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1 Introduction

All groups considered in this paper are finite.

A Dedekind group is a group in which every subgroup is normal, which has been generalised in a
number of ways. Romalis and Sesekin investigated metahamiltonian groups, in which every subgroup
is normal or abelian [23, 24]. Russo and Vincenzi considered groups in which every subgroup is normal
or a T-group [25]. Kemhadze investigated the structure of groups in which every subgroup is either
subnormal or nilpotent [14], as did Phillips and Wilson, who gave necessary conditions [21, Lemma 7]
and a detailed description of such groups with trivial centre [21, Proposition 2]. Recently, Ballester-
Bolinches and Cossey have obtained the equivalent condition of non-nilpotent groups in which every
subgroup is either subnormal or nilpotent [5].

Recall that the norm N(G) of a group G is the intersection of the normalizes of all subgroups of
G, which was first introduced by Baer in 1934 [1] and many useful properties and results on norm
have been given [1, 2, 4, 7, 16, 17, 26]. It is clear that G = N(G) if and only if G is a Dedekind group.

In addition, we have studied a characteristic subgroup NV (G) of a group G, which is the inter-
section of the normalizers of the nilpotent residuals of all subgroups of G [9], also it is called S(G) in
[27], that is,

NY(G) = () Ne(®EY),
H<G
where HV is the nilpotent residual of subgroup H of G.

There exists a series of normal subgroups:

1=NY(G)o < NV(G)n < NV(G)a <+ < NV(G)p < -+,
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in which NV(G)i11/NV(G); = NV (G/NN(G);) for i = 0,1,2,- - -, and let NV (@)oo be the terminal
term of the ascending series.

Our aim in this paper is to consider the structure of groups whose nilpotent residuals of non-
normal subgroups are normal, which is a generalization of the class of groups in which every subgroup
is nilpotent or normal.

The terminology and notation employed agree with standard usage [6, 8, 22]. Let N2 denote
the class of metanilpotent groups and Int,~(G) denote the intersection of all maximal metanilpotent
subgroups of a group G. The metanilpotent hypercenter, nilpotent residual, metanilpotent residual,
Fitting and Frattini subgroup of a group G will be denoted by Zy2(G), GV, GN*, F(G), ®(G)
respectively. K;(G) and 7(G) denote the ith term of the lower central series of a group G and the set

of primes divide the order of G respectively.

2 The structure of NV(G)

It is easy to see that the intersection of all maximal abelian subgroups of a group G is its center
Z(G), it is also proved that the intersection of all F-maximal subgroups of a group G is its F-
hypercenter Zx(G) for certain non-empty hereditary saturated formations F in [10, 12, 19, 28, 29, 31].

In addition, it is well-known that the intersection of all maximal nilpotent subgroups of a group
G is its hypercenter Zo(G) in [3, Corollary 4], and it is also proved that G equals NNM(@Q)s if G is
metanilpotent in [9, Theorem 4.4 | or [27, Theorem 3.3].

A natural question arises:

Does the intersection of all maximal metanilpotent subgroups of the group G coincide
with the hypercenter of N2 ?

In this section, we obtain a positive answer to this question. Firstly, we will list here some lemmas
on NV (G) of a group G, which will be useful in the sequel.

Lemma 2.1 Let G be a group. Then Cg(GN) is nilpotent.

Proof. Let Cqo(GN) = C. Then CGN/GN = C/(GN N C) is nilpotent. By [GY N C,C] = 1,
GN'nC < Z(C). Thus C/Z(C) is nilpotent, so is C.

Lemma 2.2 [9, Proposition 2.2, Theorem 2.12 and Proposition 4.3] or [27, Theorem 2.5 and Propo-
sition 2.3] Let G be a group. Then

(1) Zso(G) < Ca(GN) < NV(G).

(2) If Z(GN) =1, then NN(G) = Co(GM).

(8) If N 4G and N < NN(G)oo, then NV (G/N)s = NV(G)oo/N.

Lemma 2.3 [9, Theorem 4.7] Let G be a group. Then
(1) Zoo(GN) < NN(@)oo.
(2) NN(G)oo/Z0(GN) = NN(G/ 20 (GN)) = Cyz,0(02) (GN [ 20 (GV)).

