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1. Introduction

Given a graphG = (VG,EG), a setI ⊆VG is independent if there is no edge ofG between any two vertices ofI. A maximal

independent set is an independent set that is not a proper subset of any other independent set. The dual of an independent

set is a clique, in the sense that clique corresponds to an independent set in the complement graph. The set of all maximal

independent sets of a graphG is denoted by MI(G) and its cardinality by mi(G).

Given a simple graphG = (VG,EG), the cardinality ofVG is called theorder of G. G−v denotes the graph obtained from

G by deleting vertexv ∈VG (this notation is naturally extended if more than one vertexis deleted). Forv ∈VG, let NG(v) (or

N(v) for short) denote the set of all the adjacent vertices ofv in G andd(v) = |NG(v)|, the degree ofv in G. In particular,

let ∆(G) = max{d(x)|x ∈ VG} andδ (G) = min{d(x)|x ∈ VG}. For convenience, letNG[x] = {x}∪NG(x). A leaf of G is a

vertex of degree one. For any two graphsG andH, let G⊎H denote the disjoint union ofG andH, and for any nonnegative

integert, let tG stand for the disjoint union oft copies ofG. For a connected graphH with maximum degree vertexx and a

graphG = G1⊎G2⊎·· ·⊎Gk with ui being the maximum degree vertex inGi, i = 1,2, . . . ,k, define the graphH ∗G to be the

graph with vertex setVH∗G =VH ∪VG and edge setEH∗G = EH ∪EG ∪{xui : i = 1,2, . . . ,k}. Throughout the text we denote

by Pn,Cn,Kn andK1,n−1 the path, cycle, complete graph and star onn vertices, respectively.

Further on we need the following lemmas.

Lemma 1.1 ([7]). For any vertex v in a graph G, the followings hold.

(i) mi(G)6 mi(G− v)+mi(G−NG[v]);

(ii) If v is a leaf adjacent to u, then mi(G) = mi(G−NG[v])+mi(G−NG[u]).

Lemma 1.2 ([5]). If n > 6, then mi(Cn) = mi(Cn−2)+mi(Cn−3).

Lemma 1.3 ([7]). If G = G1⊎G2, then mi(G) = mi(G1) ·mi(G2).

For n > 2, letG(n),H(n) be twon-vertex graphs defined as

G(n) =











sK3, if n = 3s;

K4⊎ (s−1)K3, or 2K2⊎ (s−1)K3, if n = 3s+1;

K2⊎ sK3, if n = 3s+2
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Figure 1: GraphsI1
5, I

1
7,H1 andH2.

and

H(n) =















































2K1, if n = 2;

P3, orK2⊎K1, if n = 3;

I1
5, P4, K3 ∗K1, or K3⊎K1, if n = 4;

C5, K5, K3 ∗K2, or I1
7, if n = 5;

(K3∗K3)⊎ (s−2)K3, 3K2⊎ (s−2)K3,or K4⊎K2⊎ (s−2)K3, if n = 3s > 6;

(K3∗K4)⊎ (s−2)K3, if n = 3s+1> 7;

(K3∗K3)⊎K2⊎ (s−2)K3, 4K2⊎ (s−2)K3, 2K4⊎ (s−2)K3,or K4⊎2K2⊎ (s−2)K3, if n = 3s+2> 8,

whereI1
5 andI1

7 are depicted in Fig. 1. By Lemma 1.3, it is routine to check that

g(n) := mi(G(n)) =







3s
, if n = 3s;

4 ·3s−1, if n = 3s+1;
2 ·3s, if n = 3s+2

and h(n) := mi(H(n)) =



































1, if n = 2;
2, if n = 3;
3, if n = 4;
5, if n = 5;
11
12g(n), if n = 3s+1> 6;
8
9g(n), otherwise.

Theorem 1.4 ([6]). If G is a graph with n > 2 vertices, then mi(G)6 g(n) with the equality holding if and only if G ∼= G(n).

Theorem 1.5 ([3, 4]). If G is a graph with n vertices and G ≇ G(n), then mi(G) 6 h(n) with the equality holding if and

only if G ∼= H(n).

Further on, letI(n), I′(n) be twon-vertex graphs (n > 8) defined, respectively, as

I(n) =



















K3 ∗ (K3⊎K3)⊎ (s−3)K3,or (K4 ∗K3)⊎K2⊎ (s−3)K3, if n = 3s;

K4⊎ (K3 ∗K3)⊎ (s−3)K3, K4⊎3K2⊎ (s−3)K3, 2K4⊎K2⊎ (s−3)K3,

(K3 ∗K3)⊎2K2⊎ (s−3)K3,or 5K2⊎ (s−3)K3, if n = 3s+1;

(K4 ∗K4)⊎ (s−2)K3, (K3 ∗K2)⊎ (s−1)K3, K5⊎ (s−1)K3, C5⊎ (s−1)K3,or I1
7 ⊎ (s−1)K3, if n = 3s+2

and

I′(n) =







H1∪K2∪ (s−4)K3, if n = 3s;
H2∪ (s−4)K3, if n = 3s+1;
H1∪2K2∪ (s−4)K3, if n = 3s+2,

whereI1
7,H1 andH2 are depicted in Fig. 1.

