On normalizers of the nilpotent residuals of subgroups of a finite group *

Lü Gong ${ }^{1}$ and Xiuyun Guo ${ }^{2 \dagger}$
1. School of Sciences, Nantong University, Jiangsu 226007, P. R. China
2. Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China
E-mail: lieningzai1917@126.com, xyguo@staff.shu.edu.cn,

Abstract

The aim of this paper is to study the structure of finite groups whose nilpotent residuals of non-normal subgroups are normal.

Keywords: nilpotent residual, soluble group, normalizer, metanilpotent
AMS Subject Classification(2010): 20D10, 20D20.

1 Introduction

All groups considered in this paper are finite.
A Dedekind group is a group in which every subgroup is normal, which has been generalised in a number of ways. Romalis and Sesekin investigated metahamiltonian groups, in which every subgroup is normal or abelian [23, 24]. Russo and Vincenzi considered groups in which every subgroup is normal or a T-group [25]. Kemhadze investigated the structure of groups in which every subgroup is either subnormal or nilpotent [14], as did Phillips and Wilson, who gave necessary conditions [21, Lemma 7] and a detailed description of such groups with trivial centre [21, Proposition 2]. Recently, BallesterBolinches and Cossey have obtained the equivalent condition of non-nilpotent groups in which every subgroup is either subnormal or nilpotent [5].

Recall that the norm $N(G)$ of a group G is the intersection of the normalizes of all subgroups of G, which was first introduced by Baer in 1934 [1] and many useful properties and results on norm have been given $[1,2,4,7,16,17,26]$. It is clear that $G=N(G)$ if and only if G is a Dedekind group.

In addition, we have studied a characteristic subgroup $N^{\mathcal{N}}(G)$ of a group G, which is the intersection of the normalizers of the nilpotent residuals of all subgroups of G [9], also it is called $S(G)$ in [27], that is,

$$
N^{\mathcal{N}}(G)=\bigcap_{H \leq G} N_{G}\left(H^{\mathcal{N}}\right)
$$

where $H^{\mathcal{N}}$ is the nilpotent residual of subgroup H of G.
There exists a series of normal subgroups:

$$
1=N^{\mathcal{N}}(G)_{0} \leq N^{\mathcal{N}}(G)_{1} \leq N^{\mathcal{N}}(G)_{2} \leq \cdots \leq N^{\mathcal{N}}(G)_{n} \leq \cdots,
$$

[^0]in which $N^{\mathcal{N}}(G)_{i+1} / N^{\mathcal{N}}(G)_{i}=N^{\mathcal{N}}\left(G / N^{\mathcal{N}}(G)_{i}\right)$ for $i=0,1,2, \cdots$, and let $N^{\mathcal{N}}(G)_{\infty}$ be the terminal term of the ascending series.

Our aim in this paper is to consider the structure of groups whose nilpotent residuals of nonnormal subgroups are normal, which is a generalization of the class of groups in which every subgroup is nilpotent or normal.

The terminology and notation employed agree with standard usage [6, 8, 22]. Let \mathcal{N}^{2} denote the class of metanilpotent groups and $\operatorname{Int}_{\mathcal{N}^{2}}(G)$ denote the intersection of all maximal metanilpotent subgroups of a group G. The metanilpotent hypercenter, nilpotent residual, metanilpotent residual, Fitting and Frattini subgroup of a group G will be denoted by $Z_{\mathcal{N}^{2}}(G), G^{\mathcal{N}}, G^{\mathcal{N}^{2}}, F(G), \Phi(G)$ respectively. $K_{i}(G)$ and $\pi(G)$ denote the i th term of the lower central series of a group G and the set of primes divide the order of G respectively.

2 The structure of $N^{\mathcal{N}}(G)$

It is easy to see that the intersection of all maximal abelian subgroups of a group G is its center $Z(G)$, it is also proved that the intersection of all \mathcal{F}-maximal subgroups of a group G is its \mathcal{F} hypercenter $Z_{\mathcal{F}}(G)$ for certain non-empty hereditary saturated formations \mathcal{F} in [10, 12, 19, 28, 29, 31].

In addition, it is well-known that the intersection of all maximal nilpotent subgroups of a group G is its hypercenter $Z_{\infty}(G)$ in [3, Corollary 4], and it is also proved that G equals $N^{\mathcal{N}}(G)_{\infty}$ if G is metanilpotent in [9, Theorem 4.4] or [27, Theorem 3.3].

A natural question arises:
Does the intersection of all maximal metanilpotent subgroups of the group G coincide with the hypercenter of \mathcal{N}^{2} ?

In this section, we obtain a positive answer to this question. Firstly, we will list here some lemmas on $N^{\mathcal{N}}(G)$ of a group G, which will be useful in the sequel.

Lemma 2.1 Let G be a group. Then $C_{G}\left(G^{\mathcal{N}}\right)$ is nilpotent.
Proof. Let $C_{G}\left(G^{\mathcal{N}}\right)=C$. Then $C G^{\mathcal{N}} / G^{\mathcal{N}} \cong C /\left(G^{\mathcal{N}} \cap C\right)$ is nilpotent. By $\left[G^{\mathcal{N}} \cap C, C\right]=1$, $G^{\mathcal{N}} \cap C \leq Z(C)$. Thus $C / Z(C)$ is nilpotent, so is C.

Lemma 2.2 [9, Proposition 2.2, Theorem 2.12 and Proposition 4.3] or [27, Theorem 2.5 and Proposition 2.3] Let G be a group. Then
(1) $Z_{\infty}(G) \leq C_{G}\left(G^{\mathcal{N}}\right) \leq N^{\mathcal{N}}(G)$.
(2) If $Z\left(G^{\mathcal{N}}\right)=1$, then $N^{\mathcal{N}}(G)=C_{G}\left(G^{\mathcal{N}}\right)$.
(3) If $N \unlhd G$ and $N \leq N^{\mathcal{N}}(G)_{\infty}$, then $N^{\mathcal{N}}(G / N)_{\infty}=N^{\mathcal{N}}(G)_{\infty} / N$.

Lemma 2.3 [9, Theorem 4.7] Let G be a group. Then
(1) $Z_{\infty}\left(G^{\mathcal{N}}\right) \leq N^{\mathcal{N}}(G)_{\infty}$.
(2) $N^{\mathcal{N}}(G)_{\infty} / Z_{\infty}\left(G^{\mathcal{N}}\right)=N^{\mathcal{N}}\left(G / Z_{\infty}\left(G^{\mathcal{N}}\right)\right)=C_{G / Z_{\infty}\left(G^{\mathcal{N}}\right)}\left(G^{\mathcal{N}} / Z_{\infty}\left(G^{\mathcal{N}}\right)\right)$.

Lemma 2.4 [29, Theorem A] Let \mathcal{F} be a hereditary saturated formation with $\pi(\mathcal{F}) \neq \emptyset$, for any $p \in \pi(\mathcal{F}), \mathcal{F}(p)$ denote the intersection of all formations containing the set $\left\{G / O_{p^{\prime}, p}(G) \mid G \in \mathcal{F}\right\}$, and let $F(p)$ denote the class of all groups G such that $G^{\mathcal{F}(p)}$ is a p-group.