Lemma 2.4 [29, Theorem A] Let F be a hereditary saturated formation with w(F) # 0, for any
p € m(F), F(p) denote the intersection of all formations containing the set {G/Oy ,(G)|G € F}, and
let F(p) denote the class of all groups G such that GT®) s a P-group.



Then Zr(G) = Intx(G) hold for each group G if and only if F satisfies the boundary condition,
where we say that F satisfies the boundary condition if for any p € n(F), G € F whenever G is an
F(p)-critical group.

Lemma 2.5 [9, Corollary 4.5] or [27, Theorem 3.4] If H is an N?-subgroup of a group G, then
NN(G)ooH is also an N?-group.

From Lemma 2.5, the every maximal metanilpotent subgroup of a group G contains the hypercenter
of NV (G). We shall see in the sequel that in fact the latter subgroup is the intersection of all maximal

metanilpotent subgroup of a group G. We need the following lemma.

Lemma 2.6 Let G be a group. Then
(1) The nilpotent residual of NV (Q)we is nilpotent.
(2) NN(G)OO N GN = Zoo(GN)'

Proof. (1) If Z(GV) = 1, then, by Lemma 2.2 (2), NV(G) = C(G"). So NN(G) is nilpotent by
Lemma 2.1. Further more, we can prove NV(G)o = NV(G).

It is easy to see that Z(GV) = 1 if and only if NV(G)NGY =1 by Lemma 2.2 (1) and (2). Since
Z(GN) =1, we have Z((G/NV(G))N) = 1. Then NN (G/NN(G)) N (G/NN(G)N = 1, that is,

NV (G)nGN <NV G nGN =1.

By the same way, we have NV (@)oo NGV = 1. Hence, by Lemma 2.2 (1) and the definition of series,
NN(G)oo = NN(G).
If Z(GN) # 1, then we consider G/Zs(GV). By Lemma 2.3 (2), we see

NM(G)oo/Zoo(GN) = NN(G/Zoo(GN) = Cyyz. () (GN [ Zoo (GN)).

Then NV(Q)oo/Zso(GV) is nilpotent by Lemma 2.1, thus NV (G)s is metanilpotent.
(2) If Z(GN') =1, then, by the same argument with (1), we have NV (G)oo NGV =1 = Zo(GV).
If Z(GN) # 1, then we consider G/Zs(GV). Then

NN (G Zso(GN) N (G Zso(GN)N = 1.

It follows from Lemma 2.3 that NV(G)o NGV = Zoo(GV).

Now, we are ready to answer the question.
Theorem 2.1 Let G be a group. Then Zy2(G) = NV (G) .

Proof. We proceed by induction on the order of G.
(1) Zp2(G) < NV (G) oo
Let N be a minimal normal subgroup of G and N < Zu2(G). Since N is A?-central in G,

[N](G/Ca(N)) € N2, ()

Let X = [N](G/Cg(N)). Then X is a primitive group and Soc(X) = N = F(X). It follows from
(%) that X/F(X) = G/Cq(N) € N. Hence N < Cg(GV) < NV(G) < NV(G)w. By induction and
Lemma 2.2 (3),
Zn2(G)/N = Zp2(G/N) < NV (G/N)oo = NV(G)oo /N,



thus Zy2(G) < NV(G)w.

(2) NN(G)OO < Zn2(G).

Let N be a minimal normal subgroup of G and N < NV(Q). If N < Z(G), then N < Ca(GN?).
If N <GV, then N < NV (G)o NGV, By Lemma 2.6 (2) and [8, Theorem 6.14],

N < Zoo(GN) = Cu((GNY) < Ca(GM),

where U is maximal nilpotent subgroup of GV
In addition, N < M hold for any maximal metanilpotent subgroups M by Lemma 2.5. Hence, by
[8, Theorem 6.14], N < Cu(GN?) = Z2(G). By induction and Lemma 2.2 (3),

Z52(G)/N = Zp2(G/N) = NN (G/N)oo = NV(G)oo/N,
thus Zy2(G) > NV(G)w.
Theorem 2.2 Let G be a group. Then NN(GQ)oo = Zp2(G) = Intpr2(G).

