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Abstract

In this paper, we consider various types of domination vertex critical graphs, including total domination vertex
critical graphs and independent domination vertex critical graphs and connected domination vertex critical graphs.
We provide upper bounds on the diameter of them, two of which are sharp.
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1 Introduction

All graphs considered here are finite, undirected and simple. Let G be a graph with vertex set V and edge set E.
The neighborhood of a vertex v in a graph G, denoted by NG(v), is the set of all the vertices adjacent to the vertex v,
i.e., NG(v) = {u ∈ V(G) | uv ∈ E(G)}, and the closed neighborhood of a vertex v in G, denoted by NG[v], is defined
by NG[v] = NG(v) ∪ {v}. A vertex of degree one is called a leaf vertex, the edge connected to that vertex is called
a pendant edge and the only neighbor of a leaf vertex is called a support vertex. We denote the distance between
u and v in G by distG(u, v), and denote the diameter of G by diam(G). The degree of a vertex v in G, denoted by
deg(v), is the number of incident edges of G. A vertex of degree k is called a k-vertex, and a vertex of degree at
most or at least k is call a k−- or k+-vertex, respectively.

A vertex subset S ⊆ V is called a dominating set of a graph G if every vertex in V is an element of S or is
adjacent to a vertex in S . The domination number of a graph G, denoted by γ(G), is the minimum cardinality of a
dominating set of G. A graph is domination vertex critical if the removal of any vertex decreases its domination
number. If G is domination vertex critical and γ(G) = k, we say that G is a k-γ-vertex-critical graph.

A vertex subset S ⊆ V is a total dominating set of a graph G if every vertex in V is adjacent to a vertex in
S . Every graph without isolated vertices has a total dominating set, since V is such a set. The total domination
number of a graph G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. A graph is total
domination vertex critical if the removal of any vertex that is not adjacent to a vertex of degree one decreases its
total domination number. If G is total domination vertex critical and γt(G) = k, we say that G is a k-γt-vertex-
critical graph.

A vertex subset S ⊆ V is an independent dominating set of a graph G if it is a dominating set and it is also an
independent set in G. Equivalently, an independent dominating set is a maximal independent set. The independent
domination number of a graph G, denoted by i(G), is the minimum cardinality of an independent dominating set
of G. A graph is independent domination vertex critical if the removal of any vertex decreases its independent
domination number. If G is independent domination vertex critical and i(G) = k, we say that G is a k-i-vertex-
critical graph.

A vertex subset S ⊆ V is a connected dominating set of a graph G if it is a dominating set of G and the
subgraph induced by S is connected. Every connected graph has a connected dominating set, since V is such a
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set. The connected domination number of a graph G, denoted by γc(G), is the minimum cardinality of a connected
dominating set of G. A graph is connected domination vertex critical if the removal of any vertex decreases its
connected domination number. If G is connected domination vertex critical and γc(G) = k, we say that G is a
k-γc-vertex-critical graph. A necessary condition for a graph to be k-γc-vertex-critical is 2-connected. For more
details on connected domination vertex critical graphs, see [6].

The total domination vertex critical graphs were first investigated by Goddard et al. [4] and the independent
domination vertex critical graphs were studied by Ao [1].

Goddard et al. [4] characterized the class of k-γt-vertex-critical graphs with leaf vertices.

Theorem 1.1. Let G be a connected graph of order at least three with at least one leaf vertex. Then G is k-γt-
vertex-critical if and only if G = cor(H) for some connected graph H of order k with δ(H) ≥ 2.

For the connected k-γt-vertex-critical graph without leaf vertices, they gave an upper bound on the diameter.

Theorem 1.2 (Goddard et al. [4]). If G is a connected k-γt-vertex-critical graph without leaf vertices, then
diam(G) ≤ 2k − 3.

The following observation is used frequently, we present it here.

Observation 1. If D is a total dominating set of a graph G, then for every vertex v in G, the set D contains a
neighbor of v.

Lemma 1. If G is a k-γt-vertex-critical graph without leaf vertices, then for any vertex w, there exists a minimum
total dominating set of G containing w, and γt(G − w) = γt(G) − 1.

Proof. Let v be a neighbor of w in G, and let D be a minimum total dominating set of G − v. It follows that w < D
and D∩ NG(w) , ∅, thus D∪ {w} is a total dominating set of G. Furthermore, we have that |D∪ {w}| = |D| + 1 ≤ k,
and then D ∪ {w} is a minimum total dominating set of G containing w and γt(G − w) = |D| = γt(G) − 1. �

Lemma 2. If G is a k-i-vertex-critical graph, then for any vertex v, there exists a minimum independent dominating
set of G containing v, and i(G − v) = i(G) − 1.

The method developed in [3] is a powerful technique to obtain sharp upper bounds on various types of dom-
ination vertex critical graphs, it has been used on the k-γ-vertex-critical graphs [3] and paired domination vertex
critical graphs [5].

