On normalizers of the nilpotent residuals of subgroups of a finite group *

Lü Gong¹ and Xiuyun $Guo^{2\dagger}$

1. School of Sciences, Nantong University, Jiangsu 226007, P. R. China

2. Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China E-mail: lieningzai1917@126.com, xyguo@staff.shu.edu.cn,

Abstract: The aim of this paper is to study the structure of finite groups whose nilpotent residuals of non-normal subgroups are normal.

Keywords: nilpotent residual, soluble group, normalizer, metanilpotent

AMS Subject Classification(2010): 20D10, 20D20.

1 Introduction

All groups considered in this paper are finite.

A Dedekind group is a group in which every subgroup is normal, which has been generalised in a number of ways. Romalis and Sesekin investigated metahamiltonian groups, in which every subgroup is normal or abelian [23, 24]. Russo and Vincenzi considered groups in which every subgroup is normal or a T-group [25]. Kemhadze investigated the structure of groups in which every subgroup is either subnormal or nilpotent [14], as did Phillips and Wilson, who gave necessary conditions [21, Lemma 7] and a detailed description of such groups with trivial centre [21, Proposition 2]. Recently, Ballester-Bolinches and Cossey have obtained the equivalent condition of non-nilpotent groups in which every subgroup is either subnormal or nilpotent [5].

Recall that the norm N(G) of a group G is the intersection of the normalizes of all subgroups of G, which was first introduced by Baer in 1934 [1] and many useful properties and results on norm have been given [1, 2, 4, 7, 16, 17, 26]. It is clear that G = N(G) if and only if G is a Dedekind group.

In addition, we have studied a characteristic subgroup $N^{\mathcal{N}}(G)$ of a group G, which is the intersection of the normalizers of the nilpotent residuals of all subgroups of G [9], also it is called S(G) in [27], that is,

$$N^{\mathcal{N}}(G) = \bigcap_{H \le G} N_G(H^{\mathcal{N}}),$$

where $H^{\mathcal{N}}$ is the nilpotent residual of subgroup H of G.

There exists a series of normal subgroups:

$$1 = N^{\mathcal{N}}(G)_0 \le N^{\mathcal{N}}(G)_1 \le N^{\mathcal{N}}(G)_2 \le \cdots \le N^{\mathcal{N}}(G)_n \le \cdots,$$

[†]Corresponding author.

^{*}The research of the work was partially supported by the National Natural Science Foundation of China(11071155, 11271208 and 11271085), SRFDP(200802800011), the Shanghai Leading Academic Discipline Project(J50101).

in which $N^{\mathcal{N}}(G)_{i+1}/N^{\mathcal{N}}(G)_i = N^{\mathcal{N}}(G/N^{\mathcal{N}}(G)_i)$ for $i = 0, 1, 2, \cdots$, and let $N^{\mathcal{N}}(G)_{\infty}$ be the terminal term of the ascending series.

Our aim in this paper is to consider the structure of groups whose nilpotent residuals of nonnormal subgroups are normal, which is a generalization of the class of groups in which every subgroup is nilpotent or normal.

The terminology and notation employed agree with standard usage [6, 8, 22]. Let \mathcal{N}^2 denote the class of metanilpotent groups and $Int_{\mathcal{N}^2}(G)$ denote the intersection of all maximal metanilpotent subgroups of a group G. The metanilpotent hypercenter, nilpotent residual, metanilpotent residual, Fitting and Frattini subgroup of a group G will be denoted by $Z_{\mathcal{N}^2}(G)$, $G^{\mathcal{N}}$, $G^{\mathcal{N}^2}$, F(G), $\Phi(G)$ respectively. $K_i(G)$ and $\pi(G)$ denote the *i*th term of the lower central series of a group G and the set of primes divide the order of G respectively.

2 The structure of $N^{\mathcal{N}}(G)$

It is easy to see that the intersection of all maximal abelian subgroups of a group G is its center Z(G), it is also proved that the intersection of all \mathcal{F} -maximal subgroups of a group G is its \mathcal{F} -hypercenter $Z_{\mathcal{F}}(G)$ for certain non-empty hereditary saturated formations \mathcal{F} in [10, 12, 19, 28, 29, 31].

In addition, it is well-known that the intersection of all maximal nilpotent subgroups of a group G is its hypercenter $Z_{\infty}(G)$ in [3, Corollary 4], and it is also proved that G equals $N^{\mathcal{N}}(G)_{\infty}$ if G is metanilpotent in [9, Theorem 4.4] or [27, Theorem 3.3].

A natural question arises:

Does the intersection of all maximal metanilpotent subgroups of the group G coincide with the hypercenter of \mathcal{N}^2 ?

In this section, we obtain a positive answer to this question. Firstly, we will list here some lemmas on $N^{\mathcal{N}}(G)$ of a group G, which will be useful in the sequel.

Lemma 2.1 Let G be a group. Then $C_G(G^N)$ is nilpotent.

Proof. Let $C_G(G^{\mathcal{N}}) = C$. Then $CG^{\mathcal{N}}/G^{\mathcal{N}} \cong C/(G^{\mathcal{N}} \cap C)$ is nilpotent. By $[G^{\mathcal{N}} \cap C, C] = 1$, $G^{\mathcal{N}} \cap C \leq Z(C)$. Thus C/Z(C) is nilpotent, so is C.

Lemma 2.2 [9, Proposition 2.2, Theorem 2.12 and Proposition 4.3] or [27, Theorem 2.5 and Proposition 2.3] Let G be a group. Then

(1) $Z_{\infty}(G) \leq C_G(G^{\mathcal{N}}) \leq N^{\mathcal{N}}(G).$ (2) If $Z(G^{\mathcal{N}}) = 1$, then $N^{\mathcal{N}}(G) = C_G(G^{\mathcal{N}}).$ (3) If $N \leq G$ and $N \leq N^{\mathcal{N}}(G)_{\infty}$, then $N^{\mathcal{N}}(G/N)_{\infty} = N^{\mathcal{N}}(G)_{\infty}/N.$

Lemma 2.3 [9, Theorem 4.7] Let G be a group. Then (1) $Z_{\infty}(G^{\mathcal{N}}) \leq N^{\mathcal{N}}(G)_{\infty}$. (2) $N^{\mathcal{N}}(G)_{\infty}/Z_{\infty}(G^{\mathcal{N}}) = N^{\mathcal{N}}(G/Z_{\infty}(G^{\mathcal{N}})) = C_{G/Z_{\infty}(G^{\mathcal{N}})}(G^{\mathcal{N}}/Z_{\infty}(G^{\mathcal{N}}))$.