Seti(n) = mi(I(n)) andi′(n) = mi(I′(n)). By Lemma 1.3, it is easy to obtain that

i(n) =















22
27g(n), if n = 3s;
8
9g(n), if n = 3s+1;
5
6g(n), if n = 3s+2

and i′(n) =

{

3
4g(n), if n = 3s+1;
2
3g(n), otherwise.

(1.1)

Note that Hua and Hou [1] obtained thati′(n) = 97
108g(n) if n = 3s+1 and70

81g(n) otherwise, which is not correct by direct

calculation. It is easy to see

i′(n)< i(n). (1.2)
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(♦) ([Theorem 3.1, 1]) If G is a graph with n > 3 vertices and G ≇ G(n), H(n), then

mi(G)6

{

97
108g(n), if n = 3s+1;
70
81g(n), otherwise.

(1.3)

Furthermore, each of the equalities in (1.3) holds if and only if G ∼= I′(n).

Note thatI(n) 6∼= G(n),H(n), hence in view of (1.2), Theorem 3.1 in [1] is not true. The following result characterizes
the third largest number of maximal independent sets ofn-vertex graphs (n > 3), the corresponding extremal graphs are
identified.

Theorem 1.6. Let G be an n-vertex graph with n > 3.

(i) If G 6∼= G(n),H(n) with 36 n 6 10, then G is the graph with the third largest number of maximal independent set if
and only if G ∈ I′′(n), where

I′′(n) =























































3K1, if n = 3;

2K1⊎K2, K1⊎P3, K1,3, or C4, if n = 4;

K1⊎2K2, K1⊎K4, K2⊎P3, P5, K4∗K1, I1
5 ∗K1, I2

5, I3
5, I4

5, or I5
5, if n = 5;

K4∗K2, I1
6, I2

6, I3
6, or I4

6, if n = 6;

K5⊎K2, C5⊎K2, (K3 ∗K2)⊎K2, I1
7 ⊎K2, I2

7, I3
7, I4

7, or I5
7, if n = 7;

K4∗K4, (K3∗K2)⊎K3, K5⊎K3, C5⊎K3,or I1
7 ⊎K3, if n = 8;

K3∗ (K3⊎K3),or (K4 ∗K3)⊎K2, if n = 9;

K4⊎ (K3 ∗K3), K4⊎3K2, 2K4⊎K2,(K3 ∗K3)⊎2K2,or 5K2, if n = 10.

where I2
5, I3

5, I4
5, I5

5, I1
6, I2

6, I3
6, I4

6, I2
7, I3

7, I4
7 and I5

7 are depicted in Fig. 2.
(ii) If G 6∼= G(n),H(n) with n > 8, then mi(G)6 i(n) with equality if and only if G ∼= I(n).
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Figure 2: GraphsI2
5, I3

5, I4
5, I5

5, I1
6, I2

6, I3
6, I4

6, I
2
7, I3

7, I4
7 andI5

7.

2. Proof of Theorem 1.6

We show Theorem 1.6 according to the following two possible cases.

Case 1. 36 n 6 10.

It is straightforward to check thatI′′(n)≇ G(n), H(n) and mi(I′′(n)) = h(n)−1 if n = 3,4,5,6,7,8,10 and mi(I′′(9)) =
h(9)−2. SupposeG(≇ G(n), H(n)) is a graph of ordern, 36 n 6 10, such that mi(G) is as large as possible. By Theorem
1.5, we have thath(n)−1= mi(I′′(n)) 6 mi(G)6 h(n)−1 for n = 3,4,5,6,7,8,10. Hence, mi(G) = h(n)−1. Forn = 9,
by Theorem 1.5, we have thath(9)−2= mi(I′′(9))6 mi(G)6 h(9)−1, thus mi(G) = h(9)−2, orh(9)−1. If n = 3, note
thatg(3) = 3, hence we get just one extremal graph 3K1. In the following, assumen > 4 and prove our results according to
the following four subcases.
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Subcase 1.1. δ (G) = 0.

In this subcase, we take a vertexx ∈VG such thatd(x) = 0. Thus, we get mi(G) = mi(G− x).
If n = 4, note thatg(4) = 4, thus mi(G) = mi(G− x) = 2 and|VG−x|= 3. Hence, we obtain thatG− x ∼= P3 or K2⊎K1,

i.e.,G ∼= P3⊎K1 or K2⊎2K1.
If n = 5, note thatg(5) = 6, thus mi(G) = mi(G− x) = 4 and|VG−x|= 4. Hence, by Theorem 1.4, we haveG− x ∼= K4

or 2K2, which is equivalent toG ∼= K4⊎K1 or 2K2⊎K1.
If 6 6 n 6 7, then, on the one hand, mi(G) = mi(G − x) = h(n)− 1; on the other hand, by Theorem 1.4, we get

mi(G−x)6 g(n−1). Thus, we getg(n)−26 g(n−1). But, in fact 6= g(5)< h(6)−1= 7 and 9= g(6)< h(7)−1= 10,
a contradiction.

If n = 8, then by Theorem 1.4, mi(G) = mi(G− x) and mi(G− x)6 g(7) = 12. Hence, mi(G) 6 12< 15= h(8)−1,
this is a contradiction. Similarly, we can also get a contradiction, respectively, forn = 9,10, which is omitted here.

Subcase 1.2. δ (G) = 1.

In this subcase, we take a vertexx ∈ VG such thatd(x) = 1 andxy ∈ EG. Let G1 = G− x− y. Note thatG−N[y] is a
subgraph ofG1, then 16 mi(G−N[y])6 mi(G1).