Then $Z_{\mathcal{F}}(G)=\operatorname{Int} \mathcal{F}_{\mathcal{F}}(G)$ hold for each group G if and only if \mathcal{F} satisfies the boundary condition, where we say that \mathcal{F} satisfies the boundary condition if for any $p \in \pi(\mathcal{F}), G \in \mathcal{F}$ whenever G is an $F(p)$-critical group.

Lemma 2.5 [9, Corollary 4.5] or [27, Theorem 3.4] If H is an \mathcal{N}^{2}-subgroup of a group G, then $N^{\mathcal{N}}(G)_{\infty} H$ is also an \mathcal{N}^{2}-group.

From Lemma 2.5, the every maximal metanilpotent subgroup of a group G contains the hypercenter of $N^{\mathcal{N}}(G)$. We shall see in the sequel that in fact the latter subgroup is the intersection of all maximal metanilpotent subgroup of a group G. We need the following lemma.

Lemma 2.6 Let G be a group. Then
(1) The nilpotent residual of $N^{\mathcal{N}}(G)_{\infty}$ is nilpotent.
(2) $N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}}=Z_{\infty}\left(G^{\mathcal{N}}\right)$.

Proof. (1) If $Z\left(G^{\mathcal{N}}\right)=1$, then, by Lemma $2.2(2), N^{\mathcal{N}}(G)=C_{G}\left(G^{\mathcal{N}}\right)$. So $N^{\mathcal{N}}(G)$ is nilpotent by Lemma 2.1. Further more, we can prove $N^{\mathcal{N}}(G)_{\infty}=N^{\mathcal{N}}(G)$.

It is easy to see that $Z\left(G^{\mathcal{N}}\right)=1$ if and only if $N^{\mathcal{N}}(G) \cap G^{\mathcal{N}}=1$ by Lemma 2.2 (1) and (2). Since $Z\left(G^{\mathcal{N}}\right)=1$, we have $Z\left(\left(G / N^{\mathcal{N}}(G)\right)^{\mathcal{N}}\right)=1$. Then $N^{\mathcal{N}}\left(G / N^{\mathcal{N}}(G)\right) \cap\left(G / N^{\mathcal{N}}(G)\right)^{\mathcal{N}}=1$, that is,

$$
N^{\mathcal{N}}(G)_{2} \cap G^{\mathcal{N}} \leq N^{\mathcal{N}}(G) \cap G^{\mathcal{N}}=1
$$

By the same way, we have $N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}}=1$. Hence, by Lemma 2.2 (1) and the definition of series, $N^{\mathcal{N}}(G)_{\infty}=N^{\mathcal{N}}(G)$.

If $Z\left(G^{\mathcal{N}}\right) \neq 1$, then we consider $G / Z_{\infty}\left(G^{\mathcal{N}}\right)$. By Lemma 2.3 (2), we see

$$
N^{\mathcal{N}}(G)_{\infty} / Z_{\infty}\left(G^{\mathcal{N}}\right)=N^{\mathcal{N}}\left(G / Z_{\infty}\left(G^{\mathcal{N}}\right)\right)=C_{G / Z_{\infty}\left(G^{\mathcal{N}}\right)}\left(G^{\mathcal{N}} / Z_{\infty}\left(G^{\mathcal{N}}\right)\right)
$$

Then $N^{\mathcal{N}}(G)_{\infty} / Z_{\infty}\left(G^{\mathcal{N}}\right)$ is nilpotent by Lemma 2.1, thus $N^{\mathcal{N}}(G)_{\infty}$ is metanilpotent.
(2) If $Z\left(G^{\mathcal{N}}\right)=1$, then, by the same argument with (1), we have $N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}}=1=Z_{\infty}\left(G^{\mathcal{N}}\right)$. If $Z\left(G^{\mathcal{N}}\right) \neq 1$, then we consider $G / Z_{\infty}\left(G^{\mathcal{N}}\right)$. Then

$$
N^{\mathcal{N}}\left(G / Z_{\infty}\left(G^{\mathcal{N}}\right)\right) \cap\left(G / Z_{\infty}\left(G^{\mathcal{N}}\right)\right)^{\mathcal{N}}=1
$$

It follows from Lemma 2.3 that $N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}}=Z_{\infty}\left(G^{\mathcal{N}}\right)$.

Now, we are ready to answer the question.
Theorem 2.1 Let G be a group. Then $Z_{\mathcal{N}^{2}}(G)=N^{\mathcal{N}}(G)_{\infty}$.
Proof. We proceed by induction on the order of G.
(1) $Z_{\mathcal{N}^{2}}(G) \leq N^{\mathcal{N}}(G)_{\infty}$.

Let N be a minimal normal subgroup of G and $N \leq Z_{\mathcal{N}^{2}}(G)$. Since N is \mathcal{N}^{2}-central in G,

$$
\begin{equation*}
[N]\left(G / C_{G}(N)\right) \in \mathcal{N}^{2} . \tag{*}
\end{equation*}
$$

Let $X=[N]\left(G / C_{G}(N)\right)$. Then X is a primitive group and $\operatorname{Soc}(X)=N=F(X)$. It follows from $(*)$ that $X / F(X) \cong G / C_{G}(N) \in \mathcal{N}$. Hence $N \leq C_{G}\left(G^{\mathcal{N}}\right) \leq N^{\mathcal{N}}(G) \leq N^{\mathcal{N}}(G)_{\infty}$. By induction and Lemma 2.2 (3),

$$
Z_{\mathcal{N}^{2}}(G) / N=Z_{\mathcal{N}^{2}}(G / N) \leq N^{\mathcal{N}}(G / N)_{\infty}=N^{\mathcal{N}}(G)_{\infty} / N,
$$

thus $Z_{\mathcal{N}^{2}}(G) \leq N^{\mathcal{N}}(G)_{\infty}$.
(2) $N^{\mathcal{N}}(G)_{\infty} \leq Z_{\mathcal{N}^{2}}(G)$.

Let N be a minimal normal subgroup of G and $N \leq N^{\mathcal{N}}(G)_{\infty}$. If $N \leq Z(G)$, then $N \leq C_{G}\left(G^{\mathcal{N}^{2}}\right)$. If $N \leq G^{\mathcal{N}}$, then $N \leq N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}}$. By Lemma 2.6 (2) and [8, Theorem 6.14],

$$
N \leq Z_{\infty}\left(G^{\mathcal{N}}\right)=C_{U}\left(\left(G^{\mathcal{N}}\right)^{\mathcal{N}}\right) \leq C_{G}\left(G^{\mathcal{N}^{2}}\right)
$$

where U is maximal nilpotent subgroup of $G^{\mathcal{N}}$.
In addition, $N \leq M$ hold for any maximal metanilpotent subgroups M by Lemma 2.5. Hence, by [8, Theorem 6.14], $N \leq C_{M}\left(G^{\mathcal{N}^{2}}\right)=Z_{\mathcal{N}^{2}}(G)$. By induction and Lemma 2.2 (3),

$$
Z_{\mathcal{N}^{2}}(G) / N=Z_{\mathcal{N}^{2}}(G / N) \geq N^{\mathcal{N}}(G / N)_{\infty}=N^{\mathcal{N}}(G)_{\infty} / N,
$$

thus $Z_{\mathcal{N}^{2}}(G) \geq N^{\mathcal{N}}(G)_{\infty}$.
Theorem 2.2 Let G be a group. Then $N^{\mathcal{N}}(G)_{\infty}=Z_{\mathcal{N}^{2}}(G)=$ Int $_{\mathcal{N}^{2}}(G)$.
Proof. Let $F(p)=\mathcal{S}_{p} \mathcal{N}$ for all p. Then F is the canonical local definition of \mathcal{N}^{2}. If G is $F(p)$-critical for all p, then every maximal subgroup of G is nilpotent since they are in $\mathcal{S}_{p} \mathcal{N}$ for all p. Then G is either nilpotent or a Schmidt group. In any case, G is metanilpotent, that is, \mathcal{N}^{2} satisfies the boundary condition. Thus the equality is clear from Lemma 2.4 and Theorem 2.1.