Lemma 2.4 [29, Theorem A] Let \mathcal{F} be a hereditary saturated formation with $\pi(\mathcal{F}) \neq \emptyset$, for any $p \in \pi(\mathcal{F}), \mathcal{F}(p)$ denote the intersection of all formations containing the set $\{G/O_{p',p}(G)|G \in \mathcal{F}\}$, and let F(p) denote the class of all groups G such that $G^{\mathcal{F}(p)}$ is a p-group.

Then $Z_{\mathcal{F}}(G) = Int_{\mathcal{F}}(G)$ hold for each group G if and only if \mathcal{F} satisfies the boundary condition, where we say that \mathcal{F} satisfies the boundary condition if for any $p \in \pi(\mathcal{F})$, $G \in \mathcal{F}$ whenever G is an F(p)-critical group.

Lemma 2.5 [9, Corollary 4.5] or [27, Theorem 3.4] If H is an \mathcal{N}^2 -subgroup of a group G, then $N^{\mathcal{N}}(G)_{\infty}H$ is also an \mathcal{N}^2 -group.

From Lemma 2.5, the every maximal metanilpotent subgroup of a group G contains the hypercenter of $N^{\mathcal{N}}(G)$. We shall see in the sequel that in fact the latter subgroup is the intersection of all maximal metanilpotent subgroup of a group G. We need the following lemma.

Lemma 2.6 Let G be a group. Then

(1) The nilpotent residual of $N^{\mathcal{N}}(G)_{\infty}$ is nilpotent. (2) $N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}} = Z_{\infty}(G^{\mathcal{N}}).$

Proof. (1) If $Z(G^{\mathcal{N}}) = 1$, then, by Lemma 2.2 (2), $N^{\mathcal{N}}(G) = C_G(G^{\mathcal{N}})$. So $N^{\mathcal{N}}(G)$ is nilpotent by Lemma 2.1. Further more, we can prove $N^{\mathcal{N}}(G)_{\infty} = N^{\mathcal{N}}(G)$.

It is easy to see that $Z(G^{\mathcal{N}}) = 1$ if and only if $N^{\mathcal{N}}(G) \cap G^{\mathcal{N}} = 1$ by Lemma 2.2 (1) and (2). Since $Z(G^{\mathcal{N}}) = 1$, we have $Z((G/N^{\mathcal{N}}(G))^{\mathcal{N}}) = 1$. Then $N^{\mathcal{N}}(G/N^{\mathcal{N}}(G)) \cap (G/N^{\mathcal{N}}(G))^{\mathcal{N}} = 1$, that is,

$$N^{\mathcal{N}}(G)_2 \cap G^{\mathcal{N}} \le N^{\mathcal{N}}(G) \cap G^{\mathcal{N}} = 1.$$

By the same way, we have $N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}} = 1$. Hence, by Lemma 2.2 (1) and the definition of series, $N^{\mathcal{N}}(G)_{\infty} = N^{\mathcal{N}}(G)$.

If $Z(G^{\mathcal{N}}) \neq 1$, then we consider $G/Z_{\infty}(G^{\mathcal{N}})$. By Lemma 2.3 (2), we see

$$N^{\mathcal{N}}(G)_{\infty}/Z_{\infty}(G^{\mathcal{N}}) = N^{\mathcal{N}}(G/Z_{\infty}(G^{\mathcal{N}})) = C_{G/Z_{\infty}(G^{\mathcal{N}})}(G^{\mathcal{N}}/Z_{\infty}(G^{\mathcal{N}})).$$

Then $N^{\mathcal{N}}(G)_{\infty}/Z_{\infty}(G^{\mathcal{N}})$ is nilpotent by Lemma 2.1, thus $N^{\mathcal{N}}(G)_{\infty}$ is metanilpotent.

(2) If $Z(G^{\mathcal{N}}) = 1$, then, by the same argument with (1), we have $N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}} = 1 = Z_{\infty}(G^{\mathcal{N}})$. If $Z(G^{\mathcal{N}}) \neq 1$, then we consider $G/Z_{\infty}(G^{\mathcal{N}})$. Then

$$N^{\mathcal{N}}(G/Z_{\infty}(G^{\mathcal{N}})) \cap (G/Z_{\infty}(G^{\mathcal{N}}))^{\mathcal{N}} = 1.$$

It follows from Lemma 2.3 that $N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}} = Z_{\infty}(G^{\mathcal{N}}).$

Now, we are ready to answer the question.

Theorem 2.1 Let G be a group. Then $Z_{\mathcal{N}^2}(G) = N^{\mathcal{N}}(G)_{\infty}$.

Proof. We proceed by induction on the order of G.

(1) $Z_{\mathcal{N}^2}(G) \leq N^{\mathcal{N}}(G)_{\infty}$.

Let N be a minimal normal subgroup of G and $N \leq Z_{\mathcal{N}^2}(G)$. Since N is \mathcal{N}^2 -central in G,

$$[N](G/C_G(N)) \in \mathcal{N}^2. \tag{(*)}$$

Let $X = [N](G/C_G(N))$. Then X is a primitive group and Soc(X) = N = F(X). It follows from (*) that $X/F(X) \cong G/C_G(N) \in \mathcal{N}$. Hence $N \leq C_G(G^{\mathcal{N}}) \leq N^{\mathcal{N}}(G) \leq N^{\mathcal{N}}(G)_{\infty}$. By induction and Lemma 2.2 (3),

$$Z_{\mathcal{N}^2}(G)/N = Z_{\mathcal{N}^2}(G/N) \le N^{\mathcal{N}}(G/N)_{\infty} = N^{\mathcal{N}}(G)_{\infty}/N,$$

thus $Z_{\mathcal{N}^2}(G) \leq N^{\mathcal{N}}(G)_{\infty}$.

(2) $N^{\mathcal{N}}(G)_{\infty} \leq Z_{\mathcal{N}^2}(G).$

Let N be a minimal normal subgroup of G and $N \leq N^{\mathcal{N}}(G)_{\infty}$. If $N \leq Z(G)$, then $N \leq C_G(G^{\mathcal{N}^2})$. If $N \leq G^{\mathcal{N}}$, then $N \leq N^{\mathcal{N}}(G)_{\infty} \cap G^{\mathcal{N}}$. By Lemma 2.6 (2) and [8, Theorem 6.14],

$$N \le Z_{\infty}(G^{\mathcal{N}}) = C_U((G^{\mathcal{N}})^{\mathcal{N}}) \le C_G(G^{\mathcal{N}^2}),$$

where U is maximal nilpotent subgroup of $G^{\mathcal{N}}$.

In addition, $N \leq M$ hold for any maximal metanilpotent subgroups M by Lemma 2.5. Hence, by [8, Theorem 6.14], $N \leq C_M(G^{N^2}) = Z_{N^2}(G)$. By induction and Lemma 2.2 (3),

$$Z_{\mathcal{N}^2}(G)/N = Z_{\mathcal{N}^2}(G/N) \ge N^{\mathcal{N}}(G/N)_{\infty} = N^{\mathcal{N}}(G)_{\infty}/N,$$

thus $Z_{\mathcal{N}^2}(G) \ge N^{\mathcal{N}}(G)_{\infty}$.