First considerG1
∼= G(n− 2). If n = 3s(s = 2,3), then we obtain thatG1

∼= K4 ⊎ (s − 2)K3 or 2K2 ⊎ (s − 2)K3. If
G − N[y] ∼= K4 ⊎ (s − 2)K3 or 2K2 ⊎ (s − 2)K3, then G ∼= H(n), a contradiction. SoG −N[y] is a proper subgraph of
K4⊎ (s−2)K3 , i.e. G−N[y] is a subgraph(s−1)K3, K4⊎K2⊎ (s−3)K3, or K1⊎K2⊎ (s−2)K3. By a simple calculation,
we have mi(G−N[y])6max{3s−1, 8·3s−3, 2·3s−3}= 3s−1. By Lemma 1.1(ii), we have mi(G) =mi(G1)+mi(G−N[y])6
4·3s−2+3s−1= 7·3s−2, the equality holds if and only ifG−N[y]∼=(s−3)K3. Note that mi(G) = 7 forn= 6 and mi(G)>21
for n = 9. In conclusion,n = 6, G ∼= K4 ∗K2.

If n = 3s+ 1(s = 1,2,3), then we obtain thatG1
∼= K2 ⊎ (s− 1)K3. If G−N[y] ∼= K2 ⊎ (s− 1)K3, thenG ∼= G(n), a

contradiction. SoG−N[y] is a proper subgraph ofK2⊎ (s−1)K3 , i.e. G−N[y] is a subgraphK1⊎ (s−1)K3 or 2K2⊎ (s−
2)K3. By a simple calculation, we have 16 mi(G−N[y])6 max{3s−1, 4 ·3s−2}= 4 ·3s−2. By Lemma 1.1(ii), we have

36 2 ·3s−1+16 mi(G) = mi(G1)+mi(G−N[y])6 2 ·3s−1+4 ·3s−2 = 10·3s−2
,

the equality holds if and only ifG−N[y]∼= 2K2⊎(s−2)K3. Note that mi(G) = h(n)−1 holds forn= 4,7,10. In conclusion,
n = 7 andG ∼= (K3 ∗K2)⊎K2.

If n = 3s+2(s = 1,2), then we obtain thatG1
∼= sK3. There are two such graphsK4∗K1, I1

5 ∗K1 for n = 5. By a simple
calculation, we getK4 ∗K1 andI1

5 ∗K1 are extremal graphs. In the following, we considern = 8. If G−N[y] ∼= sK3, then
G ∼= G(n), a contradiction. Hence,G−N[y] is a proper subgraph ofsK3 , i.e. G−N[y] is a subgraphK1 ⊎ (s−1)K3 or
K2⊎ (s−1)K3. By a simple calculation, we have 16 mi(G−N[y])6 max{3s−1, 2·3s−1}= 2·3s−1. By Lemma 1.1(ii), we
have mi(G) = mi(G1)+mi(G−N[y])6 3s +2·3s−1 = 5·3s−1, the equality holds if and only ifG−N[y]∼= K2⊎ (s−1)K3.
Note that mi(G) = 15 forn = 8. In conclusion,n = 8 andG ∼= (K3 ∗K2)⊎K3.

Next considerG1
∼= H(n− 2). If n = 4, it is easy to get thatG1

∼= 2K1. As δ (G) = 1, we obtain thatG ∼= K1,3. For
n > 5, note thatG−N[y] is a subgraph ofG1, we have mi(G−N[y])6 mi(G1) = h(n−2). By Lemma 1.1(ii) and Theorem
1.5, we have mi(G) = mi(G1)+mi(G−N[y]) 6 2h(n− 2), the equality holds if and only ifG−N[y] ∼= H(n− 2). Note
that mi(G) = 2 for n = 4 andh(4−2) = h(4−4) = 1, we get extremal graphK1,3. Note that mi(G) = h(n)−1 holds for
n = 5,6,7,8,10 and mi(G) > h(n)−2 holds forn = 9. In conclusion, we also get extremal graphsK2⊎K3, K5⊎K2, C5⊎
K2, (K3 ∗K2)⊎K2, I1

7 ⊎K2, (K4 ∗K3)⊎K2, K4⊎3K2, 2K4⊎K2,(K3 ∗K3)⊎2K2, 5K2.
Now considerG1 ≇ G(n−2), H(n−2). By Theorem 1.5, we have mi(G1) = 1 for n = 4 and mi(G1) 6 h(n−2)−1

for 56 n 6 10. By Lemma 1.1(ii) and Theorem 1.5, we have mi(G) = mi(G1)+mi(G−N[y])6 2h(n−2)−2< h(n)−1
for n = 5, 6, 7, 8, 10 and mi(G) = mi(G1)+mi(G−N[y]) 6 2h(7)−2< h(9)−2 for n = 9. Thus there does not exist
extremal graph in this subcase.

Subcase 1.3. δ (G) = 2 and∆(G) = 2.

In this subcase,G ∼= Cn. By direct calculation, mi(C4) = 2, mi(C5) = 5 > 4, mi(C6) = 5 < 7, mi(C7) = 7 < 10,
mi(C8) = 10< 15, mi(C9) = 12< 22, mi(C10) = 17< 32. Hence, we get the extremal graphsC4 andC5⊎K3.

Subcase 1.4. δ (G)> 2 and∆(G)> 3.