Following [15], we denote the intersection of the normalizers of the derived subgroups of all subgroups in a group G by $D(G), D_{\infty}(G)$ is the terminal term of the ascending series $1=D_{0}(G) \leq$ $D_{1}(G) \leq D_{2}(G) \leq \cdots \leq D_{n}(G) \leq \cdots$, where $D_{i+1}(G) / D_{i}(G)=D\left(G / D_{i}(G)\right)$ for $i=0,1,2, \cdots$.

By the similar way, we can prove following theorem with the help of [15, Lemma 2.3, Theorem 2.6, Problem 5.1 and 5.2], [8, Theorem 6.14] and Lemma 2.4.

Theorem 2.3 Let G be a group and \mathcal{F} denote the class of group G that G^{\prime} is nilpotent. Then
(1) The derived subgroup of $D_{\infty}(G)$ is nilpotent and $D_{\infty}(G) \cap G^{\prime}=Z_{\infty}\left(G^{\prime}\right)$.
(2) $D_{\infty}(G)=Z_{\mathcal{F}}(G)=\operatorname{Int}_{\mathcal{F}}(G)$.

$3 \quad N^{\mathcal{N}}$-groups

In this section, we begin to discuss groups in which the nilpotent residual of every subgroup is normal.

Definition 3.1 A group G is said to be $N^{\mathcal{N}}{ }_{\text {-group }}$ ([g]) or S-group ([27]) if $G=N^{\mathcal{N}}(G)$. A group G is called D-group if $G=D(G)$.

Clearly, we see that the nilpotent residual of every subgroup in a $N^{\mathcal{N}}$-group is normal. So it is easy to see that the class of groups in which every subgroup is nilpotent or normal in properly contained in the class of $N^{\mathcal{N}}$-groups. For the sake of completeness, we list here some basic results on $N^{\mathcal{N}}$-groups which have been proved in [9].

Lemma 3.1 [9, Proposition 4.9] or [27, Theorem 4.2] Let G be a $N^{\mathcal{N}}{ }_{-}$group.
(1) If $H \leq G$, then H is a $N^{\mathcal{N}}$-group.
(2) If $K \unlhd G$, then G / K is a $N^{\mathcal{N}}$-group.

Lemma 3.2 [9, Proposition 2.7] or [27, Theorem 1.4] If $G=A \times B$ is the direct product of a group A and a group B with $(|A|,|B|)=1$, then $N^{\mathcal{N}}(G)=N^{\mathcal{N}}(A) \times N^{\mathcal{N}}(B)$.

The following example illustrates that the condition $(|A|,|B|)=1$ could not be removed in Lemma 3.2. It also shows that the direct product of two $N^{\mathcal{N}}$-groups may be not a $N^{\mathcal{N}}$-group.

Example 3.1 Let $G=S_{3} \times S_{3}=\langle a, b, c, d| a^{3}=b^{2}=c^{3}=d^{2}=1, a^{b}=a^{-1}, c^{d}=c^{-1},[a, c]=[a, d]=$ $[b, c]=[c, d]=1\rangle, H=\langle a c, b d\rangle$ and $K=\langle a c\rangle$. It is clear that H is isomorphic to S_{3} and K is the nilpotent residual of H. It follows from $K \nexists G$ that $N^{\mathcal{N}}(G)<N^{\mathcal{N}}\left(S_{3}\right) \times N^{\mathcal{N}}\left(S_{3}\right)=G$. Then G is a supersoluble non- $N^{\mathcal{N}}$-group in which all proper subgroups are $N^{\mathcal{N}}{ }_{-}$groups.

Example 3.2 [9, Proposition 4.10] The following groups are $N^{\mathcal{N}}{ }_{-}$groups:
(1) Groups all of whose non-nilpotent subgroups are normal.
(2) Groups with the cyclic nilpotent residual.
(3) Groups with an abelian normal subgroup of index a prime.

Lemma 3.3 [9, Proposition 2.3, Theorem 3.2, 3.5, 4.4, 4.11] If G is a $N^{\mathcal{N}}$-group, then
(1) G is a meta-nilpotent group.
(2) $l_{p}(G) \leq 1$ for a prime $p \in \pi(G)$ and the Fitting length of G is bounded by 2 .
(3) $F(G / \Phi(G))=C_{G / \Phi(G)}\left((G / \Phi(G))^{\mathcal{N}}\right)=(G / \Phi(G))^{\mathcal{N}} \times Z(G / \Phi(G))$.

Lemma 3.4 If $G=M N$ is the product of a normal subgroup N and a subgroup M, then $G^{\mathcal{N}} \leq M^{\mathcal{N}} N$. In particular, $(M \times N)^{\mathcal{N}}=M^{\mathcal{N}} \times N^{\mathcal{N}}$.

Proof. By $[G, G] \leq[M, M] N$ and induction, we get $K_{i}(G) \leq K_{i}(M) N$ for any integer i, then $G^{\mathcal{N}} \leq M^{\mathcal{N}} N$. If $M \unlhd G$, then $G^{\mathcal{N}} \leq M^{\mathcal{N}} N^{\mathcal{N}}(M \cap N)$. Hence $(M \times N)^{\mathcal{N}}=M^{\mathcal{N}} \times N^{\mathcal{N}}$.

The class of all $N^{\mathcal{N}}$-groups is not a saturated class as the following example shows.
Example 3.3 Let $G=\left\langle a, b, c, d \mid a^{2}=1, b^{3}=1, c^{3}=1, d^{3}=1, c^{a}=c^{-1}, c^{b}=c d, d^{a}=d^{-1}\right\rangle$. Then it is easy to see that G is not a $N^{\mathcal{N}^{-}}$-group but $G / \Phi(G)$ is a $N^{\mathcal{N}}{ }_{-}$-group.

It is clear that the class of nilpotent groups is contained in the class of $N^{\mathcal{N}}$-groups. Now we first begin to consider some special non-nilpotent $N^{\mathcal{N}}$-groups.

Proposition 3.1 Let G be a non-nilpotent $N^{\mathcal{N}}$-group. If there is a maximal subgroup M of G with $M_{G}=1$, then
(1) $G=G^{\mathcal{N}} \rtimes M$ with $G^{\mathcal{N}}$ a minimal normal subgroup of G and M nilpotent.
(2) Every subgroup of G is either nilpotent or subnormal.