Edwards and MacGillivray [2] presented better upper bounds on the diameter of total domination and indepen-
dent domination vertex critical graphs, but the proofs have big gaps (the gaps have been confirmed by Edwards
through personal email). In this paper, we also adopt the same technique in [2, 3, 5] to obtain sharp upper bounds
on the diameter, one of which is a slightly improvement on a result in [2].

2 Upper bounds on the diameter

Theorem 2.1. If G is a connected k-γt-vertex-critical graph without leaf vertices and k ≥ 4, then diam(G) ≤ 5k−7
3 .

Proof. Let x and xn be vertices such that dist(x, xn) = diam(G) = n. If n ≤ 4, then we are done. So we may
assume that n ≥ 5. Let xx1 . . . xn−1xn be a shortest path between x and xn. Define L0, L1, . . . , Ln by Li = {v ∈ V(G) |
distG(x, v) = i} for 0 ≤ i ≤ n. In particular, L0 = {x} and L1 = NG(x). Let Ri = L0 ∪ L1 ∪ · · · ∪ Li for 0 ≤ i ≤ n. Let
D be a minimum total dominating set in G. If |D ∩ R j| ≥

3 j+10
5 , then we say that R j is sufficient with respect to D.

Let m be the maximum integer j such that |D∩R j| ≥
3 j+10

5 . Notice that the value of m depends on the minimum
total dominating set D, we may assume that D is chosen such that m is maximum among all the minimum total
dominating set.

Firstly, we must show the existence of m. Let D1 be a minimum total dominating set of G − x1. It is obvious
that x < D1 and D1 ∩ L1 , ∅ and |D1 ∩ (L1 ∪ L2)| ≥ 2. Suppose that the value of m does not exist, it follows that
1 + |D1 ∩ R j| <

3 j+10
5 , otherwise R j is sufficient with respect to D1 ∪ {x}. Hence, we have that |D1 ∩ L1| = 1 and

|D1 ∩ (L1 ∪ L2)| < 2.2. In fact |D1 ∩ L2| = 1. From the fact that |D1 ∩ R3| < 2.8, we have that D1 ∩ L3 = ∅. If
D1 ∩ L4 , ∅, then we can conclude that |D1 ∩ (L4 ∪ L5)| ≥ 2 from the fact that D1 is a total dominating set of
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G − x1, and then R5 is sufficient with respect to D1 ∪ {x}, a contradiction. So we may assume that D1 ∩ L4 = ∅. Let
D0 be a minimum total dominating set of G − x4. If |D0 ∩ R3| ≥ 3, then R3 is sufficient with respect to D0 ∪ {x3}, a
contradiction. Thus, we have |D0∩R3| = 2 and D0∩L3 = ∅. If D0∩L4 = ∅, then D0∩R3 totally dominates R3, and
then (D0 ∩ R3) ∪ (D1 \ R3) is a smaller total dominating set of G, a contradiction. Hence we have that D0 ∩ L4 , ∅
and |D0 ∩ (L4 ∪ L5)| ≥ 2. Therefore, we have that |D0 ∩R5| ≥ 4 and the set R5 is sufficient with respect to D0 ∪ {x3},
which leads to a contradiction.

Now, we know that the value of m must exist. If m = n, then n = m ≤ 5k−10
3 ≤ 5k−7

3 , we are done. So we may
assume that m < n.

If m = 5t + 2, then |D ∩ Rm| ≥ 3t + 3.2 and |D ∩ Rm+1| < 3t + 3.8, which is a contradiction. If m = 5t + 4, then
|D∩ Rm| ≥ 3t + 4.4 and |D∩ Rm+1| < 3t + 5, which is also a contradiction. So we have that m = 5t, 5t + 1 or 5t + 3.
We further assume that m + 2 ≤ n.

If m = 5t, then |D∩Rm| ≥ 3t+2 and |D∩Rm+1| < 3t+2.6, which implies that |D∩Rm| = 3t+2 and D∩Lm+1 = ∅.
From the fact that |D ∩ Rm+2| < 3t + 3.2 and D is a total dominating set and |D ∩ Rm+3| < 3t + 3.8 (if Lm+3 exists),
we can conclude that D∩ Lm+2 = ∅ and |D∩ Lm+3| = 1. Consequently, the set Lm+4 exists and D∩ Lm+3 dominates
Lm+2. But |D ∩ Rm+4| < 3t + 4.4, so we have that |D ∩ Lm+4| = 1.

If m = 5t + 1, then |D ∩ Rm| ≥ 3t + 2.6, |D ∩ Rm+1| < 3t + 3.2 and |D ∩ Rm+2| < 3t + 3.8, which implies that
|D ∩ Rm| = 3t + 3 and D ∩ Lm+1 = D ∩ Lm+2 = ∅. In order to dominate Lm+2, the set Lm+3 exists and D ∩ Lm+3
dominates Lm+2. But |D ∩ Rm+3| < 3t + 4.4, so we have that |D ∩ Lm+3| = 1. The set D totally dominates G, it
follows that Lm+4 exists and D ∩ Lm+4 , ∅. Hence |D ∩ Rm+4| ≥ 3t + 5 and Rm+4 is sufficient with respect to D, a
contradiction to the maximality of m.

