
On normalizers of the nilpotent residuals of subgroups of

a finite group ∗
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1 Introduction

All groups considered in this paper are finite.
A Dedekind group is a group in which every subgroup is normal, which has been generalised in a

number of ways. Romalis and Sesekin investigated metahamiltonian groups, in which every subgroup
is normal or abelian [23, 24]. Russo and Vincenzi considered groups in which every subgroup is normal
or a T -group [25]. Kemhadze investigated the structure of groups in which every subgroup is either
subnormal or nilpotent [14], as did Phillips and Wilson, who gave necessary conditions [21, Lemma 7]
and a detailed description of such groups with trivial centre [21, Proposition 2]. Recently, Ballester-
Bolinches and Cossey have obtained the equivalent condition of non-nilpotent groups in which every
subgroup is either subnormal or nilpotent [5].

Recall that the norm N(G) of a group G is the intersection of the normalizes of all subgroups of
G, which was first introduced by Baer in 1934 [1] and many useful properties and results on norm
have been given [1, 2, 4, 7, 16, 17, 26]. It is clear that G = N(G) if and only if G is a Dedekind group.

In addition, we have studied a characteristic subgroup NN (G) of a group G, which is the inter-
section of the normalizers of the nilpotent residuals of all subgroups of G [9], also it is called S(G) in
[27], that is,

NN (G) =
⋂

H≤G

NG(HN ),

where HN is the nilpotent residual of subgroup H of G.
There exists a series of normal subgroups:

1 = NN (G)0 ≤ NN (G)1 ≤ NN (G)2 ≤ · · · ≤ NN (G)n ≤ · · · ,
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in which NN (G)i+1/N
N (G)i = NN (G/NN (G)i) for i = 0, 1, 2, · · · , and let NN (G)∞ be the terminal

term of the ascending series.
Our aim in this paper is to consider the structure of groups whose nilpotent residuals of non-

normal subgroups are normal, which is a generalization of the class of groups in which every subgroup
is nilpotent or normal.

The terminology and notation employed agree with standard usage [6, 8, 22]. Let N 2 denote
the class of metanilpotent groups and IntN 2(G) denote the intersection of all maximal metanilpotent
subgroups of a group G. The metanilpotent hypercenter, nilpotent residual, metanilpotent residual,
Fitting and Frattini subgroup of a group G will be denoted by ZN 2(G), GN , GN

2
, F (G), Φ(G)

respectively. Ki(G) and π(G) denote the ith term of the lower central series of a group G and the set
of primes divide the order of G respectively.

2 The structure of NN (G)

It is easy to see that the intersection of all maximal abelian subgroups of a group G is its center
Z(G), it is also proved that the intersection of all F-maximal subgroups of a group G is its F-
hypercenter ZF (G) for certain non-empty hereditary saturated formations F in [10, 12, 19, 28, 29, 31].

In addition, it is well-known that the intersection of all maximal nilpotent subgroups of a group
G is its hypercenter Z∞(G) in [3, Corollary 4], and it is also proved that G equals NN (G)∞ if G is
metanilpotent in [9, Theorem 4.4 ] or [27, Theorem 3.3].

A natural question arises:
Does the intersection of all maximal metanilpotent subgroups of the group G coincide

with the hypercenter of N 2 ?
In this section, we obtain a positive answer to this question. Firstly, we will list here some lemmas

on NN (G) of a group G, which will be useful in the sequel.

Lemma 2.1 Let G be a group. Then CG(GN ) is nilpotent.

Proof. Let CG(GN ) = C. Then CGN /GN ∼= C/(GN ∩ C) is nilpotent. By [GN ∩ C,C] = 1,
GN ∩ C ≤ Z(C). Thus C/Z(C) is nilpotent, so is C.

Lemma 2.2 [9, Proposition 2.2, Theorem 2.12 and Proposition 4.3] or [27, Theorem 2.5 and Propo-
sition 2.3] Let G be a group. Then

(1) Z∞(G) ≤ CG(GN ) ≤ NN (G).
(2) If Z(GN ) = 1, then NN (G) = CG(GN ).
(3) If N E G and N ≤ NN (G)∞, then NN (G/N)∞ = NN (G)∞/N .

Lemma 2.3 [9, Theorem 4.7] Let G be a group. Then
(1) Z∞(GN ) ≤ NN (G)∞.
(2) NN (G)∞/Z∞(GN ) = NN (G/Z∞(GN )) = CG/Z∞(GN )(GN /Z∞(GN )).