In this subcase, we take a vertexx ∈ VG such thatd(x) = ∆(G) > 3. LetG2 = G−N[x]. If n = 4, it is routine to check
thatG ∼= I1

5 sinceG ≇ K4, i.e., mi(G) = 3, a contradiction. In the following, assume thatn > 5.
First consider∆(G) = 3 according to the following subcases.
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• n=5. In this subcase we haveg(5)= 6 andG2 =K1, hence 36mi(G−x)6 g(n−1)=4, i.e.,G−x∼=K4, 2K2, P4, I1
5, K3⊎

K1 or K3∗K1. Thus, we getG ∼= I2
5.

• n= 6. In this subcase, we haveG2
∼= 2K1 orK2. If G2

∼=2K1, then 6=7−16mi(G−x)6 g(n−1)= 6, i.e., mi(G−x) =6,
i.e.,G−x ∼= K3⊎K2. But there is no such graph. IfG2

∼= K2, then 5= 7−26 mi(G−x)6 g(n−1) = 6, i.e., mi(G−x) = 5
or 6, which is equivalent toG− x ∼= K3⊎K2, C5, K5, K3 ∗K2, orI1

7. Thus, we getG ∼= I1
6 or I2

6.

• n = 7. In this subcase, we haveG2
∼= K3, P3, K2 ⊎K1 or 3K1. If G2

∼= K3, note that mi(G) = 10 andG ≇ G(n), H(n),
hence there is no such graph. IfG2

∼= P3 or K2 ⊎K1, then mi(G2) = 2 and 8= 10− 26 mi(G− x) 6 g(n− 1) = 9, i.e.,
mi(G− x) = 8 or 9, which is equivalent toG− x ∼= 2K3, K3 ∗K3, 3K2 or K4 ⊎K2. Thus, we get the only graphG, but
mi(G) = 9< 10, this is a contradiction. IfG2

∼= 3K1, then 9= 10−16 mi(G− x)6 g(n−1) = 9, i.e., mi(G− x) = 9, i.e.,
G− x ∼= 2K3. But such graph does not exist.

• n = 8. Note thatG− x ≇ H(7) = K4 ∗K3 since∆(G) = 3. If G− x ∼= G(7) = K4⊎K3, or 2K2⊎K3, as∆(G) = 3, we get
G ∼= 2K4 = H(8), which is a contradiction. IfG− x ≇ G(7), H(7), by Theorem 1.5, we get mi(G− x) 6 h(7)−1= 10.
Note that|VG2| = 8− 4 = 4, by Theorem 1.4, we have mi(G2) 6 g(4) = 4. By Lemma 1.1(i), we obtain that mi(G) 6
mi(G− x)+mi(G2)6 10+4= 14< 15, a contradiction.

• n = 9. If G− x ∼= G(8) = K2 ⊎ 2K3, observe that∆(G) = 3, then we getG ∼= (K3 ∗K3)⊎K3 = H(9), a contradiction.
If G− x ∼= H(8), note that∆(G) = 3, we getG− x ∼= (K3 ∗K3)⊎K2, i.e., G ∼= W0; see Fig. 3. By direct calculation,
mi(G) = 21< 22= h(9)−2, a contradiction. IfG− x ≇ G(8), H(8), by Theorem 1.5, we get mi(G− x)6 h(8)−1= 15.
Note that|VG2| = 9− 4 = 5, by Theorem 1.4, we have mi(G2) 6 g(5) = 6. By Lemma 1.1(i), we obtain that mi(G) 6
mi(G− x)+mi(G2)6 15+6= 21< 22= h(9)−2, a contradiction.

     W1W0 W2 W3 W4 W5

Figure 3: GraphsW0,W1,W2,W3,W4 andW5.

• n = 10. If G− x ∼= G(9) = 3K3, then it is routine to check thatG ∼= K1 ∗3K3 or W1⊎K3 directly, whereW1 is depicted
in Fig. 3. By elementary calculation, mi(G) = 27< 32, a contradiction. IfG− x ∼= H(9), observe that∆(G) = 3, we get
G−x ∼= (K3∗K3)⊎K3 or K4⊎K3⊎K2, which impliesG must be isomorphic toW2,W3,W4 (see Fig. 3) or(K3∗K3)⊎K4. By
direct calculation, mi(W2) = 26< 32, mi(W3) = mi(W4) = 24< 32, mi((K3 ∗K3)⊎K4) = 32. Thus, we get the extremal
graph(K3 ∗K3)⊎K4, as desired. IfG− x ≇ G(9), H(9), by Theorem 1.5, we get mi(G− x) 6 h(9)− 1 = 23. In this
subcase, note that|VG−N[x]| = 6, hence ifG−N[x] ≇ G(6) for some vertexx with d(x) = 3, then by Theorem 1.4, we have
mi(G−N[x])6 g(6)−1= 8. Thus, by Lemma 1.1(i), we get mi(G)6mi(G−x)+mi(G2)6 23+8= 31< 32= h(10)−1,
a contradiction. If, for any vertexx of degree 3, satisfyingG−N[x]∼=G(6), then there is only one such graph(K1∗2K3)⊎K3.
By direct computing, mi((K1 ∗2K3)⊎K3) = 27< 32, a contradiction.

Next consider∆(G) = 4.
If n = 5, then we getG is a connected graph. By elementary calculation, we obtain extremal graphsI3

5, I4
5, orI5

5, as
desired.