Proof. Let F(p) = SN for all p. Then F is the canonical local definition of N2, If G is F(p)-critical
for all p, then every maximal subgroup of G is nilpotent since they are in S, for all p. Then G
is either nilpotent or a Schmidt group. In any case, G is metanilpotent, that is, N? satisfies the

boundary condition. Thus the equality is clear from Lemma 2.4 and Theorem 2.1.

Following [15], we denote the intersection of the normalizers of the derived subgroups of all sub-
groups in a group G by D(G), Do (G) is the terminal term of the ascending series 1 = Dy(G) <
Di(G) < Dy(G) <--- < Dy(G) <---, where D;11(G)/D;(G) = D(G/D;(G)) for i =0,1,2,---.

By the similar way, we can prove following theorem with the help of [15, Lemma 2.3, Theorem 2.6,
Problem 5.1 and 5.2], [8, Theorem 6.14] and Lemma 2.4.

Theorem 2.3 Let G be a group and F denote the class of group G that G is nilpotent. Then
(1) The derived subgroup of Duo(G) is nilpotent and Deo(G) NG = Zoo(G).
(2) Do(G) = Z£(G) = Intx(G).

3 NVN-groups

In this section, we begin to discuss groups in which the nilpotent residual of every subgroup is

normal.

Definition 3.1 A group G is said to be NN -group ([9]) or S-group ([27]) if G = NN(G). A group
G s called D-group if G = D(G).

Clearly, we see that the nilpotent residual of every subgroup in a N N -group is normal. So it is easy
to see that the class of groups in which every subgroup is nilpotent or normal in properly contained in
the class of NV -groups. For the sake of completeness, we list here some basic results on NN -groups

which have been proved in [9].

Lemma 3.1 [9, Proposition 4.9] or [27, Theorem 4.2] Let G be a NV _group.
(1) If H < G, then H is a NN _group.
(2) If K < G, then G/K is a NN -group.



Lemma 3.2 [9, Proposition 2.7] or [27, Theorem 1.4] If G = A x B is the direct product of a group
A and a group B with (|A|,|B|) = 1, then NN (G) = NV (A) x NV(B).

The following example illustrates that the condition (|A|, |B|) = 1 could not be removed in Lemma

3.2. It also shows that the direct product of two NV -groups may be not a N N -group.

Example 3.1 Let G = S3 x S3 = {(a,b,c,d|a® =b* = =d* =1,a®* =a" ', ¢ =c!,[a,d] = [a,d] =
[b,c] = [c,d] = 1), H = (ac,bd) and K = (ac). It is clear that H 1is isomorphic to S3 and K is the
nilpotent residual of H. It follows from K £ G that NV(G) < NN (S3) x NV (S3) = G. Then G is a

supersoluble non—NN—gmup in which all proper subgroups are NN—gmups.

Example 3.2 [9, Proposition 4.10] The following groups are NN—groups:
(1) Groups all of whose non-nilpotent subgroups are normal.
(2) Groups with the cyclic nilpotent residual.

(3) Groups with an abelian normal subgroup of index a prime.

Lemma 3.3 [9, Proposition 2.3, Theorem 3.2, 3.5, 4.4, 4.11] If G is a NN _group, then
(1) G is a meta-nilpotent group.
(2) 1,(G) <1 for a prime p € 7(G) and the Fitting length of G is bounded by 2.
(8) F(G/®(G)) = Caac)((G/R(G)V) = (G/R(G)N x Z(G/®(G)).

Lemma 3.4 IfG = MN is the product of a normal subgroup N and a subgroup M, then GN < MNN.
In particular, (M x NYN = MN x NV,

Proof. By [G,G] < [M,M]|N and induction, we get K;(G) < K;(M)N for any integer i, then
GN < MNN. If M <G, then GN < MNNN(M N N). Hence (M x NYN = MN x NV,

The class of all NV-groups is not a saturated class as the following example shows.

Example 3.3 Let G = (a,b,c,d|a®> = 1,03 =1, =1,d> = 1,c* = ¢!, P = cd,d* = d™1). Then it is
easy to see that G is not a N -group but G/®(G) is a NN -group.

It is clear that the class of nilpotent groups is contained in the class of N -groups. Now we first

begin to consider some special non-nilpotent NN -groups.

Proposition 3.1 Let G be a non-nilpotent NN -group. If there is a mazimal subgroup M of G with
Mg =1, then
(1) G = GV % M with GN' a minimal normal subgroup of G and M nilpotent.