If m = 5t + 3, then |D ∩ Rm| ≥ 3t + 3.8, |D ∩ Rm+1| < 3t + 4.4 and |D ∩ Rm+2| < 3t + 5, which implies that
|D ∩ Rm| = 3t + 4 and D ∩ Lm+1 = D ∩ Lm+2 = ∅. In order to dominate Lm+2, the set Lm+3 exists and D ∩ Lm+3
dominates Lm+2. But |D ∩ Rm+3| < 3t + 5.6, so we have that |D ∩ Rm+3| = 1. Since D is a total dominating set in G,
it follows that Lm+4 exists and D ∩ Lm+4 , ∅, but with |D ∩ Rm+4| < 3t + 6.2, we have that |D ∩ Lm+4| = 1.

By the above arguments, we may assume that D ∩ Lm+1 = D ∩ Lm+2 = ∅ and |D ∩ Lm+3| = |D ∩ Lm+4| = 1,
where m = 5t or m = 5t + 3. Without loss of generality, we assume that D∩ Lm+3 = {xm+3} and D∩ Lm+4 = {xm+4}.
Let D3 and D4 be a minimum total dominating set of G − xm+3 and G − xm+4, respectively.

Recall that the vertex xm+3 dominates Lm+2, then D3 ∩ Lm+2 = ∅ and D3 ∩ Rm+1 totally dominates Rm+1. If
|D3 ∩ Rm+1| < |D ∩ Rm+1|, then (D3 ∩ Rm+1) ∪ (D \ Rm+1) is a smaller total dominating set in G, which leads to a
contradiction. If |D3 ∩Rm+1| > |D∩Rm+1|, then Rm+1 is sufficient with respect to the minimum total dominating set
D3 ∪ {xm+4}. Hence we have that |D3 ∩ Rm+1| = |D∩ Rm+1|. Notice that maybe Lm+5 does not exist, if this happens,
then we view Lm+5 as an empty set. If |D3∩(Lm+3∪Lm+4∪Lm+5)| ≥ 2, then |(D3∪{xm+4})∩Rm+5| ≥ |D∩Rm+1|+3, and
then Rm+5 (or Rm+4 if Lm+5 does not exist) is sufficient with respect to D3∪{xm+4}, which contradicts the maximality
of m. Hence, we have that |D3 ∩ (Lm+3 ∪ Lm+4 ∪ Lm+5)| ≤ 1, which implies that Lm+5 exists and D3 ∩ Lm+4 = ∅ and
Lm+3 = {xm+3}.

Notice that D4 ∩ Lm+3 = ∅ and D4 ∩ Rm+2 totally dominates Rm+2. If |D4 ∩ Rm+2| < |D ∩ Rm+2|, then (D4 ∩

Rm+2)∪ (D\Rm+2) is a smaller total dominating set of G, which leads to a contradiction. If |D4∩Rm+2| > |D∩Rm+2|,
then |(D4 ∪ {xm+3}) ∩ Rm+3| ≥ |D ∩ Rm| + 2, and then Rm+3 is sufficient with respective to D4 ∪ {xm+3}, which leads
to a contradiction. Hence, we have that |D4 ∩ Rm+2| = |D ∩ Rm+2|.

If D4 ∩ Lm+2 , ∅, then (D4 ∩ Rm+2) ∪ (D3 \ Rm+2) is a smaller total dominating set of G, a contradiction. It
follows that D4 ∩ Lm+2 = ∅. In order to dominate the vertex xm+3, we must have that D4 ∩ Lm+4 , ∅. Hence, we
can conclude that |D4 ∩ (Lm+4 ∪ Lm+5)| ≥ 2 and Rm+5 is sufficient with respect to D4 ∪ {xm+3}, a contradiction.

Finally, we have to deal with the case that m = n − 1. Recall that m is the maximum integer j such that
|D∩R j| ≥

3 j+10
5 , it follows that D∩Lm+1 = D∩Ln = ∅, and then |D∩Rm| = k and n = m+1 ≤ 5k−10

3 +1 = 5k−7
3 . �

The coalescence of two graphs G1 and G2 with respect to a vertex x in G1 and a vertex y in G2, is the graph
G1(x ∗ y)G2 obtained by identifying x and y; in other words, replacing the vertices x and y by a new vertex w
adjacent to the same vertices in G1 as x and the same vertices in G2 as y. If there is no confusion, then we write
G1 ∗G2 instead of G1(x ∗ y)G2.

Theorem 2.2. If G is a connected k-i-vertex-critical graph, then diam(G) ≤ 2(k − 1).