Proof. Since M is a maximal subgroup of G and $M_{G}=1, G=G^{\mathcal{N}} M$. By $C_{G}\left(C_{G}\left(G^{\mathcal{N}}\right) \cap M\right) \geq G^{\mathcal{N}}$ and $N_{G}\left(C_{G}\left(G^{\mathcal{N}}\right) \cap M\right) \geq M$, we see $G=N_{G}\left(C_{G}\left(G^{\mathcal{N}}\right) \cap M\right)$. It follows that $C_{G}\left(G^{\mathcal{N}}\right) \cap M=1$. For any non-trivial normal subgroup H of G that contained in $C_{G}\left(G^{\mathcal{N}}\right), G=H M$ and $C_{G}\left(G^{\mathcal{N}}\right)=H$, which implies $C_{G}\left(G^{\mathcal{N}}\right)$ is a minimal normal subgroup of G.

Noticing Lemma 3.3 (3), we get $C_{G}\left(G^{\mathcal{N}}\right)=G^{\mathcal{N}} \times Z(G)$. Then $C_{G}\left(G^{\mathcal{N}}\right)=G^{\mathcal{N}}$ and $Z(G)=1$. Therefore $G^{\mathcal{N}} \cap M=1$ and M is nilpotent.

Since $G^{\mathcal{N}}$ is a minimal normal subgroup of $G, K^{\mathcal{N}}=1$ or $G^{\mathcal{N}}$ for every subgroup K of G. So every subgroup of G is either nilpotent or subnormal in G.

Proposition 3.2 If G is a primitive non-nilpotent D-group, then every subgroup of G is either nilpotent or normal.

In Proposition 3.1 above, $G^{\mathcal{N}}=F(G)$ is a minimal normal subgroup of a $N^{\mathcal{N}}$-group G, which is an elementary p-group for some $p \in \pi(G)$. So it is interesting to consider the non-nilpotent $N^{\mathcal{N}}$-groups such that $F(G)$ is a p-group.

Proposition 3.3 If G is a non-nilpotent $N^{\mathcal{N}}$-group and $F(G)$ is a p-group for some $p \in \pi(G)$, then (1) $G=O_{p p^{\prime}}(G)$ and $F(G)$ is a Sylow p-subgroup of G.
(2) $|G|$ divides $p^{n}\left(p^{r}-1\right)\left(p^{r-1}-1\right) \cdots(p-1)$ if $|P|=p^{n}$ and $|P / \Phi(P)|=p^{r}$.

Proof. (1) By $F(G)$ is a p-group, $F(G)=O_{p}(G)$, and then $F(G / F(G))=O_{p^{\prime}}(G / F(G))$. Apply Lemma 3.3 (2), we see $G / F(G)$ is a p^{\prime}-group, so $P \leq F(G)$ for $P \in \operatorname{Syl}_{p}(G)$, it implies $F(G)=P$. Then $G / O_{p}(G)=O_{p^{\prime}}\left(G / O_{p}(G)\right)=O_{p p^{\prime}}(G) / O_{p}(G)$, so $G=O_{p p^{\prime}}(G)$.
(2) By Lemma 3.3 (1), $N^{\mathcal{N}}$-groups are solvable. According to a Theorem of Hall-Higman [22, Theorem 9.3.2] and (1), we have $P=C_{G}(P / \Phi(P))$, and $G / C_{G}(P / \Phi(P))$ is isomorphic to a subgroup of $\operatorname{Aut}(P / \Phi(P))$. Let $|P|=p^{n}$ and $|P / \Phi(P)|=p^{r}$. Then $|G / P|$ divides $\left(p^{r}-1\right)\left(p^{r}-p\right) \cdots\left(p^{r}-p^{r-1}\right)$, by G / P is a p^{\prime}-group, we see $|G|$ divides $p^{n}\left(p^{r}-1\right)\left(p^{r-1}-1\right) \cdots(p-1)$.

Remark 3.1 According to Proposition 3.3, we can see that $F(G)$ is neither a cyclic group nor a dihedral group if $p=2$, also we can see $G=Q_{8} \rtimes C_{3}$ if $F(G)$ is a quaternion 2-group.

Lemma 3.5 Let p be a prime and P a Sylow p-subgroup of a group G. Then G is p-nilpotent if and only if $N_{G}(P)$ and $G^{\mathcal{N}}$ are p-nilpotent.

Proof. It is clear that $N_{G}(P)$ and $G^{\mathcal{N}}$ are p-nilpotent if G is p-nilpotent. Conversely, let G be a counter example of minimal order and $H=O_{p^{\prime}}\left(G^{\mathcal{N}}\right)$.

If $H \neq 1$, then we consider G / H. Since $N_{G / H}(P H / H)=N_{G}(P) H / H,(G / H)^{\mathcal{N}}$ are p-nilpotent and the minimality of G, we see G / H is p-nilpotent, so G is, a contradiction.

If $H=1$, then, by $G^{\mathcal{N}}$ is p-nilpotent, $G^{\mathcal{N}}$ is a p-group. It follows from $P / G^{\mathcal{N}} \unlhd G / G^{\mathcal{N}}$ that $P \unlhd G$, so G is p-nilpotent, a contradiction. Now we complete the proof.

Apply the Lemma 3.5 and Proposition 3.3 (1), we have:
Corollary 3.1 Let p be a prime and P a Sylow p-subgroup of a $N^{\mathcal{N}}{ }_{\text {-group }} G$. Then G is p-nilpotent if and only if $N_{G}(P)$ is p-nilpotent.
Lemma 3.6 [11, Lemma 0.5] If G is a metanilpotent group and $\bar{G}=G / \Phi(G)$, then $F(\bar{G})=\bar{G}^{\mathcal{N}} \times$ $Z(\bar{G})$.

Lemma 3.7 [13, Theorem 2.1, Lemma 2.4 and Theorem 2.5]
(1) If N is an abelian normal subgroup of G with $\Phi(G)=1$, then N has a complement in G.
(2) If $\Phi(G)=1$ and $Z(G) \neq 1$, then $G=Z(G) \times H$ with $Z(G)$ elementary abelian and $Z(H)=1$.

Theorem 3.1 Let G be a non-nilpotent $N^{\mathcal{N}}$-group and $\Phi(G)=1$. Then the nilpotent residual of every subgroup has a complement and $G=F(G) \rtimes K$ with $F(G)$ abelian and K nilpotent.
(1) If $Z(G)=1$, then $F(G)=G^{\mathcal{N}}$.
(2) If $Z(G) \neq 1$, then $G=Z(G) \times H$, and H satisfying (1).

Proof. By the condition of Theorem and Lemma 3.6, the nilpotent residual of every subgroup is normal and $F(G)=G^{\mathcal{N}} \times Z(G)$ is abelian group. Then the nilpotent residual of every subgroup has a complement by Lemma 3.7 (1). Specially, $F(G)$ has a complement K in G, that is, $G=F(G) \rtimes K$, and K is nilpotent.
(1) If $Z(G)=1$, then $F(G)=G^{\mathcal{N}}$.
(2) If $Z(G) \neq 1$, then, by Lemma $3.7(2), G=Z(G) \times H$, where $Z(G)$ is elementary abelian and $Z(H)=1$. So H satisfying (1).

The following results are consequences of Theorem 3.1.
Theorem 3.2 Let G be a $N^{\mathcal{N}_{-}}$group. Then
(a) G is a nilpotent group.
(b) G is a non-nilpotent group. If $\Phi(G)=1$, then the nilpotent residual of every subgroup has a complement and $G=F(G) \rtimes K$ with $F(G)$ abelian and K nilpotent.