(2) Every subgroup of G is either nilpotent or subnormal.

Proof. Since M is a maximal subgroup of G and Mg =1, G = GNM. By Cg(C(;<GN) NM)>GN
and Ng(Ca(GN)N M) > M, we see G = Ng(Cq(GN) N M). Tt follows that Co(GN) N M = 1. For
any non-trivial normal subgroup H of G that contained in Cq(GY), G = HM and Cq(GV) = H,
which implies C(G?") is a minimal normal subgroup of G.

Noticing Lemma 3.3 (3), we get Cq(GN) = GV x Z(G). Then Cg(GN) = GV and Z(G) = 1.
Therefore GN N M =1 and M is nilpotent.

Since GV is a minimal normal subgroup of G, KN =1 or GV for every subgroup K of G. So

every subgroup of G is either nilpotent or subnormal in G.



Proposition 3.2 If G is a primitive non-nilpotent D-group, then every subgroup of G is either nilpo-

tent or normal.

In Proposition 3.1 above, GN = F (G) is a minimal normal subgroup of a N N -group G, which is an
elementary p-group for some p € 7(G). So it is interesting to consider the non-nilpotent NN _groups

such that F/(G) is a p-group.

Proposition 3.3 If G is a non-nilpotent NN -group and F(G) is a p-group for some p € w(G), then
(1) G = 0,,(G) and F(G) is a Sylow p-subgroup of G.
(2) |G| divides p"(p" = 1)(p" " = 1)+ (p— 1) if |P| = p" and |P/®(P)| = p".

Proof. (1) By F(G) is a p-group, F(G) = Op(G), and then F(G/F(G)) = O, (G/F(G)). Apply
Lemma 3.3 (2), we sece G/F(G) is a p'-group, so P < F(G) for P € Syl,(G), it implies F(G) = P.
Then G/0y(G) = O, (G/Op(G)) = O,/ (G)/Op(G), so G =0, (G).

(2) By Lemma 3.3 (1), NV-groups are solvable. According to a Theorem of Hall-Higman [22,
Theorem 9.3.2] and (1), we have P = Cq(P/®(P)), and G/Cq(P/®(P)) is isomorphic to a subgroup
of Aut(P/®(P)). Let |P| = p™ and |P/®(P)| = p". Then |G/P| divides (p" —1)(p" —p) -+~ (p" —p" 1),
by G/P is a p -group, we see |G| divides p™(p" — 1)(p" ' = 1)---(p —1).

Remark 3.1 According to Proposition 3.3, we can see that F(G) is neither a cyclic group nor a

dihedral group if p = 2, also we can see G = Qg x C5 if F(G) is a quaternion 2-group.

Lemma 3.5 Let p be a prime and P a Sylow p-subgroup of a group G. Then G is p-nilpotent if and
only if Ng(P) and GV are p-nilpotent.

Proof. It is clear that Ng(P) and GV are p-nilpotent if G is p-nilpotent. Conversely, let G be a
counter example of minimal order and H = Op/(GN ).

If H # 1, then we consider G/H. Since Ng/y(PH/H) = Ng(P)H/H, (G/HYV are p-nilpotent
and the minimality of G, we see G/H is p-nilpotent, so G is, a contradiction.

If H = 1, then, by GV is p-nilpotent, GV is a p-group. It follows from P/ GV « G/ GV that

P < @, so G is p-nilpotent, a contradiction. Now we complete the proof.

Apply the Lemma 3.5 and Proposition 3.3 (1), we have:

Corollary 3.1 Let p be a prime and P a Sylow p-subgroup of a NN—group G. Then G is p-nilpotent
if and only if Ng(P) is p-nilpotent.

Lemma 3.6 [11, Lemma 0.5] If G is a metanilpotent group and G = G/®(G), then F(G) = 7Y x

Z(G).

Lemma 3.7 [13, Theorem 2.1, Lemma 2.4 and Theorem 2.5]
(1) If N is an abelian normal subgroup of G with ®(G) = 1, then N has a complement in G.
(2) If ®(G) =1 and Z(G) # 1, then G = Z(G) x H with Z(G) elementary abelian and Z(H) = 1.