Theorem 2.2 Let G be a group. Then $N^{\mathcal{N}}(G)_{\infty} = Z_{\mathcal{N}^2}(G) = Int_{\mathcal{N}^2}(G)$.

Proof. Let $F(p) = S_p \mathcal{N}$ for all p. Then F is the canonical local definition of \mathcal{N}^2 . If G is F(p)-critical for all p, then every maximal subgroup of G is nilpotent since they are in $S_p \mathcal{N}$ for all p. Then G is either nilpotent or a Schmidt group. In any case, G is metanilpotent, that is, \mathcal{N}^2 satisfies the boundary condition. Thus the equality is clear from Lemma 2.4 and Theorem 2.1.

Following [15], we denote the intersection of the normalizers of the derived subgroups of all subgroups in a group G by D(G), $D_{\infty}(G)$ is the terminal term of the ascending series $1 = D_0(G) \leq D_1(G) \leq D_2(G) \leq \cdots \leq D_n(G) \leq \cdots$, where $D_{i+1}(G)/D_i(G) = D(G/D_i(G))$ for $i = 0, 1, 2, \cdots$.

By the similar way, we can prove following theorem with the help of [15, Lemma 2.3, Theorem 2.6, Problem 5.1 and 5.2], [8, Theorem 6.14] and Lemma 2.4.

Theorem 2.3 Let G be a group and \mathcal{F} denote the class of group G that G' is nilpotent. Then

- (1) The derived subgroup of $D_{\infty}(G)$ is nilpotent and $D_{\infty}(G) \cap G' = Z_{\infty}(G')$.
- (2) $D_{\infty}(G) = Z_{\mathcal{F}}(G) = Int_{\mathcal{F}}(G).$

3 $N^{\mathcal{N}}$ -groups

In this section, we begin to discuss groups in which the nilpotent residual of every subgroup is normal.

Definition 3.1 A group G is said to be $N^{\mathcal{N}}$ -group ([9]) or S-group ([27]) if $G = N^{\mathcal{N}}(G)$. A group G is called D-group if G = D(G).

Clearly, we see that the nilpotent residual of every subgroup in a $N^{\mathcal{N}}$ -group is normal. So it is easy to see that the class of groups in which every subgroup is nilpotent or normal in properly contained in the class of $N^{\mathcal{N}}$ -groups. For the sake of completeness, we list here some basic results on $N^{\mathcal{N}}$ -groups which have been proved in [9].

Lemma 3.1 [9, Proposition 4.9] or [27, Theorem 4.2] Let G be a $N^{\mathcal{N}}$ -group. (1) If $H \leq G$, then H is a $N^{\mathcal{N}}$ -group. (2) If $K \leq G$, then G/K is a $N^{\mathcal{N}}$ -group. **Lemma 3.2** [9, Proposition 2.7] or [27, Theorem 1.4] If $G = A \times B$ is the direct product of a group A and a group B with (|A|, |B|) = 1, then $N^{\mathcal{N}}(G) = N^{\mathcal{N}}(A) \times N^{\mathcal{N}}(B)$.

The following example illustrates that the condition (|A|, |B|) = 1 could not be removed in Lemma 3.2. It also shows that the direct product of two $N^{\mathcal{N}}$ -groups may be not a $N^{\mathcal{N}}$ -group.

Example 3.1 Let $G = S_3 \times S_3 = \langle a, b, c, d | a^3 = b^2 = c^3 = d^2 = 1, a^b = a^{-1}, c^d = c^{-1}, [a, c] = [a, d] = [b, c] = [c, d] = 1 \rangle$, $H = \langle ac, bd \rangle$ and $K = \langle ac \rangle$. It is clear that H is isomorphic to S_3 and K is the nilpotent residual of H. It follows from $K \not \supseteq G$ that $N^{\mathcal{N}}(G) < N^{\mathcal{N}}(S_3) \times N^{\mathcal{N}}(S_3) = G$. Then G is a supersoluble non- $N^{\mathcal{N}}$ -group in which all proper subgroups are $N^{\mathcal{N}}$ -groups.

Example 3.2 [9, Proposition 4.10] The following groups are $N^{\mathcal{N}}$ -groups:

- (1) Groups all of whose non-nilpotent subgroups are normal.
- (2) Groups with the cyclic nilpotent residual.
- (3) Groups with an abelian normal subgroup of index a prime.

Lemma 3.3 [9, Proposition 2.3, Theorem 3.2, 3.5, 4.4, 4.11] If G is a $N^{\mathcal{N}}$ -group, then

- (1) G is a meta-nilpotent group.
- (2) $l_p(G) \leq 1$ for a prime $p \in \pi(G)$ and the Fitting length of G is bounded by 2.
- (3) $F(G/\Phi(G)) = C_{G/\Phi(G)}((G/\Phi(G))^{\mathcal{N}}) = (G/\Phi(G))^{\mathcal{N}} \times Z(G/\Phi(G)).$

Lemma 3.4 If G = MN is the product of a normal subgroup N and a subgroup M, then $G^{\mathcal{N}} \leq M^{\mathcal{N}}N$. In particular, $(M \times N)^{\mathcal{N}} = M^{\mathcal{N}} \times N^{\mathcal{N}}$.

Proof. By $[G,G] \leq [M,M]N$ and induction, we get $K_i(G) \leq K_i(M)N$ for any integer *i*, then $G^{\mathcal{N}} \leq M^{\mathcal{N}}N$. If $M \leq G$, then $G^{\mathcal{N}} \leq M^{\mathcal{N}}N^{\mathcal{N}}(M \cap N)$. Hence $(M \times N)^{\mathcal{N}} = M^{\mathcal{N}} \times N^{\mathcal{N}}$.

The class of all $N^{\mathcal{N}}$ -groups is not a saturated class as the following example shows.

Example 3.3 Let $G = \langle a, b, c, d | a^2 = 1, b^3 = 1, c^3 = 1, d^3 = 1, c^a = c^{-1}, c^b = cd, d^a = d^{-1} \rangle$. Then it is easy to see that G is not a $N^{\mathcal{N}}$ -group but $G/\Phi(G)$ is a $N^{\mathcal{N}}$ -group.

It is clear that the class of nilpotent groups is contained in the class of $N^{\mathcal{N}}$ -groups. Now we first begin to consider some special non-nilpotent $N^{\mathcal{N}}$ -groups.

Proposition 3.1 Let G be a non-nilpotent $N^{\mathcal{N}}$ -group. If there is a maximal subgroup M of G with $M_G = 1$, then

- (1) $G = G^{\mathcal{N}} \rtimes M$ with $G^{\mathcal{N}}$ a minimal normal subgroup of G and M nilpotent.
- (2) Every subgroup of G is either nilpotent or subnormal.