Theorem 3.3 Let G be a D-group. Then
(a) G is a abelian group.
(b) G is a non-abelian group. If $\Phi(G)=1$, then the derived subgroup of every subgroup has a complement and $G=F(G) \rtimes K$ with $F(G)$ and K abelian.

4 Minimal non- $N^{\mathcal{N}}$-groups

Definition 4.1 A group G is called a minimal non- $N^{\mathcal{N}}{ }_{-}$group if G is not a $N^{\mathcal{N}^{-}}{ }_{-g r o u p}$, but every proper subgroup of G is a $N^{\mathcal{N}}$-group.

The semidirect product of Q_{8} with S_{3} show that the quotient group of a minimal non- $N^{\mathcal{N}}$-group can be not a $N^{\mathcal{N}^{\mathcal{N}}}$-group. However, $G / \Phi(G)$ is a minimal non- $N^{\mathcal{N}}$-group or $N^{\mathcal{N}_{-}}$-group if G is a minimal non- $N^{\mathcal{N}}$-group and $\Phi(G) \neq 1$.

Lemma 4.1 If G is a minimal non- $N^{\mathcal{N}}$-group and $\Phi(G) \neq 1$, then either $G / \Phi(G)$ is a minimal non- $N^{\mathcal{N}}$-group or $N^{\mathcal{N}}$-group.

Proof. Let H be a maximal subgroup of G and $K \leq H$. Since G is a minimal non- $N^{\mathcal{N}}$-group, H is a $N^{\mathcal{N}}$-group, then $K^{\mathcal{N}} \unlhd H$. We consider $G / \Phi(G)$ and its maximal subgroup $H / \Phi(G)$. It is clear that $(K \Phi(G) / \Phi(G))^{\mathcal{N}} \unlhd H / \Phi(G)$, so $H / \Phi(G)$ is a $N^{\mathcal{N}}$-group, and every maximal subgroup of $G / \Phi(G)$ is a $N^{\mathcal{N}}$-group. Then $G / \Phi(G)$ is a minimal non- $N^{\mathcal{N}}$-group or $N^{\mathcal{N}}$-group.

Lemma 4.2 If G is a minimal non- $N^{\mathcal{N}_{-}}$group and $\Phi(G)=1$, then G is minimal simple or solvable. And if G is a solvable group, then every proper quotient group of G is a $N^{\mathcal{N}}$-group.

Proof. Since every proper subgroup of G is a $N^{\mathcal{N}}$-group and Lemma 3.3 (1), very proper subgroup of G is solvable. If G is a simple group, then G is a minimal simple group. If G is not a simple group, then there exists a non-trivial proper normal subgroup N of G. By $\Phi(G)=1$, there exists a maximal subgroup M of G such that $G=M N$. Then G / N is a $N^{\mathcal{N}}$-group since M is a $N^{\mathcal{N}}$-group. It follows from M and N are $N^{\mathcal{N}}$-groups that G is soluble.

In order to classify the simple minimal non- $N^{\mathcal{N}}$-groups, we need some lemmas.

Lemma 4.3 [20, Theorem 4.3] and [18, Lemma 1] A group G is called a 2-Con-Cos group if the following conditions are satisfied for a proper derived subgroup G^{\prime} of G,
(i) $G^{\prime} x=\operatorname{cl}(x)$, for all x in $G-G^{\prime}$, (ii) $G^{\prime}=1 \cup \operatorname{cl}(a)$, for some a in G, where $\operatorname{cl}(g)$ denotes the conjugacy class of $g \in G$. Then
(1) G is a 2-Con-Cos group with $Z(G)=1$ if and only if G is a Frobenius group of the type $C_{p}^{r} \rtimes C_{p^{r-1}}$ for some prime p and some $r \geq 1$.
(2) If G is a 2-Con-Cos group, $N \unlhd G$, then $N=1$ or $N \geq G^{\prime}$.

Lemma 4.4 Let G be a Frobenius group of the type $C_{p}^{n} \rtimes C_{p^{n}-1}$. Then G is a $N^{\mathcal{N}}$-group precisely when $p^{n}-1$ is a prime.

Proof. By Lemma 4.3, $C_{p}^{n}=G^{\prime}=G^{\mathcal{N}}$ is the minimal normal subgroup of G. If $p^{n}-1$ is a prime, then, by Example $3.2(3), G$ is a $N^{\mathcal{N}}$-group. Let $C=C_{p^{n}-1}$ be a cyclic group which is not of prime order and B a non-trivial maximal subgroup of C and $A=C_{p}^{n}$. Since G is a Frobenius group, $V \cong C_{p}^{n}$ is an irreducible and faithful module for C over the finite field $G F(p)$ of p elements and $\operatorname{dim} V=n$. Now, by [8, Theorem 9.16], the order of B is $\left(p^{n}-1\right) / p$. So the dimension of every irreducible and faithful module for B over $\operatorname{GF}(p)$ is less than n. In particular, A is not irreducible for B. Moreover, $C_{B}(A)=\operatorname{Ker}(B$ on $A)=1$ since A is faithful for C. According to Clifford theorem, A is completely irreducible and so there exists an irreducible B-submodule of A which is not centralized by B, A_{1} say. Now A_{1} is the nilpotent residual of $A_{1} B$ and A_{1} cannot be normal in G since A is a minimal normal subgroup of G, that is, G is not a $N^{\mathcal{N}}$-group.

Now, we are ready to classify the simple minimal non- $N^{\mathcal{N}}$-groups.
Theorem 4.1 If G is a simple minimal non- $N^{\mathcal{N}}$-group, then G is isomorphic to one of following groups.
(a) $\operatorname{PSL}(2, p), p$ is a prime, $p>3, p^{2} \not \equiv 1(\bmod 5), p^{2} \not \equiv 1(\bmod 16)$.
(b) $\operatorname{PSL}\left(2,2^{q}\right), q$ is a prime and $2^{q}-1$ also is a prime.
(c) $\operatorname{PSL}\left(2,3^{q}\right), q$ is an odd prime and $\frac{3^{q}-1}{2}$ also is a prime.
(d) $S z\left(2^{q}\right), q$ is an odd prime and $2^{q}-1$ also is a prime.

Proof. By the classification of minimal simple groups [30], G may have following 5 types: (1) $P S L(2, p), p$ is a prime, $p>3, p^{2} \not \equiv 1(\bmod 5)$. (2) $P S L\left(2,2^{q}\right), q$ is a prime. (3) $P S L\left(2,3^{q}\right), q$ is an odd prime. (4) $S z\left(2^{q}\right), q$ is a prime. (5) $P S L(3,3)$.
(a) All maximal subgroups of (1) are: (1.1) Dihedral group of order $2 \frac{p \pm 1}{2}$, (1.2) $C_{p} \rtimes C_{\frac{p-1}{2}}$, A_{4}, (1.4) S_{4} if $p^{2} \equiv 1(\bmod 16)$.