Lemma 2.4 [29, Theorem A] Let F be a hereditary saturated formation with π(F) 6= ∅, for any
p ∈ π(F), F(p) denote the intersection of all formations containing the set {G/Op′,p(G)|G ∈ F}, and
let F (p) denote the class of all groups G such that GF(p) is a p-group.

2



Then ZF (G) = IntF (G) hold for each group G if and only if F satisfies the boundary condition,
where we say that F satisfies the boundary condition if for any p ∈ π(F), G ∈ F whenever G is an
F (p)-critical group.

Lemma 2.5 [9, Corollary 4.5] or [27, Theorem 3.4] If H is an N 2-subgroup of a group G, then
NN (G)∞H is also an N 2-group.

From Lemma 2.5, the every maximal metanilpotent subgroup of a group G contains the hypercenter
of NN (G). We shall see in the sequel that in fact the latter subgroup is the intersection of all maximal
metanilpotent subgroup of a group G. We need the following lemma.

Lemma 2.6 Let G be a group. Then
(1) The nilpotent residual of NN (G)∞ is nilpotent.
(2) NN (G)∞ ∩GN = Z∞(GN ).

Proof. (1) If Z(GN ) = 1, then, by Lemma 2.2 (2), NN (G) = CG(GN ). So NN (G) is nilpotent by
Lemma 2.1. Further more, we can prove NN (G)∞ = NN (G).

It is easy to see that Z(GN ) = 1 if and only if NN (G)∩GN = 1 by Lemma 2.2 (1) and (2). Since
Z(GN ) = 1, we have Z((G/NN (G))N ) = 1. Then NN (G/NN (G)) ∩ (G/NN (G))N = 1, that is,

NN (G)2 ∩GN ≤ NN (G) ∩GN = 1.

By the same way, we have NN (G)∞ ∩GN = 1. Hence, by Lemma 2.2 (1) and the definition of series,
NN (G)∞ = NN (G).

If Z(GN ) 6= 1, then we consider G/Z∞(GN ). By Lemma 2.3 (2), we see

NN (G)∞/Z∞(GN ) = NN (G/Z∞(GN )) = CG/Z∞(GN )(G
N /Z∞(GN )).

Then NN (G)∞/Z∞(GN ) is nilpotent by Lemma 2.1, thus NN (G)∞ is metanilpotent.
(2) If Z(GN ) = 1, then, by the same argument with (1), we have NN (G)∞ ∩GN = 1 = Z∞(GN ).
If Z(GN ) 6= 1, then we consider G/Z∞(GN ). Then

NN (G/Z∞(GN )) ∩ (G/Z∞(GN ))N = 1.

It follows from Lemma 2.3 that NN (G)∞ ∩GN = Z∞(GN ).

Now, we are ready to answer the question.

Theorem 2.1 Let G be a group. Then ZN 2(G) = NN (G)∞.

Proof. We proceed by induction on the order of G.
(1) ZN 2(G) ≤ NN (G)∞.
Let N be a minimal normal subgroup of G and N ≤ ZN 2(G). Since N is N 2-central in G,

[N ](G/CG(N)) ∈ N 2. (∗)

Let X = [N ](G/CG(N)). Then X is a primitive group and Soc(X) = N = F (X). It follows from
(∗) that X/F (X) ∼= G/CG(N) ∈ N . Hence N ≤ CG(GN ) ≤ NN (G) ≤ NN (G)∞. By induction and
Lemma 2.2 (3),

ZN 2(G)/N = ZN 2(G/N) ≤ NN (G/N)∞ = NN (G)∞/N,
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thus ZN 2(G) ≤ NN (G)∞.
(2) NN (G)∞ ≤ ZN 2(G).
Let N be a minimal normal subgroup of G and N ≤ NN (G)∞. If N ≤ Z(G), then N ≤ CG(GN

2
).

If N ≤ GN , then N ≤ NN (G)∞ ∩GN . By Lemma 2.6 (2) and [8, Theorem 6.14],

N ≤ Z∞(GN ) = CU ((GN )N ) ≤ CG(GN
2
),

where U is maximal nilpotent subgroup of GN .
In addition, N ≤M hold for any maximal metanilpotent subgroups M by Lemma 2.5. Hence, by

[8, Theorem 6.14], N ≤ CM (GN
2
) = ZN 2(G). By induction and Lemma 2.2 (3),

ZN 2(G)/N = ZN 2(G/N) ≥ NN (G/N)∞ = NN (G)∞/N,

thus ZN 2(G) ≥ NN (G)∞.