If n = 6, then we haveG2 = K1 and 6= 7−16 mi(G− x)6 g(n−1) = 6, i.e., mi(G− x) = 6, i.e.,G− x ∼= K3⊎K2.
Thus, we get the extremal graphI3

6.
If n = 7, we haveG2

∼= 2K1 or K2. If G2
∼= 2K1, then 9= 10−16 mi(G− x)6 g(n−1) = 9. Hence, mi(G− x) = 9,

i.e., G− x ∼= 2K3. Thus, we get the only graphW5 (see Fig. 3) with mi(W5) = 9< 10, a contradiction. IfG2
∼= K2, then

8 = 10−26 mi(G− x) 6 g(n−1) = 9, which implies mi(G− x) = 8 or 9, i.e.,G− x ∼= 2K3, K3 ∗K3, K4 ⊎K2, or 3K2.
Thus, we get the extremal graphsI4

7 andI5
7.

If n = 8, note that|VG2| = 3, by Theorem 1.4, we have mi(G2) 6 g(3) = 3. If G− x ∼= G(7) = K4 ⊎K3, or 2K2⊎K3,
then mi(G− x) = 12. Thus, by Lemma 1.1(i), mi(G) 6 mi(G− x)+mi(G2) 6 12+3= 15, the equality holds if and only
if G2

∼= K3, i.e.,G ∼= K4 ∗K4, K5⊎K3 or I1
7 ⊎K3. If G− x ≇ G(7), then by Theorem 1.5, we have mi(G− x) 6 h(7) = 11.

Thus, by Lemma 1.1(i), mi(G)6 mi(G− x)+mi(G2)6 11+3= 14< 15, a contradiction.
Similarly, we can show, when∆(G) = 4, G ∼= K3 ∗2K3 if n = 9; whereasG does not exist ifn = 10, which is omitted

here.
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Now consider∆(G)> 5. In this case,n > 6 and|VG2|6 n−6. At first we considern = 6, 7 with ∆(G) = 5. If n = 6, we
get 6= 7−16 mi(G− x)6 g(n−1) = 6, i.e., mi(G− x) = 6, i.e.,G− x ∼= K3⊎K2, which impliesG ∼= I4

6. If n = 7, we get
mi(G2) = 1 and 9= 10−16 mi(G− x)6 g(n−1) = 9, i.e., mi(G− x) = 9, i.e.,G− x ∼= 2K3, which impliesG ∼= I3

7.
If ∆(G) = 6, then we haven = 7. By Theorem 1.4, 9= 10−16 mi(G−x)6 g(n−1) = 9, hence mi(G−x) = 9, which

impliesG− x ∼= 2K3. Thus, we get extremal graphI2
7.

Now we considern = |VG|= 8, 9, 10 for∆(G)≥ 5.
If n = 8, then by Lemma 1.1(i) and Theorem 1.4, we have mi(G) 6 mi(G− x)+mi(G2) 6 g(7)+ g(2) = 14< 15=

h(8)−1, a contradiction. Similarly, we can also get a contradiction, respectively, forn = 9,10, which is omitted here.
This completes the proof of Theorem 1.6(i).

Case 2. n > 8.

In this case, it is easy to see thatI(n) 6∼= G(n),H(n) and mi(I(n)) = i(n) for n > 8. We prove it by induction onn. For
n = 8,9,10, in view of (i), our result holds. In what follows, we considern > 11 and assume our result holds forn−1. We
proceed to show our result holds forn. We first show the following two claims.

Claim 1. If G is a connected graph with δ (G) = 1, then mi(G)< i(n).

Proof. Note thatδ (G) = 1, hence we take a leaf, sayx, of G. Let y ∈ NG(x), thend(y) > 2. Thus, by Lemma 1.1(ii) and
Theorem 1.4, we have mi(G) = mi(G−N[x])+mi(G−N[y])6 g(n−2)+ g(n−3).

• n = 3s. In this case,g(n−2) = 4 ·3s−2, g(n−3) = 3s−1. Then we have mi(G) 6 g(n−2)+ g(n−3) = 4 ·3s−2+3s−1 =
7 ·3s−2 = 7

9g(n)< 22
27g(n) = i(n).

• n = 3s+1. In this case,g(n−2) = 2 ·3s−1, g(n−3) = 4 ·3s−2. Then we have mi(G) 6 g(n−2)+ g(n−3) = 2 ·3s−1+
4 ·3s−2 = 10·3s−2 = 5

6g(n)< 8
9g(n) = i(n).

• n = 3s+ 2. In this case,g(n− 2) = 3s, g(n− 3) = 2 · 3s−1. Then we have mi(G) = mi(G−N[x]) +mi(G−N[y]) 6
g(n− 2)+ g(n− 3) = 3s + 2 · 3s−1 = 5 · 3s−1 = 5

6g(n) = i(n). Thus mi(G) = 5
6g(n) if and only if G−N[x] ∼= G(n− 2)

andG−N[y]∼= G(n−3), which impliesG ∼= K3 ∗K2 andn = 5. Obviously, this is a contradiction forn > 11. Therefore,
mi(G)< 5

6g(n) if n > 11.
This completes the proof of Claim 1.

Claim 2. If G ∼=Cn with n > 8, then mi(G)< i(n).

Proof. Forn > 8, we have

mi(Cn) = mi(Cn−2)+mi(Cn−3)6















19
27g(n), if n = 3s;
3
4g(n), if n = 3s+1;
20
27g(n), if n = 3s+2.