Proof. Let x and xn be vertices such that dist(x, xn) = diam(G) = n. Let xx1 . . . xn−1xn be a shortest path between
x and xn. Define L0, L1, . . . , Ln by Li = {v ∈ V(G) | distG(x, v) = i} for 0 ≤ i ≤ n. In particular, L0 = {x} and
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L1 = NG(x). Let Ri = L0 ∪ L1 ∪ · · · ∪ Li for 0 ≤ i ≤ n. Let D be a minimum independent dominating set in G. If
|D ∩ R j| ≥

j+2
2 , then we say that R j is sufficient with respect to D.

Let m be the maximum integer j such that |D∩R j| ≥
j+2
2 . The value of m depends on the minimum independent

dominating set D, we may assume that D is chosen such that m is maximum among all the minimum independent
dominating set. Let D1 be a minimum independent dominating set of G − x1. It is obvious that x < D1 and
D1 ∩ L1 , ∅. Thus D1 ∪ {x1} is a minimum independent dominating set of G with |(D1 ∪ {x1}) ∩ R1| ≥ 2, and then
the value of m exists and m ≥ 1. If m = n, then n = m ≤ 2(k − 1), we are done. So we may assume that m < n.

If m = 2t + 1, then |D ∩ Rm| ≥ t + 1.5 and |D ∩ Rm+1| < t + 2, which is a contradiction. So we have that m = 2t.
We further assume that m + 2 ≤ n. It follows that |D ∩ Rm| ≥ t + 1 and |D ∩ Rm+1| < t + 1.5 and |D ∩ Rm+2| < t + 2,
and then |D ∩ Rm| = t + 1 and D ∩ Lm+1 = D ∩ Lm+2 = ∅. In order to dominate Lm+2, the set Lm+3 must exist and
D ∩ Lm+3 dominates Lm+2. The fact that |D ∩ Rm+3| < t + 2.5 implies that |D ∩ Lm+3| = 1. Let D ∩ Lm+3 = {w}.
Notice that if Lm+4 exists, we can conclude that D ∩ Lm+4 = ∅ from the fact that |D ∩ Rm+4| < t + 3. Hence, the
vertex w dominates Lm+2 ∪ Lm+3.

Let D3 be a minimum independent dominating set of G−w. Notice that D3∩(Lm+2∪Lm+3) = ∅. If |D3∩Rm+1| >
|D∩Rm+1|, then Rm+1 is sufficient with respect to D3∪{w}. If |D3∩Rm+1| < |D∩Rm+1|, then (D3∩Rm+1)∪(D\Rm+1) is
a smaller independent dominating set of G, which is a contradiction. Hence, we have that |D3∩Rm+1| = |D∩Rm+1|.

Suppose that the set Lm+4 does not exist. It implies that |D ∩ Rm| = k − 1 = t + 1. Recall that w dominates
Lm+2 ∪ Lm+3, it follows that D3 ⊆ Rm+1 and Lm+3 = {w}. Let D2 be a minimum independent dominating set of
G − xm+2. Therefore, the set D2 ∪ {xm+2} is a minimum independent dominating set with |(D2 ∪ {xm+2}) ∩ Rm+2| =

k = t + 2, thus Rm+2 is sufficient with respect to D2 ∪ {xm+2}, which is a contradiction. So we may assume that Lm+4
exists.

If |D3 ∩ (Lm+3 ∪ Lm+4)| ≥ 1, then Rm+4 is sufficient with respect to D3 ∪ {w}, which leads to a contradiction.
So we have that D3 ∩ (Lm+3 ∪ Lm+4) = ∅ and Lm+3 = {w}. Let D4 be a minimum independent dominating set of
G − xm+4. Notice that D4 ∩ Lm+3 = ∅ and D4 ∩Rm+2 totally dominates Rm+2. If |D4 ∩Rm+2| > |D∩Rm+2|, then Rm+2
is sufficient with respect to D4 ∪ {xm+4}.

If |D4 ∩ Rm+2| ≤ |D ∩ Rm+2| and D4 ∩ Lm+2 , ∅, then (D4 ∩ Rm+2) ∪ (D3 \ Rm+3) is a smaller independent
dominating set of G, a contradiction.

If |D4 ∩ Rm+2| = |D ∩ Rm+2| and D4 ∩ Lm+2 = ∅, then D4 ∩ Lm+4 , ∅ in order to dominates w, and then Rm+4 is
sufficient with respect to D4 ∪ {xm+4}.

If |D4∩Rm+2| < |D∩Rm+2| and D4∩Lm+2 = ∅, then (D4∩Rm+2)∪(D\Rm+2) is a smaller independent dominating
set of G, a contradiction.

By the above arguments, the theorem is true except the case that m = 2t = n − 1. Notice that G(x ∗ x)G is
a (2k − 1)-i-vertex-critical graph with diameter 2n. The theorem is true for the graph G(x ∗ x)G, it implies that
2n ≤ 2(2k − 1 − 1), thus n ≤ 2(k − 1). �

Theorem 2.3. If G is a k-γc-vertex-critical graph, then diam(G) ≤ k.