Theorem 2.2 Let G be a group. Then NN (G)∞ = ZN 2(G) = IntN 2(G).

Proof. Let F (p) = SpN for all p. Then F is the canonical local definition of N 2. If G is F (p)-critical
for all p, then every maximal subgroup of G is nilpotent since they are in SpN for all p. Then G

is either nilpotent or a Schmidt group. In any case, G is metanilpotent, that is, N 2 satisfies the
boundary condition. Thus the equality is clear from Lemma 2.4 and Theorem 2.1.

Following [15], we denote the intersection of the normalizers of the derived subgroups of all sub-
groups in a group G by D(G), D∞(G) is the terminal term of the ascending series 1 = D0(G) ≤
D1(G) ≤ D2(G) ≤ · · · ≤ Dn(G) ≤ · · · , where Di+1(G)/Di(G) = D(G/Di(G)) for i = 0, 1, 2, · · · .

By the similar way, we can prove following theorem with the help of [15, Lemma 2.3, Theorem 2.6,
Problem 5.1 and 5.2], [8, Theorem 6.14] and Lemma 2.4.

Theorem 2.3 Let G be a group and F denote the class of group G that G
′

is nilpotent. Then
(1) The derived subgroup of D∞(G) is nilpotent and D∞(G) ∩G′ = Z∞(G

′
).

(2) D∞(G) = ZF (G) = IntF (G).

3 NN -groups

In this section, we begin to discuss groups in which the nilpotent residual of every subgroup is
normal.

Definition 3.1 A group G is said to be NN -group ([9]) or S-group ([27]) if G = NN (G). A group
G is called D-group if G = D(G).

Clearly, we see that the nilpotent residual of every subgroup in a NN -group is normal. So it is easy
to see that the class of groups in which every subgroup is nilpotent or normal in properly contained in
the class of NN -groups. For the sake of completeness, we list here some basic results on NN -groups
which have been proved in [9].

Lemma 3.1 [9, Proposition 4.9] or [27, Theorem 4.2] Let G be a NN -group.
(1) If H ≤ G, then H is a NN -group.
(2) If K E G, then G/K is a NN -group.
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Lemma 3.2 [9, Proposition 2.7] or [27, Theorem 1.4] If G = A×B is the direct product of a group
A and a group B with (|A|, |B|) = 1, then NN (G) = NN (A)×NN (B).

The following example illustrates that the condition (|A|, |B|) = 1 could not be removed in Lemma
3.2. It also shows that the direct product of two NN -groups may be not a NN -group.

Example 3.1 Let G = S3 × S3 = 〈a, b, c, d|a3 = b2 = c3 = d2 = 1, ab = a−1, cd = c−1, [a, c] = [a, d] =
[b, c] = [c, d] = 1〉, H = 〈ac, bd〉 and K = 〈ac〉. It is clear that H is isomorphic to S3 and K is the
nilpotent residual of H. It follows from K 6E G that NN (G) < NN (S3)×NN (S3) = G. Then G is a
supersoluble non-NN -group in which all proper subgroups are NN -groups.

Example 3.2 [9, Proposition 4.10] The following groups are NN -groups:
(1) Groups all of whose non-nilpotent subgroups are normal.
(2) Groups with the cyclic nilpotent residual.
(3) Groups with an abelian normal subgroup of index a prime.

Lemma 3.3 [9, Proposition 2.3, Theorem 3.2, 3.5, 4.4, 4.11] If G is a NN -group, then
(1) G is a meta-nilpotent group.
(2) lp(G) ≤ 1 for a prime p ∈ π(G) and the Fitting length of G is bounded by 2.
(3) F (G/Φ(G)) = CG/Φ(G)((G/Φ(G))N ) = (G/Φ(G))N × Z(G/Φ(G)).

Lemma 3.4 If G = MN is the product of a normal subgroup N and a subgroup M , then GN ≤MNN .
In particular, (M ×N)N = MN ×NN .

Proof. By [G,G] ≤ [M,M ]N and induction, we get Ki(G) ≤ Ki(M)N for any integer i, then
GN ≤MNN . If M E G, then GN ≤MNNN (M ∩N). Hence (M ×N)N = MN ×NN .

The class of all NN -groups is not a saturated class as the following example shows.

Example 3.3 Let G = 〈a, b, c, d|a2 = 1, b3 = 1, c3 = 1, d3 = 1, ca = c−1, cb = cd, da = d−1〉. Then it is
easy to see that G is not a NN -group but G/Φ(G) is a NN -group.