The last inequality follows from [4]. Hence, in view of the expression ofi(n) in (1.1) we have mi(Cn)< i(n). This completes
the proof of Claim 2.

Now we come back to the proof of Theorem 1.6(ii). It suffices toshow the following three subcases.

Subcase 2.1. n = 3s.

Firstly, we consider thatG is disconnected. Obviously, we can always find two vertex-disjoint graphsG1 andG2 such
thatG=G1⊎G2, where|VG1|= n1, |VG2|= n2. Without loss of generality, assume thatn1 =3s1 andn2 = 3s2, orn1= 3s1+1
andn2 = 3s2+2.

For the subcasen1 = 3s1 andn2 = 3s2. If G1
∼= G(n1), thenG2 ≇ G(n2), H(n2) sinceG ≇ G(n), H(n). Thus, we obtain

mi(G) = mi(G1) ·mi(G2) (by Lemma 1.3)

6 g(n1)i(n2) (by Theorem 1.4 and induction hypothesis) (2.1)

=
22
27

·3s1 ·3s2

=
22
27

g(n) = i(n).
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The equality in (2.1) holds if and only ifG1
∼= G(n1) = s1K3 andG2

∼= I(n2), which impliesG ∼= I(n), as desired.
Similarly, if G2

∼= G(n2), we can also getG ∼= I(n), as desired. So, we may assume thatG1 ≇ G(n1) andG2 ≇ G(n2).
Then, by Lemma 1.3 and Theorem 1.5, we have

mi(G) = mi(G1) ·mi(G2)6 h(n1)h(n2) =
64
81

·3s1 ·3s2 =
64
81

g(n)<
22
27

g(n) = i(n).

Now we consider for casen1 = 3s1+1 andn2 = 3s2+2. If s1 = 0, then mi(G) = mi(G2)6 g(n2) =
2
3g(n)< 22

27g(n) =
i(n). So, we assume thats1 > 1 in the following.

If G1
∼= G(n1), thenG2 ≇ G(n2) sinceG ≇ H(n). Thus, we obtain that

mi(G) = mi(G1) ·mi(G2)6 g(n1)h(n2) =
8
9
·4 ·3s1−1 ·2 ·3s2 =

64
81

g(n)<
22
27

g(n) = i(n).

If G2
∼= G(n2), thenG1 ≇ G(n1) sinceG ≇ H(n). Thus, we have

mi(G) = mi(G1) ·mi(G2) (by Lemma 1.3)

6 h(n1)g(n2) (by Theorems 1.4 and 1.5) (2.2)

=
11
12

4 ·3s1−1 ·2 ·3s2

=
22
27

g(n) = i(n).

The equality in (2.2) holds if and only ifG1
∼= H(n1) = (K3 ∗K4)⊎ (s1−1)K3 andG2

∼= G(n2) = K2⊎ s2K3, which implies
thatG ∼= (K3∗K4)⊎K2⊎ (s−3)K3, as desired.

If G1 ≇ G(n1) andG2 ≇ G(n2), then by Lemma 1.3 and Theorem 1.4, we get

mi(G) = mi(G1) ·mi(G2)6 h(n1)h(n2) =
11
12

g(n1) ·
8
9

g(n2) =
22
27

·
8
9

g(n)<
22
27

g(n) = i(n).

Secondly, we consider thatG is connected. From Claims 1 and 2, it suffices to consider the case thatδ (G) > 2 and
∆(G)> 3. Choose a vertexx ∈VG such thatd(x) = ∆(G).

If d(x)> 4, then we get

mi(G) 6 mi(G− x)+mi(G−N[x]) (by Lemma 1.1(i))

6 g(n−1)+ g(n−5) (by Theorem 1.4) (2.3)

= 2 ·3s−1+4 ·3s−3

=
22
27

g(n) = i(n).

The equality in (2.3) holds if and only ifG− x ∼= G(n−1) = K2⊎ (s−1)K3 andG−N[x]∼= G(n−5) = K4⊎ (s−3)K3. But
there is no such graph sinceG−N[x] is a subgraph ofG− x, hence mi(G)< i(n).

Now assume thatd(x) = 3. If G−x ∼= G(n−1), then we haveG ∼= (K3∗K3)⊎ (s−2)K3, i.e.,G ∼= H(n), a contradiction.
If G− x ≇ G(n−1), then by Lemma 1.1 and Theorems 1.4 and 1.5, we get

mi(G) 6 mi(G− x)+mi(G−N[x]) (by Lemma 1.1(i))

6 h(n−1)+ g(n−4) (by Theorems 1.4 and 1.5) (2.4)

= 16·3s−3+2 ·3s−2

=
22
27

g(n) = i(n).

The equality in (2.4) holds if and only ifG−x∼=H(n−1)= (K3∗K3)⊎K2⊎(s−3)K3, 4K2⊎(s−3)K3, K4⊎2K2⊎(s−3)K3,
or 2K4⊎ (s−3)K3 andG−N[x] ∼= G(n−4) = K2⊎ (s−2)K3. But there is no such graph sinceδ (G) > 2 andd(x) = 3,
hence mi(G)< i(n).