Proof. Since M is a maximal subgroup of G and $M_G = 1$, $G = G^{\mathcal{N}}M$. By $C_G(C_G(G^{\mathcal{N}}) \cap M) \ge G^{\mathcal{N}}$ and $N_G(C_G(G^{\mathcal{N}}) \cap M) \ge M$, we see $G = N_G(C_G(G^{\mathcal{N}}) \cap M)$. It follows that $C_G(G^{\mathcal{N}}) \cap M = 1$. For any non-trivial normal subgroup H of G that contained in $C_G(G^{\mathcal{N}})$, G = HM and $C_G(G^{\mathcal{N}}) = H$, which implies $C_G(G^{\mathcal{N}})$ is a minimal normal subgroup of G.

Noticing Lemma 3.3 (3), we get $C_G(G^{\mathcal{N}}) = G^{\mathcal{N}} \times Z(G)$. Then $C_G(G^{\mathcal{N}}) = G^{\mathcal{N}}$ and Z(G) = 1. Therefore $G^{\mathcal{N}} \cap M = 1$ and M is nilpotent.

Since $G^{\mathcal{N}}$ is a minimal normal subgroup of G, $K^{\mathcal{N}} = 1$ or $G^{\mathcal{N}}$ for every subgroup K of G. So every subgroup of G is either nilpotent or subnormal in G.

Proposition 3.2 If G is a primitive non-nilpotent D-group, then every subgroup of G is either nilpotent or normal.

In Proposition 3.1 above, $G^{\mathcal{N}} = F(G)$ is a minimal normal subgroup of a $N^{\mathcal{N}}$ -group G, which is an elementary *p*-group for some $p \in \pi(G)$. So it is interesting to consider the non-nilpotent $N^{\mathcal{N}}$ -groups such that F(G) is a *p*-group.

Proposition 3.3 If G is a non-nilpotent $N^{\mathcal{N}}$ -group and F(G) is a p-group for some $p \in \pi(G)$, then (1) $G = O_{pp'}(G)$ and F(G) is a Sylow p-subgroup of G.

(2) |G| divides $p^n(p^r-1)(p^{r-1}-1)\cdots(p-1)$ if $|P| = p^n$ and $|P/\Phi(P)| = p^r$.

Proof. (1) By F(G) is a *p*-group, $F(G) = O_p(G)$, and then $F(G/F(G)) = O_{p'}(G/F(G))$. Apply Lemma 3.3 (2), we see G/F(G) is a p'-group, so $P \leq F(G)$ for $P \in \operatorname{Syl}_p(G)$, it implies F(G) = P. Then $G/O_p(G) = O_{p'}(G/O_p(G)) = O_{pp'}(G)/O_p(G)$, so $G = O_{pp'}(G)$.

(2) By Lemma 3.3 (1), $N^{\mathcal{N}}$ -groups are solvable. According to a Theorem of Hall-Higman [22, Theorem 9.3.2] and (1), we have $P = C_G(P/\Phi(P))$, and $G/C_G(P/\Phi(P))$ is isomorphic to a subgroup of Aut $(P/\Phi(P))$. Let $|P| = p^n$ and $|P/\Phi(P)| = p^r$. Then |G/P| divides $(p^r - 1)(p^r - p) \cdots (p^r - p^{r-1})$, by G/P is a p'-group, we see |G| divides $p^n(p^r - 1)(p^{r-1} - 1) \cdots (p - 1)$.

Remark 3.1 According to Proposition 3.3, we can see that F(G) is neither a cyclic group nor a dihedral group if p = 2, also we can see $G = Q_8 \rtimes C_3$ if F(G) is a quaternion 2-group.

Lemma 3.5 Let p be a prime and P a Sylow p-subgroup of a group G. Then G is p-nilpotent if and only if $N_G(P)$ and G^N are p-nilpotent.

Proof. It is clear that $N_G(P)$ and $G^{\mathcal{N}}$ are *p*-nilpotent if *G* is *p*-nilpotent. Conversely, let *G* be a counter example of minimal order and $H = O_{p'}(G^{\mathcal{N}})$.

If $H \neq 1$, then we consider G/H. Since $N_{G/H}(PH/H) = N_G(P)H/H$, $(G/H)^{\mathcal{N}}$ are *p*-nilpotent and the minimality of G, we see G/H is *p*-nilpotent, so G is, a contradiction.

If H = 1, then, by $G^{\mathcal{N}}$ is *p*-nilpotent, $G^{\mathcal{N}}$ is a *p*-group. It follows from $P/G^{\mathcal{N}} \leq G/G^{\mathcal{N}}$ that $P \leq G$, so G is *p*-nilpotent, a contradiction. Now we complete the proof.

Apply the Lemma 3.5 and Proposition 3.3 (1), we have:

Corollary 3.1 Let p be a prime and P a Sylow p-subgroup of a $N^{\mathcal{N}}$ -group G. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent.

Lemma 3.6 [11, Lemma 0.5] If G is a metanilpotent group and $\overline{G} = G/\Phi(G)$, then $F(\overline{G}) = \overline{G}^{\mathcal{N}} \times Z(\overline{G})$.

Lemma 3.7 [13, Theorem 2.1, Lemma 2.4 and Theorem 2.5]

(1) If N is an abelian normal subgroup of G with $\Phi(G) = 1$, then N has a complement in G.

(2) If $\Phi(G) = 1$ and $Z(G) \neq 1$, then $G = Z(G) \times H$ with Z(G) elementary abelian and Z(H) = 1.

Theorem 3.1 Let G be a non-nilpotent $N^{\mathcal{N}}$ -group and $\Phi(G) = 1$. Then the nilpotent residual of every subgroup has a complement and $G = F(G) \rtimes K$ with F(G) abelian and K nilpotent.

(1) If Z(G) = 1, then $F(G) = G^{\mathcal{N}}$.

(2) If $Z(G) \neq 1$, then $G = Z(G) \times H$, and H satisfying (1).

Proof. By the condition of Theorem and Lemma 3.6, the nilpotent residual of every subgroup is normal and $F(G) = G^{\mathcal{N}} \times Z(G)$ is abelian group. Then the nilpotent residual of every subgroup has a complement by Lemma 3.7 (1). Specially, F(G) has a complement K in G, that is, $G = F(G) \rtimes K$, and K is nilpotent.

(1) If Z(G) = 1, then $F(G) = G^{\mathcal{N}}$.

(2) If $Z(G) \neq 1$, then, by Lemma 3.7 (2), $G = Z(G) \times H$, where Z(G) is elementary abelian and Z(H) = 1. So H satisfying (1).

The following results are consequences of Theorem 3.1.

Theorem 3.2 Let G be a $N^{\mathcal{N}}$ -group. Then

(a) G is a nilpotent group.