It is clear that the class of nilpotent groups is contained in the class of NN -groups. Now we first
begin to consider some special non-nilpotent NN -groups.

Proposition 3.1 Let G be a non-nilpotent NN -group. If there is a maximal subgroup M of G with
MG = 1, then

(1) G = GN oM with GN a minimal normal subgroup of G and M nilpotent.
(2) Every subgroup of G is either nilpotent or subnormal.

Proof. Since M is a maximal subgroup of G and MG = 1, G = GNM . By CG(CG(GN ) ∩M) ≥ GN

and NG(CG(GN ) ∩M) ≥ M , we see G = NG(CG(GN ) ∩M). It follows that CG(GN ) ∩M = 1. For
any non-trivial normal subgroup H of G that contained in CG(GN ), G = HM and CG(GN ) = H,
which implies CG(GN ) is a minimal normal subgroup of G.

Noticing Lemma 3.3 (3), we get CG(GN ) = GN × Z(G). Then CG(GN ) = GN and Z(G) = 1.
Therefore GN ∩M = 1 and M is nilpotent.

Since GN is a minimal normal subgroup of G, KN = 1 or GN for every subgroup K of G. So
every subgroup of G is either nilpotent or subnormal in G.
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Proposition 3.2 If G is a primitive non-nilpotent D-group, then every subgroup of G is either nilpo-
tent or normal.

In Proposition 3.1 above, GN = F (G) is a minimal normal subgroup of a NN -group G, which is an
elementary p-group for some p ∈ π(G). So it is interesting to consider the non-nilpotent NN -groups
such that F (G) is a p-group.

Proposition 3.3 If G is a non-nilpotent NN -group and F (G) is a p-group for some p ∈ π(G), then
(1) G = Opp′ (G) and F (G) is a Sylow p-subgroup of G.
(2) |G| divides pn(pr − 1)(pr−1 − 1) · · · (p− 1) if |P | = pn and |P/Φ(P )| = pr.

Proof. (1) By F (G) is a p-group, F (G) = Op(G), and then F (G/F (G)) = Op′ (G/F (G)). Apply
Lemma 3.3 (2), we see G/F (G) is a p

′
-group, so P ≤ F (G) for P ∈ Sylp(G), it implies F (G) = P .

Then G/Op(G) = Op′ (G/Op(G)) = Opp′ (G)/Op(G), so G = Opp′ (G).
(2) By Lemma 3.3 (1), NN -groups are solvable. According to a Theorem of Hall-Higman [22,

Theorem 9.3.2] and (1), we have P = CG(P/Φ(P )), and G/CG(P/Φ(P )) is isomorphic to a subgroup
of Aut(P/Φ(P )). Let |P | = pn and |P/Φ(P )| = pr. Then |G/P | divides (pr−1)(pr−p) · · · (pr−pr−1),
by G/P is a p

′
-group, we see |G| divides pn(pr − 1)(pr−1 − 1) · · · (p− 1).

Remark 3.1 According to Proposition 3.3, we can see that F (G) is neither a cyclic group nor a
dihedral group if p = 2, also we can see G = Q8 o C3 if F (G) is a quaternion 2-group.

Lemma 3.5 Let p be a prime and P a Sylow p-subgroup of a group G. Then G is p-nilpotent if and
only if NG(P ) and GN are p-nilpotent.

Proof. It is clear that NG(P ) and GN are p-nilpotent if G is p-nilpotent. Conversely, let G be a
counter example of minimal order and H = Op′(GN ).

If H 6= 1, then we consider G/H. Since NG/H(PH/H) = NG(P )H/H, (G/H)N are p-nilpotent
and the minimality of G, we see G/H is p-nilpotent, so G is, a contradiction.

If H = 1, then, by GN is p-nilpotent, GN is a p-group. It follows from P/GN E G/GN that
P E G, so G is p-nilpotent, a contradiction. Now we complete the proof.

Apply the Lemma 3.5 and Proposition 3.3 (1), we have:

Corollary 3.1 Let p be a prime and P a Sylow p-subgroup of a NN -group G. Then G is p-nilpotent
if and only if NG(P ) is p-nilpotent.

Lemma 3.6 [11, Lemma 0.5] If G is a metanilpotent group and G = G/Φ(G), then F (G) = G
N ×

Z(G).

Lemma 3.7 [13, Theorem 2.1, Lemma 2.4 and Theorem 2.5]
(1) If N is an abelian normal subgroup of G with Φ(G) = 1, then N has a complement in G.
(2) If Φ(G) = 1 and Z(G) 6= 1, then G = Z(G)×H with Z(G) elementary abelian and Z(H) = 1.