Proof. Let x and xn be vertices such that dist(x, xn) = diam(G) = n. Let xx1 . . . xn−1xn be a shortest path between
x and xn. Define L0, L1, . . . , Ln by Li = {v ∈ V(G) | distG(x, v) = i} for 0 ≤ i ≤ n. In particular, L0 = {x} and
L1 = NG(x). Let D1 be a minimum connected dominating set of G− x1. It is obviously that x < D1 and D1∩L1 , ∅.
Since D1 is a connected dominating set of G, it follows that D1 ∩ Li , ∅ for every 1 ≤ i ≤ n − 1. Hence we have
that |D1| = k − 1 ≥ n − 1, which implies that diam(G) = n ≤ k. �

3 Sharpness of the upper bounds

We characterize when the coalescence of two total domination vertex critical graphs is still a total domination
vertex graph.

Theorem 3.1. Let G1 and G2 be k1-γt-vertex-critical and k2-γt-vertex-critical graphs without leaf vertices, respec-
tively. Let x and y be two vertices in G1 and G2, respectively. Then G1(x ∗ y)G2 is (k1 + k2 − 1)-γt-vertex-critical if
and only if γt(G2 − NG2 [y]) ≥ k2 − 1 and γt(G1 − NG1 [x]) ≥ k1 − 1.

Proof. Denote the graph G1(x ∗ y)G2 by G for short. Let D be a minimum total dominating set of G and w be the
new created vertex in G. Let D1 and D2 be a minimum total dominating set of G1− x and G2−y, respectively. Thus
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|D1| = k1 − 1 and |D2| = k2 − 1. It is obvious that γt(G − w) = k1 + k2 − 2. For any vertex v ∈ V(G1) \ {x}, the union
of D2 and a minimum total dominating set of G1 − v is a total dominating set of G − v, thus γt(G − v) ≤ k1 + k2 − 2.
Similarly, for any vertex v ∈ V(G2) \ {y}, the union of D1 and a minimum total dominating set of G2 − v is a
total dominating set of G − v, and then γt(G − v) ≤ k1 + k2 − 2. Hence, for any vertex v in V(G), we have that
γt(G − v) ≤ k1 + k2 − 2.

(⇐=) Suppose that γt(G2−NG2 [y]) ≥ k2−1 and γt(G1−NG1 [x]) ≥ k1−1. We want to prove γt(G) ≥ k1 + k2−1.

Notice that either D ∩ V(G1) totally dominates G1 or D ∩ V(G2) totally dominates G2. By symmetry, we may
assume that D ∩ V(G1) totally dominates G1 and |D ∩ V(G1)| ≥ k1. If w < D, then D ∩ V(G2) totally dominates
G2 − y and |D ∩ V(G2)| ≥ k2 − 1, and then |D| ≥ k1 + k2 − 1. So we may assume that w ∈ D. If D ∩ NG2 (y) , ∅,
then D∩V(G2) is a total dominating set of G2 and |D∩V(G2)| ≥ k2, and then |D| ≥ k1 + k2 − 1. If D∩ NG2 (y) = ∅,
then D \ V(G1) ⊆ V(G2) \ NG2 [y] and D \ V(G1) totally dominates G2 − NG2 [y], and then |D \ V(G1)| ≥ k2 − 1 and
|D| ≥ k1 + k2 − 1.

(=⇒) Suppose that |D| = k1 +k2−1. We want to prove that γt(G2−NG2 [y]) ≥ k2−1 and γt(G1−NG1 [x]) ≥ k1−1.

By Lemma 1, let D∗1 be a minimum total dominating set of G1 containing x. It follows that γt(G2 − NG2 [y]) ≥
k2 −1; otherwise, the union of D∗1 and a minimum total dominating set of G2 −NG2 [y] is a smaller total dominating
set of G, a contradiction. Similarly, we can prove that γt(G1 − NG1 [x]) ≥ k1 − 1. �

Remark 1. From the characterization, the graph C6∗C6 is not a total domination vertex critical graph as mentioned
in [2].

A pointed graph is a graph with two assigned diametrical vertices called Left and Right. For a pointed graph
G, we define Lk(G) and Rk(G) be the set of vertices which are distance k from the Left-vertex and Right-vertex,
respectively.

For two pointed graphs G1 and G2, we define G1 •G2 as the pointed graph obtained by identifying and unas-
signing the Right-vertex from G1 and the Left-vertex from G2.

Let Km,m be a complete bipartite graph with bipartition {y1, y3, . . . , y2m−1} and {y2, y4, . . . , y2m}, where m ≥ 2.
Let F be the graph obtained from Km,m by removing one edge y1y2m, and let F̄ be the complement of F with xi

corresponding to yi. Notice that γt(F) = γt(F̄) = 2 and {x1, x2m} totally dominates F̄ and every pair of adjacent
vertices in Km,m totally dominates Km,m. Let R be the pointed graph obtained from the disjoint union of F̄ and
Km,m, by joining every vertex of F̄ to every vertex of Km,m except edges between the corresponding vertices, and
adding five new vertices z1, z2, z3, Left and Right such that Left is adjacent to every vertex in F̄, the vertex z1 is
adjacent to {x1, x2, . . . , x2m−1} ∪ {y2, y3, . . . , y2m−1}, the vertex z2 is adjacent to {x2, x3, . . . , x2m} ∪ {y2, y3, . . . , y2m−1},
the vertex z3 is adjacent to every vertex in Km,m and z1, while Right is adjacent to every vertex in Km,m and z2.