Theorem 3.1 Let G be a non-nilpotent NN—group and ®(G) = 1. Then the nilpotent residual of
every subgroup has a complement and G = F(G) x K with F(G) abelian and K nilpotent.

(1) If Z(G) = 1, then F(G) = GV.

(2) If Z(G) # 1, then G = Z(G) x H, and H satisfying (1).



Proof. By the condition of Theorem and Lemma 3.6, the nilpotent residual of every subgroup is
normal and F(G) = GN x Z (@) is abelian group. Then the nilpotent residual of every subgroup has
a complement by Lemma 3.7 (1). Specially, F'(G) has a complement K in G, that is, G = F(G) x K,
and K is nilpotent.

(1) If Z(G) =1, then F(G) = GV.

(2) If Z(G) # 1, then, by Lemma 3.7 (2), G = Z(G) x H, where Z(G) is elementary abelian and
Z(H) =1. So H satistying (1).

The following results are consequences of Theorem 3.1.

Theorem 3.2 Let G be a NN—group. Then

(a) G is a nilpotent group.

(b) G is a non-nilpotent group. If ®(G) = 1, then the nilpotent residual of every subgroup has a
complement and G = F(G) x K with F(G) abelian and K nilpotent.

Theorem 3.3 Let G be a D-group. Then

(a) G is a abelian group.

(b) G is a non-abelian group. If ®(G) = 1, then the derived subgroup of every subgroup has a
complement and G = F(G) x K with F(G) and K abelian.

4 Minimal non-NV-groups

Definition 4.1 A group G is called a minimal non-NN-group if G is not a NN—group, but every
proper subgroup of G is a NN -group.

The semidirect product of Qg with S3 show that the quotient group of a minimal non-N N -group can
be not a NN-group. However, G/®(G) is a minimal non-N"-group or NV-group if G is a minimal
non-N"-group and ®(G) # 1.

Lemma 4.1 If G is a minimal non-NV-group and ®(G) # 1, then either G/®(G) is a minimal
non—NN—group or NN—group.

Proof. Let H be a maximal subgroup of G and K < H. Since G is a minimal non—NN-group, Hisa
NN _group, then KV < H. We consider G/®(G) and its maximal subgroup H/®(G). It is clear that
(K®(Q)/®(G)N <4 H/D(G), so H/®(G) is a NV-group, and every maximal subgroup of G/®(G) is
a NV-group. Then G/®(@) is a minimal non-N"-group or NV-group.

Lemma 4.2 If G is a minimal non-NN—gmup and ®(G) =1, then G is minimal simple or solvable.

And if G is a solvable group, then every proper quotient group of G is a NN—gmup.

Proof. Since every proper subgroup of GG is a N N -group and Lemma 3.3 (1), very proper subgroup
of GG is solvable. If G is a simple group, then G is a minimal simple group. If G is not a simple group,
then there exists a non-trivial proper normal subgroup N of G. By ®(G) = 1, there exists a maximal
subgroup M of G such that G = M N. Then G/N is a NN _group since M is a NV -group. It follows
from M and N are NV -groups that G is soluble.

In order to classify the simple minimal non-N N -groups, we need some lemmas.



Lemma 4.3 [20, Theorem 4.3] and [18, Lemma 1] A group G is called a 2-Con-Cos group if the
following conditions are satisfied for a proper derived subgroup G of G,

(i) G'x = cl(x), for allz in G — G, (i) G =1Ucdl(a), for some a in G, where cl(g) denotes the
conjugacy class of g € G. Then

(1) G is a 2-Con-Cos group with Z(G) = 1 if and only if G is a Frobenius group of the type
Cy % Cpr-1 for some prime p and some 7 > 1.

(2) If G is a 2-Con-Cos group, N A G, then N =1 or N > G'.

Lemma 4.4 Let G be a Frobenius group of the type Cy X Cpn_y. Then G is a NN—group precisely

when p" — 1 is a prime.