Theorem 3.1 Let G be a non-nilpotent NN -group and Φ(G) = 1. Then the nilpotent residual of
every subgroup has a complement and G = F (G) oK with F (G) abelian and K nilpotent.

(1) If Z(G) = 1, then F (G) = GN .
(2) If Z(G) 6= 1, then G = Z(G)×H, and H satisfying (1).
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Proof. By the condition of Theorem and Lemma 3.6, the nilpotent residual of every subgroup is
normal and F (G) = GN × Z(G) is abelian group. Then the nilpotent residual of every subgroup has
a complement by Lemma 3.7 (1). Specially, F (G) has a complement K in G, that is, G = F (G) oK,
and K is nilpotent.

(1) If Z(G) = 1, then F (G) = GN .
(2) If Z(G) 6= 1, then, by Lemma 3.7 (2), G = Z(G)×H, where Z(G) is elementary abelian and

Z(H) = 1. So H satisfying (1).
The following results are consequences of Theorem 3.1.

Theorem 3.2 Let G be a NN -group. Then
(a) G is a nilpotent group.
(b) G is a non-nilpotent group. If Φ(G) = 1, then the nilpotent residual of every subgroup has a

complement and G = F (G) oK with F (G) abelian and K nilpotent.

Theorem 3.3 Let G be a D-group. Then
(a) G is a abelian group.
(b) G is a non-abelian group. If Φ(G) = 1, then the derived subgroup of every subgroup has a

complement and G = F (G) oK with F (G) and K abelian.

4 Minimal non-NN -groups

Definition 4.1 A group G is called a minimal non-NN -group if G is not a NN -group, but every
proper subgroup of G is a NN -group.

The semidirect product of Q8 with S3 show that the quotient group of a minimal non-NN -group can
be not a NN -group. However, G/Φ(G) is a minimal non-NN -group or NN -group if G is a minimal
non-NN -group and Φ(G) 6= 1.

Lemma 4.1 If G is a minimal non-NN -group and Φ(G) 6= 1, then either G/Φ(G) is a minimal
non-NN -group or NN -group.

Proof. Let H be a maximal subgroup of G and K ≤ H. Since G is a minimal non-NN -group, H is a
NN -group, then KN E H. We consider G/Φ(G) and its maximal subgroup H/Φ(G). It is clear that
(KΦ(G)/Φ(G))N E H/Φ(G), so H/Φ(G) is a NN -group, and every maximal subgroup of G/Φ(G) is
a NN -group. Then G/Φ(G) is a minimal non-NN -group or NN -group.

Lemma 4.2 If G is a minimal non-NN -group and Φ(G) = 1, then G is minimal simple or solvable.
And if G is a solvable group, then every proper quotient group of G is a NN -group.

Proof. Since every proper subgroup of G is a NN -group and Lemma 3.3 (1), very proper subgroup
of G is solvable. If G is a simple group, then G is a minimal simple group. If G is not a simple group,
then there exists a non-trivial proper normal subgroup N of G. By Φ(G) = 1, there exists a maximal
subgroup M of G such that G = MN . Then G/N is a NN -group since M is a NN -group. It follows
from M and N are NN -groups that G is soluble.

In order to classify the simple minimal non-NN -groups, we need some lemmas.
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Lemma 4.3 [20, Theorem 4.3] and [18, Lemma 1] A group G is called a 2-Con-Cos group if the
following conditions are satisfied for a proper derived subgroup G

′
of G,

(i) G
′
x = cl(x), for all x in G−G′, (ii) G

′
= 1 ∪ cl(a), for some a in G, where cl(g) denotes the

conjugacy class of g ∈ G. Then
(1) G is a 2-Con-Cos group with Z(G) = 1 if and only if G is a Frobenius group of the type

Cr
p o Cpr−1 for some prime p and some r ≥ 1.

(2) If G is a 2-Con-Cos group, N E G, then N = 1 or N ≥ G′.

Lemma 4.4 Let G be a Frobenius group of the type Cn
p o Cpn−1. Then G is a NN -group precisely

when pn − 1 is a prime.