Theorem 3.2. The graph R is 3-γt-vertex-critical graph with diameter three.

Let H be a graph with at least four vertices. Let V(H) = {x1, . . . , xt} and V(H̄) = {y1, . . . , yt} with xi corre-
sponding to yi. Let A be the pointed graph obtained by joining every vertex of H to every vertex of H̄ except
edges between the corresponding vertices, and adding two new vertices Left and Right such that Left is adjacent
to every vertex in H and Right is adjacent to every vertex in H̄. It can be shown that A is a 3-γt-vertex-critical
graph if and only if γt(H) = γt(H̄) = 2. Simply write the Left-vertex as x and Right-vertex as y. Suppose that
γt(H) = γt(H̄) = 2. A minimum total dominating set of H totally dominates A−y and a minimum total dominating
set of H̄ totally dominates A − x. For any vertex xi, the two vertices yi and a nonadjacent vertex x j of xi totally
dominates A − xi; similarly, for any vertex yi, the two vertices xi and a nonadjacent vertex y j of yi totally domi-
nates A − yi. But γt(A) > 2, thus A is a 3-γt-vertex-critical graph. Conversely, if G is a 3-γt-vertex-critical graph,
then a minimum total dominating set of A − y is also a minimum total dominating set of H and a minimum total
dominating set of A− x is also a minimum total dominating set of H̄, and then γt(H) = γt(H̄) = 2. In what follows,
we assume that γt(H) = γt(H̄) = 2. Notice that diam(A) = 3.

Remark 2. For every t ≥ 4, we can find at least one graph H on t vertices with γt(H) = 2 and γt(H̄) = 2. For
instance, let Kt−2 be a complete graph on t − 2 vertices, and let H be the graph on t vertices obtained from Kt−2 by
attaching a path xx1x2. It is easy to check that γt(H) = 2 and γt(H̄) = 2.

Let Q be the pointed graph obtained from two copies of A, called A1 and A2, by deleting the Right-vertex y
from A1 and the Left-vertex x from A2, and joining every neighbor of y in A1 to every neighbor of x in A2. Notice
that diam(Q) = 5 and γt(Q) = 4. By Theorem 2.1, the graph Q is not a 4-γt-vertex-critical graph. Let Q(1) = Q and
Q(n) = Q(n−1) • Q. We simple denote R • Q(n) by Cn.
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Let J1 and J3 be disjoint union of tK2 and let J2 be ¯tK2, where t ≥ 2. Let J be the pointed graph obtained from
J1 ∪ J2 ∪ J3 by joining every vertex of J1 to every vertex of J2 except the edges corresponding vertices in J1 and
J2, similarly, joining every vertex of J2 to every vertex of J3 except the edges corresponding vertices in J2 and J3,
adding a new Left vertex x adjacent to every vertex of J1 and adding a new Right vertex y adjacent to every vertex
in J3. It is easy to check that J is a 4-γt-vertex-critical graph with diameter 4.

Theorem 3.3. (a) γt(R • Q(n)) ≥ 3n + 3; (b) γt(R • Q(n) − y) ≥ 3n + 2; (c) γt(R • Q(n) − N[y]) ≥ 3n + 2.

Proof. We prove the results by mathematical induction.

Basis step: If n = 0, then the results are trivially true.

Inductive step: Suppose that the results are true for all values less than n. Let D,D1 and D2 be a minimum
total dominating set of Cn, Cn − y and Cn − N[y], respectively. Denote the Left vertex of Qn by x and the Right
vertex of Qn by y. If D ∩ V(Cn−1) totally dominates Cn−1, then |D ∩ V(Cn−1)| ≥ 3n, but |D \ V(Cn−1)| ≥ 3, thus
|D| ≥ 3n + 3. So we may assume that D ∩ V(Cn−1) does not totally dominates Cn−1. Notice that D ∩ V(Qn) must
totally dominate Qn and |D∩V(Qn)| ≥ 4. If x < D, then D∩R1(Qn−1) = ∅ and D∩V(Cn−1) totally dominates Cn−1−x
and |D ∩ V(Cn−1)| ≥ 3n − 1, thus |D| ≥ 3n − 1 + 4 = 3n + 3. If x ∈ D, then D ∩ R1(Qn−1) = ∅ and D ∩ V(Cn−1 − x)
totally dominates Cn−1 − N[x] and |D∩ V(Cn−1 − x)| ≥ 3n− 1. Since D∩ V(Qn) totally dominates Qn and x ∈ D, it
follows that |D ∩ V(Qn)| ≥ 5, and then |D| ≥ 3n − 1 + 5 = 3n + 4. Hence, we have that γt(R • Q(n)) ≥ 3n + 3.