It is clear that dihedral groups, meta-cyclic groups and Schmidt groups are all $N^{\mathcal{N}}$-groups, then (1.1), (1.2), (1.3) are all $N^{\mathcal{N}}$-groups. However $N^{\mathcal{N}}\left(S_{4}\right)=1$, then (a) is as required.
(b) All maximal subgroups of (2) are: (2.1) Dihedral group of order $2\left(2^{q} \pm 1\right),(2.2) C_{2}^{q} \rtimes C_{2^{q}-1}$, which is order of $2^{q}\left(2^{q}-1\right),(2.3) A_{4}$ if $q=2$.

It is easy to see that (2.1) and (2.3) are all $N^{\mathcal{N}}$-groups. Apply Lemma 4.4 to (2.2), we can see $C_{2}^{q} \rtimes C_{2^{q}-1}$ is a $N^{\mathcal{N}}$-group if $2^{q}-1$ is a prime, and then $P S L\left(2,2^{q}\right)$ is a minimal non- $N^{\mathcal{N}}$-group. Otherwise, $\operatorname{PSL}\left(2,2^{q}\right)$ is not a minimal non- $N^{\mathcal{N}}$-group.
(c) All maximal subgroups of (3) are: (3.1) Dihedral group of order $2\left(\frac{3^{q} \pm 1}{2}\right),(3.2) C_{3}^{q} \rtimes C_{\frac{\left(3^{q}-1\right)}{2}}$, which is order of $3^{q} \frac{\left(3^{q}-1\right)}{2}$, (3.3) A_{4}.

It is clear by the similar argument with (b).
(d) All maximal subgroups of (4) are: (4.1) Frobenius group $P_{2} \rtimes C_{2^{q}-1}$, where P_{2} is non-abelian, $\left|P_{2}\right|=2^{2 q}$, (4.2) Dihedral group of order $2\left(2^{q}-1\right)$, (4.3) $C_{2^{q} \pm 2^{\frac{q+1}{2}}+1} \rtimes C_{4}$.

Also it is clear that (4.1) and (4.3) are all $N^{\mathcal{N}}$-groups. If $2^{q}-1$ is a prime, then $P_{2} \rtimes C_{2^{q}-1}$ is a Schmidt group, so $S z\left(2^{q}\right)$ is a minimal non- $N^{\mathcal{N}}$-group. If $2^{q}-1$ is not a prime, then $P_{2} \rtimes C_{2^{q}-1} / \Phi\left(P_{2}\right) \cong$ $C_{2}^{q} \rtimes C_{2^{q}-1}$, by Lemma 4.4, it is not a $N^{\mathcal{N}^{-}}$-group, so $S z\left(2^{q}\right)$ is not a minimal non- $N^{\mathcal{N}}{ }_{\text {-group. }}$.
(e) Since S_{4} is a maximal subgroup of $P S L(3,3)$ and $N^{\mathcal{N}}\left(S_{4}\right)=1, \operatorname{PSL}(3,3)$ is not a minimal non- $N^{\mathcal{N}}$-group. Now the theorem is complete.

After classifying the simple minimal non- $N^{\mathcal{N}}$-groups, we turn to solvable minimal non- $N^{\mathcal{N}}$-groups.
Theorem 4.2 If G is a solvable minimal non- $N^{\mathcal{N}}{ }_{-}$group and $\Phi(G)=1$, then
(1) Assume $G^{\mathcal{N}}$ is not nilpotent, then
(1.a) $G=F(G) \rtimes H$, where $F(G), H$ are unique minimal normal and maximal subgroup of G.
(1.b) H is a schimdt group. Let $F(G)$ be p-group and $H=Q \rtimes R$ or $Q \rtimes P_{1}$, where Q, R and P_{1} are a normal Sylow q-subgroup, cyclic Sylow r and p-subgroup of H. Then $G=F(G) \rtimes(Q \rtimes R)$ or $F(G) \rtimes\left(Q \rtimes P_{1}\right)$ and $G^{\mathcal{N}}=F(G) \rtimes Q$ is a abelian-by-nilpotent group, $G^{\mathcal{N}^{2}}=F(G)$.
(1.c) $B^{\mathcal{N}}=Q$ or $B^{\mathcal{N}}<F(G)$, where B is a subgroup of G such that $B^{\mathcal{N}} \nexists G$.
(2) Assume $G^{\mathcal{N}}$ is nilpotent, then
(2.a) $G=P \rtimes K$, where P, K are Sylow p-group and nilpotent Hall p'-subgroup of G.
(2.b) $P=F(G)=B^{\mathcal{N}} N=G^{\mathcal{N}}=[P, K]$ is an elementary abelian p-group, where $B^{\mathcal{N}} \nexists G$ and N is a minimal normal subgroup in G.
(2.c) Let $|P|=p^{n}$. Then $|G|$ divides $|P| \cdot|G L(n, p)|$.
(2.d) Let M be a maximal subgroup of G. If $B \leq M$, then $M \unlhd G,|G: M|=q \neq p$. If $B \not \leq M$, then $M \unlhd G$ or $M=(F(G) \cap M) \rtimes K$.

Proof. Our theorem will be proved by following two cases according to $G^{\mathcal{N}}$ is nilpotent or not.
(1) If $G^{\mathcal{N}}$ is not nilpotent, then the proof is divided into following 5 steps.
(1.1) $F(G)$ is a unique minimal normal subgroup of G.

By $\Phi(G)=1, F(G)$ is a direct product of some minimal normal subgroups of G. If there exists two different minimal normal subgroups N_{1}, N_{2} of G, then $G / N_{1}, G / N_{2}$ are $N^{\mathcal{N}}$-groups. Then $G^{\mathcal{N}}$ is nilpotent by Lemma 3.3 (1) and 3.4, a contradiction. Hence $F(G)$ is the unique minimal normal subgroup of G.
(1.2) $G=F(G) \rtimes H$, where H is a non-nilpotent maximal subgroup of G.

Again since $\Phi(G)=1$, there exists a maximal subgroup H of G such that $G=F(G) H$. It follows from $F(G) \cap H \unlhd G$ and (1.1) that $F(G) \cap H=1$. Therefore $F(G)=C_{G}(F(G))$ and $H=G / F(G)$ is not nilpotent.
(1.3) H is a Schmidt group.

Since G is solvable, H is solvable, then there exists a maximal normal subgroup M of H such that $|H: M|=q$. Let $F(G)$ be an elementary abelian p-group.

By $M \unlhd H$, we get $N_{G}(F(G) M) \geq H$ and $N_{G}(F(G) M) \geq F(G) M$, then $F(G) M \unlhd G$. It follows that $F(F(G) M)=F(G)$. Then M is nilpotent since $M^{\mathcal{N}} \cong(F(G) M / F(F(G) M))^{\mathcal{N}}=1$. Next we prove that M is a p^{\prime}-group. If not, let $M_{p} \in \operatorname{Syl}_{p}(M)$. Then $M_{p} \unlhd H$ and $F(G) M_{p} \unlhd G$, so $F(G) M_{p}=F(G)$ and $M_{p} \leq F(G)$, a contradiction.

If $q \neq p$, then H is a p^{\prime}-group and $F(G)$ is a normal Sylow p-subgroup of G. Let H_{1} be a proper subgroup of H. Since $F\left(F(G) H_{1}\right)=F(G) \times O_{p^{\prime}}\left(F(G) H_{1}\right), O_{p^{\prime}}\left(F(G) H_{1}\right)=1$ and $F\left(F(G) H_{1}\right)=$ $F(G)$. Then H_{1} is nilpotent since $H_{1}^{\mathcal{N}} \cong\left(F(G) H_{1} / F(G)\right)^{\mathcal{N}}=\left(F(G) H_{1} / F\left(F(G) H_{1}\right)\right)^{\mathcal{N}}=1$, so H is a Schmidt p^{\prime}-group.