Subcase 2.2. n = 3s+1.
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Firstly, we consider thatG is disconnected. Obviously, we can always find two vertex-disjoint graphsG1 andG2 such
that G = G1 ⊎G2, where|VG1| = n1, |VG2| = n2. Without loss of generality, assume thatn1 = 3s1 andn2 = 3s2 + 1, or
n1 = 3s1+2 andn2 = 3s2+2.

For the subcasen1 = 3s1 andn2 = 3s2+1. If s2 = 0, then mi(G) = mi(G1) 6 g(n1) =
3
4g(n) < 8

9g(n) = i(n). So, we
assume thats2 > 1 in the following.

If G1
∼= G(n1), thenG2 ≇ G(n2), H(n2) sinceG ≇ G(n), H(n). Thus, we obtain that

mi(G) = mi(G1) ·mi(G2) (by Lemma 1.3)

6 g(n1)i(n2) (by Theorem 1.4 and induction hypothesis) (2.5)

=
8
9
·3s1 ·4 ·3s2−1

=
8
9

g(n) = i(n).

The equality in (2.5) holds if and only ifG1
∼= G(n1) = s1K3 andG2

∼= I(n2), this meansG ∼= I(n).
If G2

∼= G(n2), thenG1 ≇ G(n1) sinceG ≇ H(n). Thus, we have

mi(G) = mi(G1) ·mi(G2) (by Lemma 1.3)

6 h(n1)g(n2) (by Theorems 2.1 and 2.2) (2.6)

=
8
9
·3s1 ·4 ·3s2−1

=
8
9

g(n) = i(n).

The equality in (2.7) holds if and only ifG1
∼= H(n1) andG2

∼= G(n2), this meansG ∼= I(n).
If G1 ≇ G(n1) andG2 ≇ G(n2), then by Lemma 1.3 and Theorem 1.4, we get

mi(G) = mi(G1) ·mi(G2)6 h(n1)h(n2) =
8
9
·3s1 ·

11
12

·4 ·3s2−1 =
8
9
·
11
12

g(n)<
8
9

g(n) = i(n).

Now, we consider the subcasen1 = 3s1+2 andn2 = 3s2+2.
If G1

∼= G(n1), thenG2 ≇ G(n2) sinceG ≇ G(n). Thus, we have

mi(G) = mi(G1) ·mi(G2) (by Lemma 1.3)

6 g(n1)h(n2) (by Theorems 2.1 and 2.2) (2.7)

=
8
9
·2 ·3s1 ·2 ·3s2

=
8
9

g(n) = i(n).

The equality in (2.7) holds if and only ifG1
∼= G(n1) = K2⊎ s1K3 andG2

∼= H(n2), this meansG ∼= K4⊎3K2⊎ (s−3)K3,
2K4⊎K2⊎ (s−3)K3, (K3 ∗K3)⊎2K2⊎ (s−3)K3, or 5K2⊎ (s−3)K3.

Similarly, if G2
∼= G(n2), we can also getG ∼= K4⊎3K2⊎ (s−3)K3, 2K4⊎K2⊎ (s−3)K3, (K3 ∗K3)⊎2K2⊎ (s−3)K3,

or 5K2⊎ (s−3)K3.
If G1 ≇ G(n1) andG2 ≇ G(n2). Then by Lemma 1.3 and Theorem 1.5, we get

mi(G) = mi(G1) ·mi(G2)6 h(n1)h(n2) =
8
9
·2 ·3s1 ·

8
9
·2 ·3s2 =

64
81

g(n)<
8
9

g(n) = i(n).

Next, we consider thatG is connected. From Claims 1 and 2, we just need to consider thecase thatδ (G) > 2 and
∆(G)> 3. Choose a vertexx ∈VG such thatd(x) = ∆(G).

Suppose thatd(x)> 4. For the caseG−x ∼= G(n−1) = sK3, we getG−N[x]≇ G(n−5) sinceG ≇ H(n). If G−N[x]∼=
H(n−5), we getG−N[x] ∼= 4K2⊎ (s−4)K3 sinceG−N[x] is a subgraph ofG− x. So, we can obtain thatn = 13, G ∼=
K1 ∗4K3. By direct computing, we have mi(G) = 81< i(13) = 96. Hence, assume thatG−N[x]≇ H(n−5). By induction
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hypothesis, we get mi(G−N[x])6 max{g(n−6), i(n−5)}= max{4 ·3s−3
, 5 ·3s−3}= 5 ·3s−3. Thus, we obtain

mi(G) 6 mi(G− x)+mi(G−N[x]) (by Lemma 1.1(i))

6 g(n−1)+5 ·3s−3 (by Theorem 1.4) (2.8)

= 32·3s−3

=
8
9

g(n) = i(n).

The equality in (2.8) holds if and only ifG− x ∼= G(n−1) = sK3 andG−N[x]∼= I(n−5). But there is no such graph since
G−N[x] is a subgraph ofG− x. Hence mi(G)< i(n).

For the caseG−x ≇G(n−1), by Lemma 1.1(i) and Theorems 1.4 and 1.5, we get mi(G)6 mi(G−x)+mi(G−N[x])6
h(n−1)+ g(n−5)= 8 ·3s−2+2 ·3s−2 = 5

6g(n)< 8
9g(n) = i(n), which is impossible.