If D1 ∩ V(Cn−1) totally dominates Cn−1, then |D1 ∩ V(Cn−1)| ≥ 3n, but |D1 \ V(Cn−1)| ≥ 2, thus |D1| ≥ 3n + 2.
So we may assume that D1 ∩ V(Cn−1) does not totally dominates Cn−1. If x < D1, then D1 ∩ R1(Qn−1) = ∅ and
D1∩V(Cn−1) totally dominates Cn−1−x and |D1∩V(Cn−1)| ≥ 3n−1. Notice that D1\V(Cn−1) totally dominates Qn−y
and D1 ∩ L1(Qn) , ∅ and |D1 \ V(Cn−1)| ≥ 4, thus |D1| ≥ 3n − 1 + 4 = 3n + 3. If x ∈ D1, then D1 ∩ R1(Qn−1) = ∅

and D1 ∩ V(Cn−1 − x) totally dominates Cn−1 − N[x] and |D1 ∩ V(Cn−1 − N[x])| ≥ 3n − 1. Notice that x ∈ D1
and D1 ∩ L1(Qn) , ∅, and then |D1 ∩ (Qn − y)| ≥ 4, thus |D1| ≥ 3n − 1 + 4 = 3n + 3. Hence, we have that
γt(R • Q(n) − y) ≥ 3n + 2.

If D2 ∩ V(Cn−1) totally dominates Cn−1, then |D2 ∩ V(Cn−1)| ≥ 3n, but |D2 \ V(Cn−1)| ≥ 2, thus |D2| ≥ 3n + 2.
So we may assume that D2 ∩ V(Cn−1) does not totally dominates Cn−1. If x < D2, then D2 ∩ R1(Qn−1) = ∅ and
D2 ∩ V(Cn−1) totally dominates Cn−1 − x and |D2 ∩ V(Cn−1)| ≥ 3n − 1. Notice that D2 \ V(Cn−1) totally dominates
Qn − N[y] and D2 ∩ L1(Qn) , ∅ and |D2 \ V(Cn−1)| ≥ 3, thus |D2| ≥ 3n − 1 + 3 = 3n + 2. If x ∈ D2, then
D2 ∩R1(Qn−1) = ∅ and D2 ∩V(Cn−1 − x) totally dominates Cn−1 −N[x] and |D2 ∩V(Cn−1 −N[x])| ≥ 3n− 1. Notice
that x ∈ D2 and D2 ∩ L1(Qn) , ∅, and then |D2 ∩ (Qn − N[y])| ≥ 3, thus |D1| ≥ 3n − 1 + 3 = 3n + 2. Hence, we
have that γt(R • Q(n) − N[y]) ≥ 3n + 2. �

Corollary 1. (a) γt(R • Q(n)) = 3n + 3; (b) γt(R • Q(n) − y) = 3n + 2; (c) γt(R • Q(n) − N[y]) = 3n + 2.

Theorem 3.4. The graph R • Q(n) • J is (3n + 6)-γt-vertex-critical graph with diameter 5n + 7.

Proof. If n = 0, then the statement follows by Theorem 3.1. So we may assume that n ≥ 1. Denote the graph
R • Q(n) • J by G and denote the i-th copy of Q by Qi with Left xi and Right yi. Denote the Left vertex of
J by x and the Right vertex by y. Let D be a minimum total dominating set of G. Notice that there exists a
minimum total dominating set Di,l of Qi − N[yi] containing xi, that is, a vertex from each of L0(Qi), L1(Qi) and
L2(Qi) totally dominates L0(Qi)∪L1(Qi)∪L2(Qi)∪L3(Qi); by symmetry, there exists a minimum total dominating
set Di,r of Qi − N[xi] containing yi, that is, a vertex from each of R0(Qi),R1(Qi) and R2(Qi) totally dominates
R0(Qi)∪ R1(Qi)∪ R2(Qi)∪ R3(Qi). For the graph R, there exists a minimum total dominating set D0,l of R−Right
and a minimum total dominating set D0,r of R containing the Right vertex. For the graph J, there exists a minimum
total dominating set Dn+1,l containing the Left vertex and a minimum total dominating set Dn+1,r of J − Left.

If D∩V(Cn) totally dominates Cn, then |D∩V(Cn)| ≥ 3n+3 and |D| ≥ (3n+3)+3 = 3n+6. So we may assume
that D ∩ V(Cn) does not totally dominates Cn. If x < D, then D ∩ R1(Qn) = ∅ and D ∩ V(Cn) totally dominates
Cn − yn and |D∩ V(Cn)| ≥ 3n + 2, thus |D| ≥ 3n + 2 + 4 = 3n + 6. If x ∈ D, then D∩ R1(Qn) = ∅ and D∩ (Cn − yn)
totally dominates Cn −N[yn] and |D| ≥ 3n + 2 + 4 = 3n + 6. There exists a total dominating set with 3n + 6 vertices,
such as D0,r ∪ D1,r ∪ D2,r ∪ . . .Dn,r ∪ Dn+1,r. Hence, we have that γt(R • Q(n) • J) = 3n + 6.