Proof. By Lemma 4.3, Cn
p = G

′
= GN is the minimal normal subgroup of G. If pn − 1 is a prime,

then, by Example 3.2 (3), G is a NN -group. Let C = Cpn−1 be a cyclic group which is not of prime
order and B a non-trivial maximal subgroup of C and A = Cn

p . Since G is a Frobenius group, V ∼= Cn
p

is an irreducible and faithful module for C over the finite field GF (p) of p elements and dim V = n.
Now, by [8, Theorem 9.16], the order of B is (pn − 1)/p. So the dimension of every irreducible and
faithful module for B over GF (p) is less than n. In particular, A is not irreducible for B. Moreover,
CB(A) = Ker(B on A) = 1 since A is faithful for C. According to Clifford theorem, A is completely
irreducible and so there exists an irreducible B-submodule of A which is not centralized by B, A1 say.
Now A1 is the nilpotent residual of A1B and A1 cannot be normal in G since A is a minimal normal
subgroup of G, that is, G is not a NN -group.

Now, we are ready to classify the simple minimal non-NN -groups.

Theorem 4.1 If G is a simple minimal non-NN -group, then G is isomorphic to one of following
groups.

(a) PSL(2, p), p is a prime, p > 3, p2 6≡ 1(mod5), p2 6≡ 1(mod16).
(b) PSL(2, 2q), q is a prime and 2q − 1 also is a prime.
(c) PSL(2, 3q), q is an odd prime and 3q−1

2 also is a prime.
(d) Sz(2q), q is an odd prime and 2q − 1 also is a prime.

Proof. By the classification of minimal simple groups [30], G may have following 5 types: (1)
PSL(2, p), p is a prime, p > 3, p2 6≡ 1(mod5). (2) PSL(2, 2q), q is a prime. (3) PSL(2, 3q), q is an
odd prime. (4) Sz(2q), q is a prime. (5) PSL(3, 3).

(a) All maximal subgroups of (1) are: (1.1) Dihedral group of order 2p±1
2 , (1.2) Cp o C p−1

2
, (1.3)

A4, (1.4) S4 if p2 ≡ 1(mod16).
It is clear that dihedral groups, meta-cyclic groups and Schmidt groups are all NN -groups, then

(1.1), (1.2), (1.3) are all NN -groups. However NN (S4) = 1, then (a) is as required.
(b) All maximal subgroups of (2) are: (2.1) Dihedral group of order 2(2q ± 1), (2.2) Cq

2 o C2q−1,
which is order of 2q(2q − 1), (2.3) A4 if q = 2.

It is easy to see that (2.1) and (2.3) are all NN -groups. Apply Lemma 4.4 to (2.2), we can see
Cq

2 o C2q−1 is a NN -group if 2q − 1 is a prime, and then PSL(2, 2q) is a minimal non-NN -group.
Otherwise, PSL(2, 2q) is not a minimal non-NN -group.

(c) All maximal subgroups of (3) are: (3.1) Dihedral group of order 2(3q±1
2 ), (3.2) Cq

3 o C (3q−1)
2

,

which is order of 3q (3q−1)
2 , (3.3) A4.
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It is clear by the similar argument with (b).
(d) All maximal subgroups of (4) are: (4.1) Frobenius group P2 oC2q−1, where P2 is non-abelian,

|P2| = 22q, (4.2) Dihedral group of order 2(2q − 1), (4.3) C
2q±2

q+1
2 +1

o C4.

Also it is clear that (4.1) and (4.3) are all NN -groups. If 2q − 1 is a prime, then P2 o C2q−1 is a
Schmidt group, so Sz(2q) is a minimal non-NN -group. If 2q−1 is not a prime, then P2oC2q−1/Φ(P2) ∼=
Cq

2 o C2q−1, by Lemma 4.4, it is not a NN -group, so Sz(2q) is not a minimal non-NN -group.
(e) Since S4 is a maximal subgroup of PSL(3, 3) and NN (S4) = 1, PSL(3, 3) is not a minimal

non-NN -group. Now the theorem is complete.

After classifying the simple minimal non-NN -groups, we turn to solvable minimal non-NN -groups.

Theorem 4.2 If G is a solvable minimal non-NN -group and Φ(G) = 1, then
(1) Assume GN is not nilpotent, then
(1.a) G = F (G) oH, where F (G), H are unique minimal normal and maximal subgroup of G.
(1.b) H is a schimdt group. Let F (G) be p-group and H = QoR or Qo P1, where Q, R and P1

are a normal Sylow q-subgroup, cyclic Sylow r and p-subgroup of H. Then G = F (G) o (Q o R) or
F (G) o (Qo P1) and GN = F (G) oQ is a abelian-by-nilpotent group, GN

2
= F (G).