Proof. By Lemma 4.3, C) = G = GV is the minimal normal subgroup of G. If p" — 1 is a prime,
then, by Example 3.2 (3), G is a NN _group. Let C' = Cpn_1 be a cyclic group which is not of prime
order and B a non-trivial maximal subgroup of C' and A = C}}. Since G is a Frobenius group, V = Cy
is an irreducible and faithful module for C' over the finite field GF(p) of p elements and dim V = n.
Now, by [8, Theorem 9.16], the order of B is (p" — 1)/p. So the dimension of every irreducible and
faithful module for B over GF(p) is less than n. In particular, A is not irreducible for B. Moreover,
Cp(A) = Ker(B on A) =1 since A is faithful for C. According to Clifford theorem, A is completely
irreducible and so there exists an irreducible B-submodule of A which is not centralized by B, A; say.
Now Aj is the nilpotent residual of A1 B and Ay cannot be normal in G since A is a minimal normal

subgroup of G, that is, G is not a NN—group.

Now, we are ready to classify the simple minimal non-NV -groups.

Theorem 4.1 If G is a simple minimal non-NN -group, then G is isomorphic to one of following
groups.

(a) PSL(2,p), p is a prime, p > 3, p> # 1(mod5), p* # 1(mod16).

(b) PSL(2,27), q is a prime and 27 — 1 also is a prime.

(¢) PSL(2,3%), q is an odd prime and &2_1 also is a prime.

(d) Sz(29), q is an odd prime and 29 — 1 also is a prime.

Proof. By the classification of minimal simple groups [30], G may have following 5 types: (1)
PSL(2,p), p is a prime, p > 3, p? # 1(mod5). (2) PSL(2,29), q is a prime. (3) PSL(2,39), q is an
odd prime. (4) Sz(29), q is a prime. (5) PSL(3,3).

(a) All maximal subgroups of (1) are: (1.1) Dihedral group of order 2%, (1.2) Cp » Cprl, (1.3)
Ay, (1.4) Sy if p? = 1(mod16).

It is clear that dihedral groups, meta-cyclic groups and Schmidt groups are all NN -groups, then
(1.1), (1.2), (1.3) are all NV-groups. However NV (S;) = 1, then (a) is as required.

(b) All maximal subgroups of (2) are: (2.1) Dihedral group of order 2(27 & 1), (2.2) C§ x Caa_1,
which is order of 29(29 — 1), (2.3) A4 if ¢ = 2.

It is easy to see that (2.1) and (2.3) are all NV-groups. Apply Lemma 4.4 to (2.2), we can see
C§ x Coa_q is a NN—group if 29 — 1 is a prime, and then PSL(2,2%) is a minimal non—NN—group.
Otherwise, PSL(2,29) is not a minimal non-N*"-group.

(c) All maximal subgroups of (3) are: (3.1) Dihedral group of order 2(¥31), (3.2) Cf x C@,

which is order of 37 (3q2_1), (3.3) As.




It is clear by the similar argument with (b).

(d) All maximal subgroups of (4) are: (4.1) Frobenius group P»> X C2¢_1, where P» is non-abelian,
|P2| = 224, (4.2) Dihedral group of order 2(27 — 1), (4.3) C2q:t2qT+l+1 x Cly.

Also it is clear that (4.1) and (4.3) are all NV-groups. If 2¢ — 1 is a prime, then Py X Cy_; is a
Schmidt group, so Sz(27) is a minimal non-N"-group. If 2¢—1 is not a prime, then PyxCaq_1/®(Py) =
Cd % Caa_1, by Lemma 4.4, it is not a NN—group, s0 Sz(27) is not a minimal non—NN—group.

(e) Since S, is a maximal subgroup of PSL(3,3) and NV (Sy) = 1, PSL(3,3) is not a minimal

non-NV -group. Now the theorem is complete.

After classifying the simple minimal non- N N -groups, we turn to solvable minimal non- NV N -groups.

Theorem 4.2 If G is a solvable minimal non-N" -group and ®(G) = 1, then

(1) Assume GN is not nilpotent, then

(1.a) G = F(G) x H, where F(G), H are unique minimal normal and mazimal subgroup of G.

(1.b) H is a schimdt group. Let F(G) be p-group and H = Q x R or Q x Py, where Q, R and P
are a normal Sylow q-subgroup, cyclic Sylow r and p-subgroup of H. Then G = F(G) x (Q x R) or
F(G) % (Q x Py) and GN = F(G) x Q is a abelian-by-nilpotent group, GN* = F(Q).

(1.c) BN = Q or BN < F(QG), where B is a subgroup of G such that BN 4 G.