(b) G is a non-nilpotent group. If $\Phi(G) = 1$, then the nilpotent residual of every subgroup has a complement and $G = F(G) \rtimes K$ with F(G) abelian and K nilpotent.

Theorem 3.3 Let G be a D-group. Then

(a) G is a abelian group.

(b) G is a non-abelian group. If $\Phi(G) = 1$, then the derived subgroup of every subgroup has a complement and $G = F(G) \rtimes K$ with F(G) and K abelian.

4 Minimal non- $N^{\mathcal{N}}$ -groups

Definition 4.1 A group G is called a minimal non- $N^{\mathcal{N}}$ -group if G is not a $N^{\mathcal{N}}$ -group, but every proper subgroup of G is a $N^{\mathcal{N}}$ -group.

The semidirect product of Q_8 with S_3 show that the quotient group of a minimal non- $N^{\mathcal{N}}$ -group can be not a $N^{\mathcal{N}}$ -group. However, $G/\Phi(G)$ is a minimal non- $N^{\mathcal{N}}$ -group or $N^{\mathcal{N}}$ -group if G is a minimal non- $N^{\mathcal{N}}$ -group and $\Phi(G) \neq 1$.

Lemma 4.1 If G is a minimal non- $N^{\mathcal{N}}$ -group and $\Phi(G) \neq 1$, then either $G/\Phi(G)$ is a minimal non- $N^{\mathcal{N}}$ -group or $N^{\mathcal{N}}$ -group.

Proof. Let H be a maximal subgroup of G and $K \leq H$. Since G is a minimal non- $N^{\mathcal{N}}$ -group, H is a $N^{\mathcal{N}}$ -group, then $K^{\mathcal{N}} \leq H$. We consider $G/\Phi(G)$ and its maximal subgroup $H/\Phi(G)$. It is clear that $(K\Phi(G)/\Phi(G))^{\mathcal{N}} \leq H/\Phi(G)$, so $H/\Phi(G)$ is a $N^{\mathcal{N}}$ -group, and every maximal subgroup of $G/\Phi(G)$ is a $N^{\mathcal{N}}$ -group. Then $G/\Phi(G)$ is a minimal non- $N^{\mathcal{N}}$ -group or $N^{\mathcal{N}}$ -group.

Lemma 4.2 If G is a minimal non- $N^{\mathcal{N}}$ -group and $\Phi(G) = 1$, then G is minimal simple or solvable. And if G is a solvable group, then every proper quotient group of G is a $N^{\mathcal{N}}$ -group.

Proof. Since every proper subgroup of G is a $N^{\mathcal{N}}$ -group and Lemma 3.3 (1), very proper subgroup of G is solvable. If G is a simple group, then G is a minimal simple group. If G is not a simple group, then there exists a non-trivial proper normal subgroup N of G. By $\Phi(G) = 1$, there exists a maximal subgroup M of G such that G = MN. Then G/N is a $N^{\mathcal{N}}$ -group since M is a $N^{\mathcal{N}}$ -group. It follows from M and N are $N^{\mathcal{N}}$ -groups that G is soluble.

In order to classify the simple minimal non- $N^{\mathcal{N}}$ -groups, we need some lemmas.

Lemma 4.3 [20, Theorem 4.3] and [18, Lemma 1] A group G is called a 2-Con-Cos group if the following conditions are satisfied for a proper derived subgroup G' of G,

(i) G'x = cl(x), for all x in G - G', (ii) $G' = 1 \cup cl(a)$, for some a in G, where cl(g) denotes the conjugacy class of $g \in G$. Then

(1) G is a 2-Con-Cos group with Z(G) = 1 if and only if G is a Frobenius group of the type $C_p^r \rtimes C_{p^{r-1}}$ for some prime p and some $r \ge 1$.

(2) If G is a 2-Con-Cos group, $N \leq G$, then N = 1 or $N \geq G'$.

Lemma 4.4 Let G be a Frobenius group of the type $C_p^n \rtimes C_{p^n-1}$. Then G is a $N^{\mathcal{N}}$ -group precisely when $p^n - 1$ is a prime.

Proof. By Lemma 4.3, $C_p^n = G' = G^N$ is the minimal normal subgroup of G. If $p^n - 1$ is a prime, then, by Example 3.2 (3), G is a N^N -group. Let $C = C_{p^n-1}$ be a cyclic group which is not of prime order and B a non-trivial maximal subgroup of C and $A = C_p^n$. Since G is a Frobenius group, $V \cong C_p^n$ is an irreducible and faithful module for C over the finite field GF(p) of p elements and dim V = n. Now, by [8, Theorem 9.16], the order of B is $(p^n - 1)/p$. So the dimension of every irreducible and faithful module for B over GF(p) is less than n. In particular, A is not irreducible for B. Moreover, $C_B(A) = \text{Ker}(B \text{ on } A) = 1$ since A is faithful for C. According to Clifford theorem, A is completely irreducible and so there exists an irreducible B-submodule of A which is not centralized by B, A_1 say. Now A_1 is the nilpotent residual of A_1B and A_1 cannot be normal in G since A is a minimal normal subgroup of G, that is, G is not a N^N -group.

Now, we are ready to classify the simple minimal non- $N^{\mathcal{N}}$ -groups.

Theorem 4.1 If G is a simple minimal non- $N^{\mathcal{N}}$ -group, then G is isomorphic to one of following groups.

(a) PSL(2,p), p is a prime, p > 3, $p^2 \not\equiv 1 \pmod{5}$, $p^2 \not\equiv 1 \pmod{6}$.

(b) $PSL(2, 2^q)$, q is a prime and $2^q - 1$ also is a prime.

(c) $PSL(2, 3^q)$, q is an odd prime and $\frac{3^q-1}{2}$ also is a prime.

(d) $Sz(2^q)$, q is an odd prime and $2^q - 1$ also is a prime.

Proof. By the classification of minimal simple groups [30], G may have following 5 types: (1) PSL(2,p), p is a prime, p > 3, $p^2 \not\equiv 1 \pmod{5}$. (2) $PSL(2,2^q)$, q is a prime. (3) $PSL(2,3^q)$, q is an odd prime. (4) $Sz(2^q)$, q is a prime. (5) PSL(3,3).

(a) All maximal subgroups of (1) are: (1.1) Dihedral group of order $2\frac{p\pm 1}{2}$, (1.2) $C_p \rtimes C_{\frac{p-1}{2}}$, (1.3) A_4 , (1.4) S_4 if $p^2 \equiv 1 \pmod{16}$.

It is clear that dihedral groups, meta-cyclic groups and Schmidt groups are all $N^{\mathcal{N}}$ -groups, then (1.1), (1.2), (1.3) are all $N^{\mathcal{N}}$ -groups. However $N^{\mathcal{N}}(S_4) = 1$, then (a) is as required.