If $q=p$, then there exists subgroup A of order p such that $H=M A$. Let T be a maximal subgroup of H.

Case 1. T does not contain a subgroup of order p, then $F(F(G) T)=F(G)$. By the similar argument above, we can get T is nilpotent.

Case 2. T contains a subgroup $A^{h}(h \in H)$ of order p. If $F(G) A^{h} \nexists F(G) T$, then $F(F(G) T)=$ $O_{p}(F(G) T)=F(G)$, so T is nilpotent. If $F(G) A^{h} \unlhd F(G) T$, then $A^{h}=F(G) A^{h} \cap T \unlhd T$, and $T=A^{h} M_{1}, M_{1}<M$, so $\left[A^{h}, M_{1}\right] \leq A^{h} \cap M=1$, that is, T is nilpotent.

Hence, in either cases above, H is a Schmidt group.
(1.4) $G^{\mathcal{N}}=F(G) \rtimes Q$ is a abelian-by-nilpotent group, and $G^{\mathcal{N}^{2}}=F(G)$.

By (1.3), $H=Q \rtimes R$ or $Q \rtimes P_{1}$, where Q, R and P_{1} are normal Sylow q-subgroup, cyclic Sylow r and p-subgroup of H. Then $G=F(G) \rtimes(Q \rtimes R)$ or $F(G) \rtimes\left(Q \rtimes P_{1}\right)$ and $G^{\mathcal{N}}=F(G) \rtimes Q$ by Lemma 3.4. Therefore $G^{\mathcal{N}}$ is a $N^{\mathcal{N}}$-group. If $q \neq 2$, then $\exp (Q)=q$, and $G^{\mathcal{N}}$ is metabelian group. If $q=2$, then $\exp (\Phi(Q))=2$, and $G^{\mathcal{N}}$ is abelian-by-nilpotent group.
(1.5) $B^{\mathcal{N}}=Q$ or $B^{\mathcal{N}}<F(G)$, where B is a subgroup of G such that $B^{\mathcal{N}} \nexists G$.

Since G is a minimal non- $N^{\mathcal{N}^{-}}$-group, there at least exists a subgroup B of G such that $B^{\mathcal{N}} \nexists G$. If $B F(G)=G$, then, by (1.2), B$\cong H$, and therefore $B^{\mathcal{N}}=Q$ by (1.4). If $B F(G)<G$, then $B F(G) / F(G)$ is nilpotent by (1.3), so $B^{\mathcal{N}} \leq(B F(G))^{\mathcal{N}} \leq F(G)$, that is, $B^{\mathcal{N}}<F(G)$.
(2) If $G^{\mathcal{N}}$ is nilpotent, then $N^{\mathcal{N}}(G)>1$ and $G^{\mathcal{N}} \leq F(G)$. Also it is easy to see $G=N^{\mathcal{N}}(G)_{2}$ and the Fitting length of G equals 2. Following proof can be divided into 7 steps.
(2.1) $F(G)=B^{\mathcal{N}} N$, where $B^{\mathcal{N}} \nexists G$ and N is a minimal normal subgroup of G.

Since G is a minimal non- $N^{\mathcal{N}^{-}}$-group, there at least exists a subgroup B of G such that $B^{\mathcal{N}} \nexists G$. By $(B N / N)^{\mathcal{N}} \unlhd G / N$ hold for any normal subgroup N of $G, B^{\mathcal{N}} N \unlhd G$. Specially, we consider the case N is a minimal normal subgroup of G.

If N is a unique minimal normal subgroup of G, then, by $\Phi(G)=1, F(G)=N=G^{\mathcal{N}}$. If minimal normal subgroup of G is not unique, then, for another minimal normal group T of $G, T \cap B^{\mathcal{N}} N$ is normal. Since $B^{\mathcal{N}} T \cap B^{\mathcal{N}} N=B^{\mathcal{N}}\left(T \cap B^{\mathcal{N}} N\right) \unlhd G$, we get $T \leq B^{\mathcal{N}} N$, it follows that every minimal normal subgroup of G is contained in $B^{\mathcal{N}} N$. By $\Phi(G)=1, F(G)=B^{\mathcal{N}} N$.
(2.2) $F(G)=P$, where $P \in \operatorname{Syl}_{p}(G)$.

Now we claim that $B^{\mathcal{N}}$ does not contain any non-trivial normal subgroup of G. If not, let $T \unlhd G$ and $T \leq B^{\mathcal{N}}$. Then $(B / T)^{\mathcal{N}}=B^{\mathcal{N}} / T \unlhd G / T$, so $B^{\mathcal{N}} \unlhd G$, a contradiction.

Let N be an elementary abelian p-group. Then $F(G)=N$ or $F(G)=B^{\mathcal{N}} N$ by (2.1). It is easy to see $F(G)_{p^{\prime}} \unlhd G$, therefore $F(G)_{p^{\prime}}=1$ by the claim above. Then $F(G)=O_{p}(G)$. Thus $G / F(G)=O_{p^{\prime}}(G / F(G))$, and then $F(G)=P$, where $P \in \operatorname{Syl}_{p}(G)$.
(2.3) $F(G)=G^{\mathcal{N}}$ and $Z(G)=1$.

By Lemma 3.6, $F(G)=G^{\mathcal{N}} \times Z(G)$. It follows from (2.1) that $B^{\mathcal{N}} N=G^{\mathcal{N}} \times Z(G)$. If $N \leq Z(G)$, then $Z(G)=N$ and $H^{\mathcal{N}}=G^{\mathcal{N}}$, a contradiction. Then $N \leq G^{\mathcal{N}}$ and $Z(G)=1$. Hence $F(G)=$ $B^{\mathcal{N}} N=G^{\mathcal{N}}$.
(2.4) $G=P \rtimes K$, where K is nilpotent Hall p^{\prime}-subgroup, $P=[P, K]$.

By (2.2) and (2.3), there exists a Hall p^{\prime}-subgroup K such that $G=P \rtimes K$ and K is a nilpotent p^{\prime}-subgroup. Apply Fitting lemma, we get $P=[P, K] \times C_{P}(K)=[P, K]$ by $Z(G)=1$.
(2.5) Let $|P|=p^{n}$. Then $|G|$ divides $|P| \cdot|G L(n, p)|$.

By (2.2) and $\Phi(G)=1, P$ is elementary p-group, and then G / P is isomorphic to a subgroup of $\operatorname{Aut}(P)$. Hence $|G|$ divides $|P| \cdot|G L(n, p)|$ by (2.4).
(2.6) If $B \leq M$ and M is a maximal subgroup of G, then $M \unlhd G,|G: M|=q \neq p$.

Also we claim that B is contained in a unique maximal subgroup M of G. If there exists two different maximal subgroups M, M_{1} such that $B \leq M, B \leq M_{1}$, then $H^{\mathcal{N}} \unlhd M$ and $H^{\mathcal{N}} \unlhd M_{1}$, so $H^{\mathcal{N}} \unlhd\left\langle M, M_{1}\right\rangle=G$, a contradiction.