(1.c) BN = Q or BN < F (G), where B is a subgroup of G such that BN 6E G.
(2) Assume GN is nilpotent, then
(2.a) G = P oK, where P , K are Sylow p-group and nilpotent Hall p

′
-subgroup of G.

(2.b) P = F (G) = BNN = GN = [P,K] is an elementary abelian p-group, where BN 6E G and N
is a minimal normal subgroup in G.

(2.c) Let |P | = pn. Then |G| divides |P | · |GL(n, p)|.
(2.d) Let M be a maximal subgroup of G. If B ≤ M , then M E G, |G : M | = q 6= p. If B 6≤ M ,

then M E G or M = (F (G) ∩M) oK.

Proof. Our theorem will be proved by following two cases according to GN is nilpotent or not.
(1) If GN is not nilpotent, then the proof is divided into following 5 steps.
(1.1) F (G) is a unique minimal normal subgroup of G.
By Φ(G) = 1, F (G) is a direct product of some minimal normal subgroups of G. If there exists

two different minimal normal subgroups N1, N2 of G, then G/N1, G/N2 are NN -groups. Then GN

is nilpotent by Lemma 3.3 (1) and 3.4, a contradiction. Hence F (G) is the unique minimal normal
subgroup of G.

(1.2) G = F (G) oH, where H is a non-nilpotent maximal subgroup of G.
Again since Φ(G) = 1, there exists a maximal subgroup H of G such that G = F (G)H. It follows

from F (G)∩H E G and (1.1) that F (G)∩H = 1. Therefore F (G) = CG(F (G)) and H = G/F (G) is
not nilpotent.

(1.3) H is a Schmidt group.
Since G is solvable, H is solvable, then there exists a maximal normal subgroup M of H such that

|H : M | = q. Let F (G) be an elementary abelian p-group.
By M E H, we get NG(F (G)M) ≥ H and NG(F (G)M) ≥ F (G)M , then F (G)M E G. It follows

that F (F (G)M) = F (G). Then M is nilpotent since MN ∼= (F (G)M/F (F (G)M))N = 1. Next
we prove that M is a p′-group. If not, let Mp ∈ Sylp(M). Then Mp E H and F (G)Mp E G, so
F (G)Mp = F (G) and Mp ≤ F (G), a contradiction.
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If q 6= p, then H is a p′-group and F (G) is a normal Sylow p-subgroup of G. Let H1 be a proper
subgroup of H. Since F (F (G)H1) = F (G) × Op′(F (G)H1), Op′(F (G)H1) = 1 and F (F (G)H1) =
F (G). Then H1 is nilpotent since HN1 ∼= (F (G)H1/F (G))N = (F (G)H1/F (F (G)H1))N = 1, so H is
a Schmidt p′-group.

If q = p, then there exists subgroup A of order p such that H = MA. Let T be a maximal subgroup
of H.

Case 1. T does not contain a subgroup of order p, then F (F (G)T ) = F (G). By the similar
argument above, we can get T is nilpotent.

Case 2. T contains a subgroup Ah(h ∈ H) of order p. If F (G)Ah 6E F (G)T , then F (F (G)T ) =
Op(F (G)T ) = F (G), so T is nilpotent. If F (G)Ah E F (G)T , then Ah = F (G)Ah ∩ T E T , and
T = AhM1, M1 < M , so [Ah,M1] ≤ Ah ∩M = 1, that is, T is nilpotent.

Hence, in either cases above, H is a Schmidt group.
(1.4) GN = F (G) oQ is a abelian-by-nilpotent group, and GN

2
= F (G).

By (1.3), H = QoR or Qo P1, where Q, R and P1 are normal Sylow q-subgroup, cyclic Sylow r

and p-subgroup of H. Then G = F (G) o (QoR) or F (G) o (QoP1) and GN = F (G) oQ by Lemma
3.4. Therefore GN is a NN -group. If q 6= 2, then exp(Q) = q, and GN is metabelian group. If q = 2,
then exp(Φ(Q)) = 2, and GN is abelian-by-nilpotent group.

(1.5) BN = Q or BN < F (G), where B is a subgroup of G such that BN 6E G.
Since G is a minimal non-NN -group, there at least exists a subgroup B of G such that BN 6E G.

If BF (G) = G, then, by (1.2), B ∼= H, and therefore BN = Q by (1.4). If BF (G) < G, then
BF (G)/F (G) is nilpotent by (1.3), so BN ≤ (BF (G))N ≤ F (G), that is, BN < F (G).