(b) All maximal subgroups of (2) are: (2.1) Dihedral group of order $2(2^q \pm 1)$, (2.2) $C_2^q \rtimes C_{2^q-1}$, which is order of $2^q(2^q - 1)$, (2.3) A_4 if q = 2.

It is easy to see that (2.1) and (2.3) are all $N^{\mathcal{N}}$ -groups. Apply Lemma 4.4 to (2.2), we can see $C_2^q \rtimes C_{2^q-1}$ is a $N^{\mathcal{N}}$ -group if $2^q - 1$ is a prime, and then $PSL(2, 2^q)$ is a minimal non- $N^{\mathcal{N}}$ -group. Otherwise, $PSL(2, 2^q)$ is not a minimal non- $N^{\mathcal{N}}$ -group.

(c) All maximal subgroups of (3) are: (3.1) Dihedral group of order $2(\frac{3^q \pm 1}{2})$, (3.2) $C_3^q \rtimes C_{\frac{(3^q-1)}{2}}$, which is order of $3^q \frac{(3^q-1)}{2}$, (3.3) A_4 .

It is clear by the similar argument with (b).

(d) All maximal subgroups of (4) are: (4.1) Frobenius group $P_2 \rtimes C_{2^q-1}$, where P_2 is non-abelian, $|P_2| = 2^{2q}$, (4.2) Dihedral group of order $2(2^q - 1)$, (4.3) $C_{2^q \pm 2^{\frac{q+1}{2}} + 1} \rtimes C_4$.

Also it is clear that (4.1) and (4.3) are all $N^{\mathcal{N}}$ -groups. If $2^q - 1$ is a prime, then $P_2 \rtimes C_{2^q-1}$ is a Schmidt group, so $Sz(2^q)$ is a minimal non- $N^{\mathcal{N}}$ -group. If $2^q - 1$ is not a prime, then $P_2 \rtimes C_{2^q-1}/\Phi(P_2) \cong C_2^q \rtimes C_{2^q-1}$, by Lemma 4.4, it is not a $N^{\mathcal{N}}$ -group, so $Sz(2^q)$ is not a minimal non- $N^{\mathcal{N}}$ -group.

(e) Since S_4 is a maximal subgroup of PSL(3,3) and $N^{\mathcal{N}}(S_4) = 1$, PSL(3,3) is not a minimal non- $N^{\mathcal{N}}$ -group. Now the theorem is complete.

After classifying the simple minimal non- $N^{\mathcal{N}}$ -groups, we turn to solvable minimal non- $N^{\mathcal{N}}$ -groups.

Theorem 4.2 If G is a solvable minimal non- $N^{\mathcal{N}}$ -group and $\Phi(G) = 1$, then

(1) Assume $G^{\mathcal{N}}$ is not nilpotent, then

(1.a) $G = F(G) \rtimes H$, where F(G), H are unique minimal normal and maximal subgroup of G.

(1.b) *H* is a schimdt group. Let F(G) be p-group and $H = Q \rtimes R$ or $Q \rtimes P_1$, where Q, R and P_1 are a normal Sylow q-subgroup, cyclic Sylow r and p-subgroup of H. Then $G = F(G) \rtimes (Q \rtimes R)$ or $F(G) \rtimes (Q \rtimes P_1)$ and $G^{\mathcal{N}} = F(G) \rtimes Q$ is a abelian-by-nilpotent group, $G^{\mathcal{N}^2} = F(G)$.

(1.c) $B^{\mathcal{N}} = Q$ or $B^{\mathcal{N}} < F(G)$, where B is a subgroup of G such that $B^{\mathcal{N}} \not \simeq G$.

(2) Assume $G^{\mathcal{N}}$ is nilpotent, then

(2.a) $G = P \rtimes K$, where P, K are Sylow p-group and nilpotent Hall p'-subgroup of G.

(2.b) $P = F(G) = B^{\mathcal{N}}N = G^{\mathcal{N}} = [P, K]$ is an elementary abelian p-group, where $B^{\mathcal{N}} \not \simeq G$ and N is a minimal normal subgroup in G.

(2.c) Let $|P| = p^n$. Then |G| divides $|P| \cdot |GL(n,p)|$.

(2.d) Let M be a maximal subgroup of G. If $B \leq M$, then $M \leq G$, $|G:M| = q \neq p$. If $B \leq M$, then $M \leq G$ or $M = (F(G) \cap M) \rtimes K$.

Proof. Our theorem will be proved by following two cases according to $G^{\mathcal{N}}$ is nilpotent or not.

(1) If $G^{\mathcal{N}}$ is not nilpotent, then the proof is divided into following 5 steps.

(1.1) F(G) is a unique minimal normal subgroup of G.

By $\Phi(G) = 1$, F(G) is a direct product of some minimal normal subgroups of G. If there exists two different minimal normal subgroups N_1 , N_2 of G, then G/N_1 , G/N_2 are $N^{\mathcal{N}}$ -groups. Then $G^{\mathcal{N}}$ is nilpotent by Lemma 3.3 (1) and 3.4, a contradiction. Hence F(G) is the unique minimal normal subgroup of G.

(1.2) $G = F(G) \rtimes H$, where H is a non-nilpotent maximal subgroup of G.

Again since $\Phi(G) = 1$, there exists a maximal subgroup H of G such that G = F(G)H. It follows from $F(G) \cap H \leq G$ and (1.1) that $F(G) \cap H = 1$. Therefore $F(G) = C_G(F(G))$ and H = G/F(G) is not nilpotent.

(1.3) H is a Schmidt group.

Since G is solvable, H is solvable, then there exists a maximal normal subgroup M of H such that |H:M| = q. Let F(G) be an elementary abelian p-group.

By $M \leq H$, we get $N_G(F(G)M) \geq H$ and $N_G(F(G)M) \geq F(G)M$, then $F(G)M \leq G$. It follows that F(F(G)M) = F(G). Then M is nilpotent since $M^{\mathcal{N}} \cong (F(G)M/F(F(G)M))^{\mathcal{N}} = 1$. Next we prove that M is a p'-group. If not, let $M_p \in \operatorname{Syl}_p(M)$. Then $M_p \leq H$ and $F(G)M_p \leq G$, so $F(G)M_p = F(G)$ and $M_p \leq F(G)$, a contradiction. If $q \neq p$, then H is a p'-group and F(G) is a normal Sylow p-subgroup of G. Let H_1 be a proper subgroup of H. Since $F(F(G)H_1) = F(G) \times O_{p'}(F(G)H_1)$, $O_{p'}(F(G)H_1) = 1$ and $F(F(G)H_1) =$ F(G). Then H_1 is nilpotent since $H_1^{\mathcal{N}} \cong (F(G)H_1/F(G))^{\mathcal{N}} = (F(G)H_1/F(F(G)H_1))^{\mathcal{N}} = 1$, so H is a Schmidt p'-group.