If $F(G) \not 又 M$, then $G=F(G) M$. By $F(G)$ is abelian group, $B^{\mathcal{N}} \unlhd G$, a contradiction. Then $F(G) \leq M$ and $M / F(G)$ is the maximal subgroup of $G / F(G)$, so $M / F(G) \unlhd G / F(G)$ and $\mid G / F(G)$: $M / F(G) \mid=q$, that is, $M \unlhd G$ and $|G: M|=q$.
(2.7) If $B \not \leq E$ and E is a maximal subgroup of G, then $E \unlhd G$ or $E=(F(G) \cap E) \rtimes K$.

It is also clear that there at least exists a maximal subgroup E of G such that the nilpotent residual of every subgroup of E is normal. Otherwise, every maximal subgroup contains subgroup that its nilpotent residual is not normal, then, by (2.6), every maximal subgroup of G is normal and G is nilpotent, a contradiction. If $E \geq F(G)$, then $E / F(G)$ is the maximal subgroup of $G / F(G)$, so $E \unlhd G$. If $E \nsupseteq F(G)$, then $G=F(G) E$ and $E=(F(G) \cap E) \rtimes K$.

Corollary 4.1 If G is a soluble minimal non- $N^{\mathcal{N}}$-group and $\Phi(G)=1$, then,
(1) for a prime $p \in \pi(G), B^{\mathcal{N}}$ is a p-group for any subgroup B of G such that $B^{\mathcal{N}} \nexists G$.
(2) $1 \leq l_{p}(G) \leq 2$.
(3) $P \geq F(G)$, where $P \in \operatorname{Syl}_{p}(G)$.

Corollary 4.2 If G is a minimal non- $N^{\mathcal{N}}{ }_{-}$group and $\Phi(G)=1$, then $Z(G)=1$.
Theorem 4.3 If G is a minimal non- $N^{\mathcal{N}}{ }_{-}$group and $\Phi(G) \neq 1$, then $G / \Phi(G)$ satisfies Theorem 3.2, 4.1 or 4.2.

Proof. It is clear from Lemma 4.2.

Hence, we have obtained a simple characterization of minimal non- $N^{\mathcal{N}}$-groups by Theorem above.

Acknowledgement: The authors would like to thank Professor A. Ballester-Bolinches of Valencia University for his valuable suggestions and useful comments contributed to this paper.

References

[1] R. Baer, Der Kern eine charakteristische Untergruppe, Compos. Math., 1 (1934), 254-283.
[2] R. Baer, Zentrum und Kern von Gruppen mit Elementen unendlicher Ordnung, Compos. Math., 2 (1935), 247-249.
[3] R. Baer, Group elements of prime power index, Trans. Amer. Math. Soc., 75 (1953), 20-47.
[4] R. Baer, Norm and hypernorm, Publ. Math. Debrecen, 4 (1956), 347-356.
[5] A. Ballester-Bolinches, J. Cossey, Finite groups with subgroups supersoluble or subnormal, J. Algebra 321 (2009), 2042-2052.
[6] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, Netherlands, 2006.
[7] J. C. Beidleman, H. Heineken, M. Newell, Center and norm, Bull. Austral. Math. Soc., 69 (2004), 457-464.
[8] H. Doerk and T. Hawkes, Finite soluble groups, Belin, New York, 1992.
[9] L. Gong, X. Guo, On the intersection of the normalizers of the nilpotent residuals of all subgroups of a finite group, Algebra Colloq. 20 (2013), 349-360.
[10] W. Guo and A. N. Skiba, On the intersection of the \mathcal{F}-maximal subgroups and the generalized \mathcal{F}-hypercentre of a finite group, J. Algebra, 336 (2012), 112-125.
[11] X. Guo, L. Gong, A note on the size of the nilpotent residuals in a finite group, Arch. Math. 99 (2012), 413-416.
[12] W. Guo, X. Feng, J. Huang, New characterizations of some classes of finite groups, Bull. Malays. Math. Sci. Soc. 34 (2011), 575-589.
[13] L.C. Kappe, J. Kirtland, Finite group with trivial Frattini subgroup, Arch. Math. 80(2003), 225-234.
[14] K.S. Kemhadze, Finite groups whose every non-primary subgroup is different from its normaliser, Sakharth SSR Mecn. Akad. Moambe 62 (1971), 529-532.
[15] S. Li, Z. Shen, On the intersection of the normalizers of derived subgroups of all subgroups of a finite group, J. Algebra, 323 (2010), 1349-1357.
[16] J. Liu, X. Guo and S. Li, The influence of $C A P^{*}$ - subgroups on the solvability of finite groups, Bull. Malays. Math. Sci. Soc., 1(2012), 227-237.
[17] X. Luo and X. Guo, Finite groups in which every non-abelian subgroup is s-permutable, Southeast Asian Bulletin of Mathematics, 33 (2009) 1143-1147.
[18] K. Motose, Finite groups having exactly one non-linear irreduciable chacter, Bull.Fac.Sci.Tech.Hirosaki Univ, 9 (2007), 101-113.
[19] H. Mousavi, A. Shomali, Central automorphisms of semidirect products, Bull. Malays. Math. Sci. Soc. 36 (2013), 709-716.
[20] A.S. Muktibodh, Characterization of Frobenius groups of special type, Math. J. Okayama Univ, 48 (2006), 73-76.
[21] R.E. Phillips, J.S. Wilson, On certain minimal conditions for infinite groups, J. Algebra 51 (1978), 41-68.
[22] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
[23] G.M. Romalis, N.F. Sesekin, Metahamiltonian groups, Ural. Gos. Univ. Mat. Zap. 5 (1966), 101-106.
[24] G.M. Romalis, N.F. Sesekin, Metahamiltonian groups, Ural. Gos. Univ. Mat. Zap. 6 (1968), 50-52.
[25] A. Russo, G. Vincenzi, Groups whose non-normal subgroups have a transitive normality relation, Rend. Circ. Mat. Palermo (2) 50 (3) (2001), 477-482.
[26] E. Schenkman, On the norm of a group, Illinois J. Math., 4 (1960), 150-152.
[27] Z. Shen, J. Shi, G. Qian, On the norm of the nilpotent residuals of all subgroups of a finite group, J. Algebra, 1 (2012),290-298.
[28] A.N. Skiba, On the intersection of all maximal \mathcal{F}-subgroups of a finite group, J. Algebra, $\mathbf{3 4 3}$ (2011), 173-182.
[29] A.N. Skiba, On the \mathcal{F}-hypercentre and the intersection of all \mathcal{F}-maximal subgroups of a finite group, J. Pure Appl. Algebra, 216 (2012), 789-799.
[30] J.G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, I, Bull. Amer. Math. Soc. 74 (1968), 383-437.
[31] L. Zhu, N. Yang, N. T. Vorob'ev, On lockett pairs and lockett conjecture for π-Soluble fitting classes, Bull. Malays. Math. Sci. Soc., 3 (2013), 825-832.

[^0]: *The research of the work was partially supported by the National Natural Science Foundation of China(11071155, 11271208 and 11271085), SRFDP(200802800011), the Shanghai Leading Academic Discipline Project(J50101).
 ${ }^{\dagger}$ Corresponding author.

