Theorem 1.4 and induction hypothesis, we get $\mathrm{mi}(G)=\mathrm{mi}\left(G_{1}\right) \cdot \mathrm{mi}\left(G_{2}\right) \leqslant i\left(n_{1}\right) g\left(n_{2}\right)=\frac{22}{27} \cdot 3^{s_{1}} \cdot 2 \cdot 3^{s_{2}}=\frac{22}{27} g(n)<\frac{5}{6} g(n)=i(n)$.

If $G_{1} \not \equiv G\left(n_{1}\right)$ and $G_{2} \not \nexists G\left(n_{2}\right)$, then by Lemma 1.3 and Theorem 1.5, we get $\operatorname{mi}(G)=\operatorname{mi}\left(G_{1}\right) \cdot \operatorname{mi}\left(G_{2}\right) \leqslant h\left(n_{1}\right) h\left(n_{2}\right)=$ $\frac{64}{81} \cdot 3^{s_{1}} \cdot 2 \cdot 3^{s_{2}}=\frac{64}{81} g(n)<\frac{5}{6} g(n)=i(n)$.

Next, we consider that G is connected. From Claims 1 and 2, we just need to consider the case that $\delta(G) \geqslant 2$ and $\Delta(G) \geqslant 3$. Choose a vertex $x \in V_{G}$ such that $d(x)=\Delta(G)$.

If $d(x) \geqslant 4$, then we get

$$
\begin{array}{rlr}
\operatorname{mi}(G) & \leqslant \operatorname{mi}(G-x)+\operatorname{mi}(G-N[x]) & \quad \text { (by Lemma 1.1(i)) } \\
& \leqslant g(n-1)+g(n-5) & \text { (by Theorem 1.4) } \tag{2.11}\\
& =4 \cdot 3^{s-1}+3^{s-1} & \\
& =\frac{5}{6} g(n)=i(n) . &
\end{array}
$$

The equality in (2.11) holds if and only if $G-x \cong G(n-1)=K_{4} \uplus(s-1) K_{3}$ and $G-N[x] \cong G(n-5)=(s-1) K_{3}$, which implies $G \cong K_{5} \uplus(s-1) K_{3}$ or $\left(K_{4} * K_{4}\right) \uplus(s-2) K_{3}$.

Now assume that $d(x)=3$. If $G-x \cong G(n-1)$, then it is easy to see either $G-x \cong 2 K_{2} \uplus(s-1) K_{3}$ or $K_{4} \uplus(s-1) K_{3}$. Since $\delta(G) \geqslant 2$ and $\Delta(G)=3$, it follows that $G-x \nsupseteq 2 K_{2} \uplus(s-1) K_{3}$. Since $\Delta(G)=3$ and G is connected, it follows that $G-x \nsupseteq K_{4} \uplus(s-1) K_{3}$.

If $G-x \not \approx G(n-1)$, since $\Delta(H(n-1))=4$, we get $G-x \nsupseteq H(n-1)$. By induction hypothesis, we get $\operatorname{mi}(G-x) \leqslant$ $i(n-1)$. Thus by Lemma 1.1(i) and Theorem 1.4, we get $\operatorname{mi}(G) \leqslant \operatorname{mi}(G-x)+\operatorname{mi}(G-N[x]) \leqslant i(n-1)+g(n-4)=$ $\frac{8}{9} \cdot 4 \cdot 3^{s-1}+4 \cdot 3^{s-2}=\frac{22}{27} g(n)<\frac{5}{6} g(n)=i(n)$.

By Subcases 2.1-2.3, Theorem 1.6 (ii) holds. This completes the proof.

References

[1] H.B. Hua, Y.P. Hou, On graphs with the third largest number of maximal independent sets, Inform. Process. Lett. 109 (4) (2009) 248-253.
[2] H.B. Hua, Private communications.
[3] Z. Füredi, The number of maximal independent sets in connected graphs, J. Graph Theory, 11 (1987) 463-470.
[4] Z. Jin, X. Li, Graphs with the second largest number of maximal independent sets, Discrete Math. 308 (2008) 5864-5870.
[5] M.J. Jou, G. J. Chang, Maximal independent sets in graphs with at most one cycle, Discrete Appl. Math. 79 (1997) 67-73 .
[6] J.W. Moon, L. Moser, On Cliques in graphs, Israel J. Math. 3 (1965) 23-28.
[7] M.J. Jou, J. J. Lin, Trees with the second largest number of maximal independent sets, Discrete Math. 309 (2009) 4469-4474.

[^0]: *Financially supported by the National Natural Science Foundation of China (Grant Nos. 11271149, 11371062), the Program for New Century Excellent Talents in University (Grant No. NCET-13-0817) and the Special Fund for Basic Scientific Research of Central Colleges (Grant No. CCNU13F020)).
 ${ }^{\dagger}$ E-mail: 1scmath@mail.ccnu.edu.cn (S.C. Li), zhanghuihui2011@126.com (H.H. Zhang)