If q = p, then there exists subgroup A of order p such that H = MA. Let T be a maximal subgroup of H.

Case 1. T does not contain a subgroup of order p, then F(F(G)T) = F(G). By the similar argument above, we can get T is nilpotent.

Case 2. T contains a subgroup $A^h(h \in H)$ of order p. If $F(G)A^h \not \cong F(G)T$, then $F(F(G)T) = O_p(F(G)T) = F(G)$, so T is nilpotent. If $F(G)A^h \trianglelefteq F(G)T$, then $A^h = F(G)A^h \cap T \trianglelefteq T$, and $T = A^h M_1, M_1 < M$, so $[A^h, M_1] \le A^h \cap M = 1$, that is, T is nilpotent.

Hence, in either cases above, H is a Schmidt group.

(1.4) $G^{\mathcal{N}} = F(G) \rtimes Q$ is a abelian-by-nilpotent group, and $G^{\mathcal{N}^2} = F(G)$.

By (1.3), $H = Q \rtimes R$ or $Q \rtimes P_1$, where Q, R and P_1 are normal Sylow q-subgroup, cyclic Sylow r and p-subgroup of H. Then $G = F(G) \rtimes (Q \rtimes R)$ or $F(G) \rtimes (Q \rtimes P_1)$ and $G^{\mathcal{N}} = F(G) \rtimes Q$ by Lemma 3.4. Therefore $G^{\mathcal{N}}$ is a $N^{\mathcal{N}}$ -group. If $q \neq 2$, then $\exp(Q) = q$, and $G^{\mathcal{N}}$ is metabelian group. If q = 2, then $\exp(\Phi(Q)) = 2$, and $G^{\mathcal{N}}$ is abelian-by-nilpotent group.

(1.5) $B^{\mathcal{N}} = Q$ or $B^{\mathcal{N}} < F(G)$, where B is a subgroup of G such that $B^{\mathcal{N}} \not\leq G$.

Since G is a minimal non- $N^{\mathcal{N}}$ -group, there at least exists a subgroup B of G such that $B^{\mathcal{N}} \not\leq G$. If BF(G) = G, then, by (1.2), $B \cong H$, and therefore $B^{\mathcal{N}} = Q$ by (1.4). If BF(G) < G, then BF(G)/F(G) is nilpotent by (1.3), so $B^{\mathcal{N}} \leq (BF(G))^{\mathcal{N}} \leq F(G)$, that is, $B^{\mathcal{N}} < F(G)$.

(2) If $G^{\mathcal{N}}$ is nilpotent, then $N^{\mathcal{N}}(G) > 1$ and $G^{\mathcal{N}} \leq F(G)$. Also it is easy to see $G = N^{\mathcal{N}}(G)_2$ and the Fitting length of G equals 2. Following proof can be divided into 7 steps.

(2.1) $F(G) = B^{\mathcal{N}}N$, where $B^{\mathcal{N}} \not \simeq G$ and N is a minimal normal subgroup of G.

Since G is a minimal non- $N^{\mathcal{N}}$ -group, there at least exists a subgroup B of G such that $B^{\mathcal{N}} \not \leq G$. By $(BN/N)^{\mathcal{N}} \leq G/N$ hold for any normal subgroup N of G, $B^{\mathcal{N}}N \leq G$. Specially, we consider the case N is a minimal normal subgroup of G.

If N is a unique minimal normal subgroup of G, then, by $\Phi(G) = 1$, $F(G) = N = G^{\mathcal{N}}$. If minimal normal subgroup of G is not unique, then, for another minimal normal group T of G, $T \cap B^{\mathcal{N}}N$ is normal. Since $B^{\mathcal{N}}T \cap B^{\mathcal{N}}N = B^{\mathcal{N}}(T \cap B^{\mathcal{N}}N) \leq G$, we get $T \leq B^{\mathcal{N}}N$, it follows that every minimal normal subgroup of G is contained in $B^{\mathcal{N}}N$. By $\Phi(G) = 1$, $F(G) = B^{\mathcal{N}}N$.

(2.2) F(G) = P, where $P \in Syl_p(G)$.

Now we claim that $B^{\mathcal{N}}$ does not contain any non-trivial normal subgroup of G. If not, let $T \leq G$ and $T \leq B^{\mathcal{N}}$. Then $(B/T)^{\mathcal{N}} = B^{\mathcal{N}}/T \leq G/T$, so $B^{\mathcal{N}} \leq G$, a contradiction.

Let N be an elementary abelian p-group. Then F(G) = N or $F(G) = B^{\mathcal{N}}N$ by (2.1). It is easy to see $F(G)_{p'} \leq G$, therefore $F(G)_{p'} = 1$ by the claim above. Then $F(G) = O_p(G)$. Thus $G/F(G) = O_{p'}(G/F(G))$, and then F(G) = P, where $P \in \text{Syl}_p(G)$.

(2.3) $F(G) = G^{\mathcal{N}}$ and Z(G) = 1.

By Lemma 3.6, $F(G) = G^{\mathcal{N}} \times Z(G)$. It follows from (2.1) that $B^{\mathcal{N}}N = G^{\mathcal{N}} \times Z(G)$. If $N \leq Z(G)$, then Z(G) = N and $H^{\mathcal{N}} = G^{\mathcal{N}}$, a contradiction. Then $N \leq G^{\mathcal{N}}$ and Z(G) = 1. Hence $F(G) = B^{\mathcal{N}}N = G^{\mathcal{N}}$.

(2.4) $G = P \rtimes K$, where K is nilpotent Hall p'-subgroup, P = [P, K].

By (2.2) and (2.3), there exists a Hall p'-subgroup K such that $G = P \rtimes K$ and K is a nilpotent p'-subgroup. Apply Fitting lemma, we get $P = [P, K] \times C_P(K) = [P, K]$ by Z(G) = 1.

(2.5) Let $|P| = p^n$. Then |G| divides $|P| \cdot |GL(n, p)|$.

By (2.2) and $\Phi(G) = 1$, P is elementary p-group, and then G/P is isomorphic to a subgroup of Aut(P). Hence |G| divides $|P| \cdot |GL(n,p)|$ by (2.4).

(2.6) If $B \leq M$ and M is a maximal subgroup of G, then $M \leq G$, $|G:M| = q \neq p$.

Also we claim that B is contained in a unique maximal subgroup M of G. If there exists two different maximal subgroups M, M_1 such that $B \leq M$, $B \leq M_1$, then $H^{\mathcal{N}} \leq M$ and $H^{\mathcal{N}} \leq M_1$, so $H^{\mathcal{N}} \leq \langle M, M_1 \rangle = G$, a contradiction.