(2) Assume GN is nilpotent, then

(2.a) G = P x K, where P, K are Sylow p-group and nilpotent Hall p -subgroup of G.

(2.b) P =F(G) = BVN = GV = [P, K] is an elementary abelian p-group, where BN 4 G and N
is a minimal normal subgroup in G.

(2.c) Let |P| = p™. Then |G| divides |P| - |GL(n,p)|.

(2.d) Let M be a mazimal subgroup of G. If B < M, then M Q G, |G: M|=q#p. If BL M,
then M <G or M = (F(G)N M) x K.

Proof. Our theorem will be proved by following two cases according to G is nilpotent or not.

(1) If GV is not nilpotent, then the proof is divided into following 5 steps.

(1.1) F(G) is a unique minimal normal subgroup of G.

By ®(G) = 1, F(Q) is a direct product of some minimal normal subgroups of G. If there exists
two different minimal normal subgroups Nj, Na of G, then G/N;, G/N2 are N¥_groups. Then GV
is nilpotent by Lemma 3.3 (1) and 3.4, a contradiction. Hence F(G) is the unique minimal normal
subgroup of G.

(1.2) G = F(G) x H, where H is a non-nilpotent maximal subgroup of G.

Again since ®(G) = 1, there exists a maximal subgroup H of G such that G = F(G)H. It follows
from F(G)NH < G and (1.1) that F(G) N H = 1. Therefore F(G) = Cq(F(G)) and H = G/F(G) is
not nilpotent.

(1.3) H is a Schmidt group.

Since G is solvable, H is solvable, then there exists a maximal normal subgroup M of H such that
|H : M| = q. Let F(G) be an elementary abelian p-group.

By M 9 H, we get No(F(G)M) > H and Ng(F(G)M) > F(G)M, then F(G)M < G. It follows
that F(F(G)M) = F(G). Then M is nilpotent since MV = (F(G)M/F(F(G)M))N = 1. Next
we prove that M is a p’-group. If not, let M, € Syl,(M). Then M, < H and F(G)M, < G, so
F(G)M, = F(G) and M, < F(G), a contradiction.



If ¢ # p, then H is a p/-group and F(G) is a normal Sylow p-subgroup of G. Let H;j be a proper
subgroup of H. Since F(F(G)H,) = F(G) x Oy (F(G)H,), Oy (F(G)H,) = 1 and F(F(G)H,) =
F(G). Then H, is nilpotent since HY = (F(G)H,/F(G)YN = (F(G)H,/F(F(G)H,)N =1, so H is
a Schmidt p’-group.

If ¢ = p, then there exists subgroup A of order p such that H = M A. Let T be a maximal subgroup
of H.

Case 1. T does not contain a subgroup of order p, then F(F(G)T) = F(G). By the similar
argument above, we can get T is nilpotent.

Case 2. T contains a subgroup A"(h € H) of order p. If F(G)A" 4 F(G)T, then F(F(G)T) =
Op(F(G)T) = F(G), so T is nilpotent. If F(G)A" <4 F(G)T, then A" = F(G)A"NT < T, and
T = AMMy, My < M, so [A", M;] < AP M = 1, that is, T is nilpotent.

Hence, in either cases above, H is a Schmidt group.

(1.4) GN = F(G) x Q is a abelian-by-nilpotent group, and GV~ = F(G).

By (1.3), H=Q x R or @ x P;, where ), R and P; are normal Sylow g-subgroup, cyclic Sylow r
and p-subgroup of H. Then G = F(G) x (Q x R) or F(G) x (Q x P;) and GV = F(G) x Q by Lemma
3.4. Therefore GV is a NN -group. If ¢ # 2, then exp(Q) = ¢, and GV is metabelian group. If ¢ = 2,
then exp(®(Q)) = 2, and GV is abelian-by-nilpotent group.

(1.5) BN = Q or BN < F(G), where B is a subgroup of G such that BN 4 G.

Since G is a minimal non-N*V-group, there at least exists a subgroup B of G such that BV € G.
If BF(G) = G, then, by (1.2), B = H, and therefore BN = Q by (1.4). If BF(G) < G, then
BF(G)/F(QG) is nilpotent by (1.3), so BN < (BF(G))N < F(G), that is, BN < F(G).