Let v be an arbitrary vertex. If v ∈ R, then a minimum total dominating set of R−v and D1,r∪D2,r∪. . .Dn,r∪Dn+1,r
form a total dominating set of G − v with 3n + 5 vertices.

If v ∈ J, then D0,r ∪ D1,r ∪ . . .Dn−1,r and a minimum total dominating set of R2(Qn) and a minimum total
dominating set of J − v form a total dominating set of G − v with 3n + 5 vertices.
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If v ∈ L1(Q1) ∪ L2(Q1), then there exists two adjacent vertices in L1(Q1) ∪ L2(Q1) which totally dominates
L0(Q1)∪L1(Q1)∪L2(Q1)∪L3(Q1)−v, denote this two adjacent vertices by D∗. Thus D0,l∪D∗∪D2,l∪· · ·∪Dn,l∪Dn+1,l
is a total dominating set of G − v with 3n + 5 vertices.

If v ∈ L3(Qn) ∪ L4(Qn), then there exists two adjacent vertices in L3(Qn) ∪ L4(Qn) which totally dominates
L2(Qn) ∪ L3(Qn) ∪ L4(Qn) ∪ L5(Qn) − v, denote this two adjacent vertices by S ∗. Thus D0,r ∪ D1,r ∪ · · · ∪ Dn−1,r ∪

S ∗ ∪ Dn+1,r is a total dominating set of G − v with 3n + 5 vertices.

Suppose that v ∈ L0(Qi) ∪ L1(Qi) ∪ L2(Qi) with i ≥ 2. Thus D0,r ∪ · · · ∪ Di−2,r and two adjacent vertices in
R2(Qi−1) and two adjacent vertices in L1(Qi)∪L2(Qi) which totally dominates L0(Qi)∪L1(Qi)∪L2(Qi)∪L3(Qi)−v
and Di+1,l ∪ · · · ∪ Dn,l ∪ Dn+1,l form a total dominating set of G − v with 3n + 5 vertices.

Suppose that v ∈ L3(Qi)∪ L4(Qi)∪ L5(Qi) with i ≤ n− 1. Thus D0,r ∪D1,r ∪ . . .Di−1,r and two adjacent vertices
in L3(Qi) ∪ L4(Qi) which totally dominates L2(Qi) ∪ L3(Qi) ∪ L4(Qi) ∪ L5(Qi) − v and two adjacent vertices in
L2(Qi+1) and Di+2,l ∪ · · · ∪ Dn+1,l form a total dominating set of G − v with 3n + 5 vertices.

Hence, for any vertex v in V , we have that γt(G − v) ≤ 3n + 5, and then G is a (3n + 6)-γt-vertex-critical
graph. �

We can adapt the similar technique to prove that R • Q(n) • R • R is (3n + 7)-γt-vertex-critical, so we omit the
details of the proof.

Theorem 3.5. The graph R • Q(n) • R • R is a (3n + 7)-γt-vertex-critical graph with diameter 5n + 9.

Theorem 3.6. For every integer k ≥ 4, there are infinitely many graphs that are k-γt-vertex-critical with diameter⌊
5k−7

3

⌋
.

Proof. We divide the graphs into four classes according to the value of k.

(1) Suppose that k ≡ 2 (mod 3) and k = 3n + 5. Notice that the graph A •Q(n) • A is a (3n + 5)-γt-vertex-critical
graph and diam(A • Q(n) • A) = 5n + 6 = 5k−7

3 , which has been proved in [4, Theorem 13].

(2) Suppose that k ≡ 0 (mod 3) and k = 3n + 6. Notice that the graph R •Q(n) • J is a (3n + 6)-γt-vertex-critical
graph and diam(R • Q(n) • J) = 5n + 7 =

⌊
5k−7

3

⌋
.

(3) Suppose that k ≡ 1 (mod 3) and k = 3n+7. Notice that the graph R•Q(n)•R•R is a (3n+7)-γt-vertex-critical
graph and diam(R • Q(n) • R • R) = 5n + 9 =

⌊
5k−7

3

⌋
.

(4) If k = 4, then the graph J meet the requirement by Theorem 3.1. �

Remark 3. As in [2], the upper bound in Theorem 2.2 is sharp. We provide infinitely many k-i-vertex-critical
graphs with diameter 2(k−1) for each k ≥ 2. For instance, let B be the complete graph on 2t vertices with a perfect
matching removed, and let G be the graph whose block graph is a path on k − 1 vertices and every block is a copy
of B; notice that i(G) = k and diam(G) = 2(k − 1).

Remark 4. So far, we don’t know if the given upper bound on the k-γc-vertex-critical graphs is the best possible.
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