(2) If GN is nilpotent, then NN (G) > 1 and GN ≤ F (G). Also it is easy to see G = NN (G)2 and
the Fitting length of G equals 2. Following proof can be divided into 7 steps.

(2.1) F (G) = BNN , where BN 6E G and N is a minimal normal subgroup of G.
Since G is a minimal non-NN -group, there at least exists a subgroup B of G such that BN 6E G.

By (BN/N)N E G/N hold for any normal subgroup N of G, BNN E G. Specially, we consider the
case N is a minimal normal subgroup of G.

If N is a unique minimal normal subgroup of G, then, by Φ(G) = 1, F (G) = N = GN . If minimal
normal subgroup of G is not unique, then, for another minimal normal group T of G, T ∩ BNN is
normal. Since BNT ∩BNN = BN (T ∩BNN) E G, we get T ≤ BNN , it follows that every minimal
normal subgroup of G is contained in BNN . By Φ(G) = 1, F (G) = BNN .

(2.2) F (G) = P , where P ∈ Sylp(G).
Now we claim that BN does not contain any non-trivial normal subgroup of G. If not, let T E G

and T ≤ BN . Then (B/T )N = BN /T E G/T , so BN E G, a contradiction.
Let N be an elementary abelian p-group. Then F (G) = N or F (G) = BNN by (2.1). It is

easy to see F (G)p′ E G, therefore F (G)p′ = 1 by the claim above. Then F (G) = Op(G). Thus
G/F (G) = Op′ (G/F (G)), and then F (G) = P , where P ∈ Sylp(G).

(2.3) F (G) = GN and Z(G) = 1.
By Lemma 3.6, F (G) = GN ×Z(G). It follows from (2.1) that BNN = GN ×Z(G). If N ≤ Z(G),

then Z(G) = N and HN = GN , a contradiction. Then N ≤ GN and Z(G) = 1. Hence F (G) =
BNN = GN .

(2.4) G = P oK, where K is nilpotent Hall p
′
-subgroup, P = [P,K].
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By (2.2) and (2.3), there exists a Hall p
′
-subgroup K such that G = P oK and K is a nilpotent

p
′
-subgroup. Apply Fitting lemma, we get P = [P,K]× CP (K) = [P,K] by Z(G) = 1.

(2.5) Let |P | = pn. Then |G| divides |P | · |GL(n, p)|.
By (2.2) and Φ(G) = 1, P is elementary p-group, and then G/P is isomorphic to a subgroup of

Aut(P ). Hence |G| divides |P | · |GL(n, p)| by (2.4).
(2.6) If B ≤M and M is a maximal subgroup of G, then M E G, |G : M | = q 6= p.
Also we claim that B is contained in a unique maximal subgroup M of G. If there exists two

different maximal subgroups M , M1 such that B ≤ M , B ≤ M1, then HN E M and HN E M1, so
HN E 〈M,M1〉 = G, a contradiction.

If F (G) 6≤ M , then G = F (G)M . By F (G) is abelian group, BN E G, a contradiction. Then
F (G) ≤M and M/F (G) is the maximal subgroup of G/F (G), so M/F (G) E G/F (G) and |G/F (G) :
M/F (G)| = q, that is, M E G and |G : M | = q.

(2.7) If B 6≤ E and E is a maximal subgroup of G, then E E G or E = (F (G) ∩ E) oK.
It is also clear that there at least exists a maximal subgroup E of G such that the nilpotent

residual of every subgroup of E is normal. Otherwise, every maximal subgroup contains subgroup
that its nilpotent residual is not normal, then, by (2.6), every maximal subgroup of G is normal and
G is nilpotent, a contradiction. If E ≥ F (G), then E/F (G) is the maximal subgroup of G/F (G), so
E E G. If E 6≥ F (G), then G = F (G)E and E = (F (G) ∩ E) oK.

Corollary 4.1 If G is a soluble minimal non-NN -group and Φ(G) = 1, then,
(1) for a prime p ∈ π(G), BN is a p-group for any subgroup B of G such that BN 6E G.
(2) 1 ≤ lp(G) ≤ 2.
(3) P ≥ F (G), where P ∈ Sylp(G).

Corollary 4.2 If G is a minimal non-NN -group and Φ(G) = 1, then Z(G) = 1.

Theorem 4.3 If G is a minimal non-NN -group and Φ(G) 6= 1, then G/Φ(G) satisfies Theorem 3.2,
4.1 or 4.2.

Proof. It is clear from Lemma 4.2.

Hence, we have obtained a simple characterization of minimal non-NN -groups by Theorem above.
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