If $F(G) \not\leq M$, then G = F(G)M. By F(G) is abelian group, $B^{\mathcal{N}} \leq G$, a contradiction. Then $F(G) \leq M$ and M/F(G) is the maximal subgroup of G/F(G), so $M/F(G) \leq G/F(G)$ and |G/F(G) : M/F(G)| = q, that is, $M \leq G$ and |G : M| = q.

(2.7) If $B \leq E$ and E is a maximal subgroup of G, then $E \leq G$ or $E = (F(G) \cap E) \rtimes K$.

It is also clear that there at least exists a maximal subgroup E of G such that the nilpotent residual of every subgroup of E is normal. Otherwise, every maximal subgroup contains subgroup that its nilpotent residual is not normal, then, by (2.6), every maximal subgroup of G is normal and G is nilpotent, a contradiction. If $E \ge F(G)$, then E/F(G) is the maximal subgroup of G/F(G), so $E \le G$. If $E \ge F(G)$, then G = F(G)E and $E = (F(G) \cap E) \rtimes K$.

Corollary 4.1 If G is a soluble minimal non- $N^{\mathcal{N}}$ -group and $\Phi(G) = 1$, then,

- (1) for a prime $p \in \pi(G)$, $B^{\mathcal{N}}$ is a p-group for any subgroup B of G such that $B^{\mathcal{N}} \not \supseteq G$.
- (2) $1 \le l_p(G) \le 2.$
- (3) $P \ge F(G)$, where $P \in Syl_p(G)$.

Corollary 4.2 If G is a minimal non- $N^{\mathcal{N}}$ -group and $\Phi(G) = 1$, then Z(G) = 1.

Theorem 4.3 If G is a minimal non- $N^{\mathcal{N}}$ -group and $\Phi(G) \neq 1$, then $G/\Phi(G)$ satisfies Theorem 3.2, 4.1 or 4.2.

Proof. It is clear from Lemma 4.2.

Hence, we have obtained a simple characterization of minimal non- $N^{\mathcal{N}}$ -groups by Theorem above.

Acknowledgement: The authors would like to thank Professor A. Ballester-Bolinches of Valencia University for his valuable suggestions and useful comments contributed to this paper.

References

- [1] R. Baer, Der Kern eine charakteristische Untergruppe, Compos. Math., 1 (1934), 254-283.
- [2] R. Baer, Zentrum und Kern von Gruppen mit Elementen unendlicher Ordnung, Compos. Math., 2 (1935), 247-249.
- [3] R. Baer, Group elements of prime power index, Trans. Amer. Math. Soc., 75 (1953), 20-47.

- [4] R. Baer, Norm and hypernorm, Publ. Math. Debrecen, 4 (1956), 347-356.
- [5] A. Ballester-Bolinches, J. Cossey, Finite groups with subgroups supersoluble or subnormal, J. Algebra 321 (2009), 2042-2052.
- [6] A. Ballester-Bolinches, L.M. Ezquerro, *Classes of Finite Groups*, Springer, Dordrecht, Netherlands, 2006.
- [7] J. C. Beidleman, H. Heineken, M. Newell, Center and norm, Bull. Austral. Math. Soc., 69 (2004), 457-464.
- [8] H. Doerk and T. Hawkes, *Finite soluble groups*, Belin, New York, 1992.
- [9] L. Gong, X. Guo, On the intersection of the normalizers of the nilpotent residuals of all subgroups of a finite group, *Algebra Colloq.* **20** (2013), 349-360.
- [10] W. Guo and A. N. Skiba, On the intersection of the *F*-maximal subgroups and the generalized *F*-hypercentre of a finite group, *J. Algebra*, **336** (2012), 112-125.
- [11] X. Guo, L. Gong, A note on the size of the nilpotent residuals in a finite group, Arch. Math. 99 (2012), 413-416.
- [12] W. Guo, X. Feng, J. Huang, New characterizations of some classes of finite groups, Bull. Malays. Math. Sci. Soc. 34 (2011), 575-589.
- [13] L.C. Kappe, J. Kirtland, Finite group with trivial Frattini subgroup, Arch. Math. 80(2003), 225-234.
- [14] K.S. Kemhadze, Finite groups whose every non-primary subgroup is different from its normaliser, Sakharth SSR Mecn. Akad. Moambe 62 (1971), 529-532.
- [15] S. Li, Z. Shen, On the intersection of the normalizers of derived subgroups of all subgroups of a finite group, J. Algebra, 323 (2010), 1349-1357.
- [16] J. Liu, X. Guo and S. Li, The influence of CAP*- subgroups on the solvability of finite groups, Bull. Malays. Math. Sci. Soc., 1(2012), 227-237.
- [17] X. Luo and X. Guo, Finite groups in which every non-abelian subgroup is s-permutable, Southeast Asian Bulletin of Mathematics, 33 (2009) 1143-1147.
- [18] K. Motose, Finite groups having exactly one non-linear irreduciable chacter, Bull.Fac.Sci.Tech.Hirosaki Univ, 9 (2007), 101-113.
- [19] H. Mousavi, A. Shomali, Central automorphisms of semidirect products, Bull. Malays. Math. Sci. Soc. 36 (2013), 709-716.

- [20] A.S. Muktibodh, Characterization of Frobenius groups of special type, Math. J. Okayama Univ, 48 (2006), 73-76.
- [21] R.E. Phillips, J.S. Wilson, On certain minimal conditions for infinite groups, J. Algebra 51 (1978), 41-68.
- [22] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
- [23] G.M. Romalis, N.F. Sesekin, Metahamiltonian groups, Ural. Gos. Univ. Mat. Zap. 5 (1966), 101-106.
- [24] G.M. Romalis, N.F. Sesekin, Metahamiltonian groups, Ural. Gos. Univ. Mat. Zap. 6 (1968), 50-52.
- [25] A. Russo, G. Vincenzi, Groups whose non-normal subgroups have a transitive normality relation, *Rend. Circ. Mat. Palermo* (2) 50 (3) (2001), 477-482.
- [26] E. Schenkman, On the norm of a group, Illinois J. Math., 4 (1960), 150-152.
- [27] Z. Shen, J. Shi, G. Qian, On the norm of the nilpotent residuals of all subgroups of a finite group, J. Algebra, 1 (2012),290-298.
- [28] A.N. Skiba, On the intersection of all maximal *F*-subgroups of a finite group, J. Algebra, 343 (2011), 173-182.
- [29] A.N. Skiba, On the *F*-hypercentre and the intersection of all *F*-maximal subgroups of a finite group, J. Pure Appl. Algebra, **216** (2012), 789-799.
- [30] J.G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, I, Bull. Amer. Math. Soc. 74 (1968), 383-437.
- [31] L. Zhu, N. Yang, N. T. Vorob'ev, On lockett pairs and lockett conjecture for π -Soluble fitting classes, *Bull. Malays. Math. Sci. Soc.*, **3** (2013), 825-832.