Now assume thatd(x) = 3. If G− x ∼= G(n−1), sinceG is connected,G is of order at most 10, this is a contradiction.
If G− x ≇ G(n−1) andG−N[x]≇ G(n−4). Thus, we get

mi(G) 6 mi(G− x)+mi(G−N[x]) (by Lemma 1.1(i))

6 h(n−1)+ h(n−4) (by Theorem 1.5) (2.9)

=
8
9
·3s+

8
9

3s−1

=
8
9

g(n) = i(n).

The equality in (2.9) holds if and only ifG− x ∼= H(n−1) = sK3 andG−N[x]∼= H(n−4) = (s−1)K3, this meansG ∼= K4,
this is a contradiction. Hence mi(G)< i(n).

Now, we just need to consider that for any vertexv ∈ VG such thatd(v) = 3, we can assume thatG− v ≇ G(n−1) and
G−N[v]∼= G(n−4). SinceG is connected,G is of order at most 7, this is a contradiction.

Subcase 2.3. n = 3s+2.

Firstly we consider thatG is disconnected. Obviously, we can always find two vertex-disjoint graphsG1 andG2 such
thatG = G1⊎G2, where|VG1|= n1, |VG2|= n2. Without loss of generality, assume thatn1 = 3s1+1 andn2 = 3s2+1, or
n1 = 3s1 andn2 = 3s2+2.

For the subcasen1 = 3s1 + 1 andn2 = 3s2 + 1. If s1 = 0, then by Lemma 1.3 and Theorem 1.4, we have mi(G) =
mi(G2) 6 g(n2) = g(n− 1) = 2

3g(n) < 5
6g(n) = i(n). Hence, assumes1 > 1 in what follows. Similarly, we assume that

s2 > 1.
If G1

∼= G(n1), then we getG2 ≇ G(n2) sinceG ≇ H(n). By Lemma 1.3 and Theorems 1.4 and 1.5, we get mi(G) =

mi(G1) ·mi(G2)6 g(n1)h(n2) =
11
12 ·4 ·3

s1−1 ·4 ·3s2−1 = 22
27g(n)< 5

6g(n) = i(n).
If G1 ≇ G(n1), then by Lemma 1.3 and Theorems 1.4 and 1.5, we get mi(G) = mi(G1) ·mi(G2)6 h(n1)g(n2) =

11
12 ·4 ·

3s1−1 ·4 ·3s2−1 = 22
27g(n)< 5

6g(n) = i(n).
Now, consider the subcasen1 = 3s1 andn2 = 3s2 + 2. If G1

∼= G(n1), then we getG2 ≇ G(n2), H(n2) sinceG ≇

G(n), H(n). Thus, we obtain that

mi(G) = mi(G1) ·mi(G2) (by Lemma 1.3)

6 g(n1)i(n2) (by Theorems 1.4 and 1.5) (2.10)

=
5
6
·3s1 ·2 ·3s2

=
5
6

g(n) = i(n).

The equality in (2.10) holds if and only ifG1
∼= G(n1) = s1K3 andG2

∼= I(n2), this meansG ∼= I(n).
If G2

∼= G(n2), then we getG1 ≇ G(n1), H(n1) sinceG ≇ G(n), H(n). By Lemma 1.3, Theorem 1.4 and induction
hypothesis, we get mi(G) = mi(G1) ·mi(G2)6 i(n1)g(n2) =

22
27 ·3

s1 ·2 ·3s2 = 22
27g(n)< 5

6g(n) = i(n).
If G1 ≇ G(n1) andG2 ≇ G(n2), then by Lemma 1.3 and Theorem 1.5, we get mi(G) = mi(G1) ·mi(G2)6 h(n1)h(n2) =

64
81 ·3

s1 ·2 ·3s2 = 64
81g(n)< 5

6g(n) = i(n).
Next, we consider thatG is connected. From Claims 1 and 2, we just need to consider thecase thatδ (G) > 2 and

∆(G)> 3. Choose a vertexx ∈VG such thatd(x) = ∆(G).
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If d(x)> 4, then we get

mi(G) 6 mi(G− x)+mi(G−N[x]) (by Lemma 1.1(i))

6 g(n−1)+ g(n−5) (by Theorem 1.4) (2.11)

= 4 ·3s−1+3s−1

=
5
6

g(n) = i(n).

The equality in (2.11) holds if and only ifG− x ∼= G(n−1) = K4⊎ (s−1)K3 andG−N[x]∼= G(n−5) = (s−1)K3, which
impliesG ∼= K5⊎ (s−1)K3 or (K4 ∗K4)⊎ (s−2)K3.

Now assume thatd(x) = 3. If G− x ∼= G(n−1), then it is easy to see eitherG− x ∼= 2K2⊎ (s−1)K3 or K4⊎ (s−1)K3.
Sinceδ (G) > 2 and∆(G) = 3, it follows thatG− x ≇ 2K2⊎ (s−1)K3. Since∆(G) = 3 andG is connected, it follows that
G− x ≇ K4⊎ (s−1)K3.

If G− x ≇ G(n−1), since∆(H(n−1)) = 4, we getG− x ≇ H(n−1). By induction hypothesis, we get mi(G− x) 6
i(n− 1). Thus by Lemma 1.1(i) and Theorem 1.4, we get mi(G) 6 mi(G− x) +mi(G−N[x]) 6 i(n− 1)+ g(n− 4) =
8
9 ·4 ·3

s−1+4 ·3s−2 = 22
27g(n)< 5

6g(n) = i(n).
By Subcases 2.1-2.3, Theorem 1.6 (ii) holds. This completesthe proof.
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