(2) If GV is nilpotent, then NV(G) > 1 and GV < F(G). Also it is easy to see G = NV (G), and
the Fitting length of G equals 2. Following proof can be divided into 7 steps.

(2.1) F(G) = BNN, where BV 4 G and N is a minimal normal subgroup of G.

Since G is a minimal non-NV -group, there at least exists a subgroup B of GG such that BN 4 G.
By (BN/N )N < G/N hold for any normal subgroup N of G, BN N < G. Specially, we consider the
case N is a minimal normal subgroup of G.

If N is a unique minimal normal subgroup of G, then, by ®(G) = 1, F(G) = N = G If minimal
normal subgroup of G is not unique, then, for another minimal normal group T of G, T'N BNN is
normal. Since BNT N BNN = BN(T N BVN) < G, we get T < BV N, it follows that every minimal
normal subgroup of G is contained in BN N. By ®(G) =1, F(G) = BVN.

(2.2) F(G) = P, where P € Syl,(G).

Now we claim that BV does not contain any non-trivial normal subgroup of G. If not, let T < G
and T < BVN. Then (B/T)YN = BN /T < G/T, so BN < G, a contradiction.

Let N be an elementary abelian p-group. Then F(G) = N or F(G) = BNN by (2.1). It is
easy to see I'(G); < G, therefore F(G), = 1 by the claim above. Then F(G) = Op(G). Thus
G/F(G) =0, (G/F(G)), and then F(G) = P, where P € Syl,(G).

(2.3) F(G) =GN and Z(G) = 1.

By Lemma 3.6, F(G) = GN x Z(G). Tt follows from (2.1) that BVN = GN x Z(G). If N < Z(G),
then Z(G) = N and HY = GV, a contradiction. Then N < GV and Z(G) = 1. Hence F(G) =
BNN =GN,

(2.4) G = P x K, where K is nilpotent Hall p'-subgroup, P = [P, K].
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By (2.2) and (2.3), there exists a Hall p'-subgroup K such that G = P x K and K is a nilpotent
p -subgroup. Apply Fitting lemma, we get P = [P,K] x Cp(K)=[P,K] by Z(G) =1.

(2.5) Let |P| = p™. Then |G| divides |P| - |GL(n, p)|.

By (2.2) and ®(G) = 1, P is elementary p-group, and then G/P is isomorphic to a subgroup of
Aut(P). Hence |G| divides |P| - |GL(n,p)| by (2.4).

(2.6) If B < M and M is a maximal subgroup of G, then M <G, |G : M| = q # p.

Also we claim that B is contained in a unique maximal subgroup M of G. If there exists two
different maximal subgroups M, M; such that B < M, B < Mj, then HN < M and HN < My, so
HN < (M, M) = G, a contradiction.

If F(G) £ M, then G = F(G)M. By F(G) is abelian group, BN < G, a contradiction. Then
F(G) < M and M/F(G) is the maximal subgroup of G/F(G), so M/F(G) < G/F(G) and |G/F(G) :
M/F(G)| = q, that is, M 9 G and |G : M| =q.

(2.7) If B £ E and E is a maximal subgroup of G, then E I G or E = (F(G)NE) x K.

It is also clear that there at least exists a maximal subgroup E of G such that the nilpotent
residual of every subgroup of F is normal. Otherwise, every maximal subgroup contains subgroup
that its nilpotent residual is not normal, then, by (2.6), every maximal subgroup of G is normal and
G is nilpotent, a contradiction. If £ > F(G), then E/F(QG) is the maximal subgroup of G/F(G), so
EJG. IfE# F(G),then G=F(G)E and E = (F(G)NE) x K.

Corollary 4.1 If G is a soluble minimal non-N" -group and ®(G) = 1, then,
(1) for a prime p € w(QG), BN is a p-group for any subgroup B of G such that BN 4 G.
(2) 1 <1,(G) <2.
(3) P > F(G), where P € Syl,(Q).

Corollary 4.2 If G is a minimal non-N" -group and ®(G) = 1, then Z(G) = 1.

Theorem 4.3 If G is a minimal non-N -group and ®(G) # 1, then G/®(G) satisfies Theorem 3.2,
4.1 or 4.2.

Proof. It is clear from Lemma 4.2.
Hence, we have obtained a simple characterization of minimal non-N*-groups by Theorem above.
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