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Abstract

We obtain some results on A-m-isometric operators. The paper consists
of two parts. At first, we consider the products of A-m-isometries. It will
be proved that the iterates of an A-m-isometry are all of this type. We
discuss when an A-m-isometry becomes an A-isometry. Also, we consider the
products of A-m-isometries for different values of m. In the second part, we
are going to investigate the supercyclicity of these operators and prove that
they are never supercyclic.
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1. Introduction and Preliminaries

Throughout this paper, H denotes a complex Hilbert space with inner product 〈, 〉
and B(H) stands for a Banach algebra of all bounded linear operators on H. Also,
B(H)+ is the cone of positive semi-definite operators; i.e.,

B(H)+ = {A ∈ B(H) : 〈Ah, h〉 ≥ 0,∀h ∈ H}.

In all that follows, by an operator we mean a bounded linear operator. The range
of every operator is denoted by R(T ), and its null space by ker(T ); furthermore T ∗

is the adjoint of T .
Any operator A ∈ B(H)+ defines a positive semi-definite sesquilinear form, de-

noted by
〈, 〉A : H×H −→ C

〈h, k〉A = 〈Ah, k〉.
We remark that 〈h, k〉A = 〈A1/2h,A1/2k〉. The semi-norm induced by 〈, 〉A, which is

denoted by ‖.‖A, is given by ‖h‖A = 〈h, h〉1/2A .
Observe that ‖h‖A = 0 if and only if h ∈ ker(A), and so ‖.‖A is a norm if and

only if A is injective. Besides the semi-normed space (H, ‖.‖A)is complete if and
only if R(A1/2) is closed.

Recall that for a positive integerm an operator T ∈ B(H) is called anm-isometry,
if

m∑
k=0

(−1)k
(
m
k

)
T ∗kT k = 0;

or equivalently,
m∑
k=0

(−1)k
(
m
k

)
‖Tm−kh‖2 = 0, ∀h ∈ H.

The class of m-isometric operators on a complex Hilbert space has been studied
intensively; see for example, [1-3] and [5-14].

An extension of these operators, called A-m-isometries on semi-Hilbertian spaces,
are introduced by the authors in [16].

Definition 1. Let m be a positive integer and A ∈ B(H)+. An operator T is called
an A-m-isometry, if

m∑
k=0

(−1)k
(
m
k

)
T ∗m−kATm−k = 0.

It is obvious that T is an A-m-isometry if and only if for every h ∈ H,

m∑
k=0

(−1)k
(
m
k

)
‖Tm−kh‖2A = 0.
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Thus, T is an m-isometry relative to the semi-norm on H induced by A.
In [16], the authors have extended some properties for A-m-isometric operators

which are generalizations of well-known assertions of m-isometries; also they have
obtained some spectral properties of them.

Recently, the products of m-isometries are discussed in [7] and [8]. Our main
purpose in the first part of this paper, is to study the products of A-m-isometries.
It will be shown that the product of such two operators is again an operator of
this type. We remark that our techniques of proofs for A-m-isometries are different
from the ones used for m-isometries. The supercyclicity of m-isometries has been
studied by Faghih-Ahmadi and Hedayatian ([11], [12]). Also, in [15] the authors
give sufficient conditions under which an A-m-isometry is not supercyclic.
In the second part of this paper, we shall prove that A-m-isometries are all non-
supercyclic.

2. Products of A-m-Isometric Operators

At first, integer powers of an A-m-isometry are considered. We begin with a lemma.
By convention, take 00 = 1.

Lemma 1. If n is any positive integer then

n∑
k=0

(−1)n−kki
(
n
k

)
= 0, (1)

for i = 0, 1, · · · , n− 1.

Proof. Using the binomial Theorem, (1) holds for i = 0. Suppose that i ≥ 1. We
prove (1) by induction on n. Clearly, (1) holds for n = 1. Suppose that it is true
for i = 0, 1, · · · , n− 1. Then for i = 0, 1, · · · , n

n+1∑
k=0

(−1)n+1−kki
(
n+ 1
k

)
= −

n+1∑
k=1

(−1)n−kki−1
(n+ 1)!

(k − 1)!(n+ 1− k)!

= (n+ 1)
n∑

k=0

(−1)n−k
(
n
k

)
(k + 1)i−1

= (n+ 1)
n∑

k=0

(−1)n−k
(
n
k

) i−1∑
s=0

(
i− 1
s

)
ks

= (n+ 1)
i−1∑
s=0

(
i− 1
s

) n∑
k=0

(−1)n−kks
(
n
k

)
= 0.
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Theorem 1. If T is an A-m-isometry on a Hilbert space H, then so is T n for each
positive integer n.

Two proofs for this theorem will be given.
The First Proof. Fix a positive integer n. Let x0 = 1 and xi (1 ≤ i ≤ m(n− 1)) be
real numbers so that

(
n−1∑
i=0

ti)m =

m(n−1)∑
i=0

xit
i,

for every t ∈ R. Furthermore, define xi to be zero for i > m(n−1). Take

(
m
i

)
= 0,

for i > m. Note that if

sk =
k∑

i=0

(−1)i
(
m
i

)
xk−i (0 ≤ k ≤ nm)

then sk = (−1)k1
(
m
k1

)
, whenever k = nk1 for some positive integer k1, and

otherwise sk = 0. Indeed,

mn∑
k=0

skt
k = (

m∑
k=0

(−1)k
(
m
k

)
tk)(

m(n−1)∑
k=0

xkt
k)

= (1− t)m(
n−1∑
i=0

ti)m

= (1− tn)m

=
m∑
k=0

(−1)k
(
m
k

)
tkn.

Since T is an A-m-isometry, for any h ∈ H
m∑
j=0

(−1)j
(
m
j

)
‖T jh‖2A = 0.

4



Consequently,

0 =

m(n−1)∑
i=0

xi

m∑
j=0

(−1)j
(
m
j

)
‖T j+ih‖2A

=
mn∑
k=0

sk‖T kh‖2A

=
m∑
k=0

skn‖T knh‖2A

=
m∑
k=0

(−1)k
(
m
k

)
‖T knh‖2A.

Hence, T n is an A-m-isometry. 2

For non-negative integers n and k, we denote

n(k) =

{
1 (n = 0 or k = 0),
n(n− 1) · · · (n− k + 1) (n 6= 0 and k 6= 0).

If T ∈ B(H) and k is a non-negative integer, the operator βk(T ) is defined by

βk(T ) =
1

k!

k∑
j=0

(−1)k−j
(
k
j

)
T ∗jAT j.

Also, similar to [1] it can be proved that T ∗nAT n =
∑∞

k=0 n
(k)βk(T ). Note that if T

is an A-m-isometry, then βk(T ) = 0 for every k ≥ m; moreover,

T ∗nAT n =
m−1∑
k=0

n(k)βk(T ),

and consequently, for any h ∈ H,

‖T nh‖2A =
m−1∑
k=0

n(k)〈βk(T )h, h〉.

Considering these notations, we can bring another proof of Theorem 1, based upon
Lemma 1.

The Second Proof of Theorem 1 . For each n ≥ 1,

T ∗nAT n =
m−1∑
k=0

n(k)βk(T ).

5



So
m∑
k=0

(−1)m−k
(
m
k

)
T ∗nkAT nk =

m∑
k=0

(−1)m−k
(
m
k

)m−1∑
j=0

(nk)(j)βj(T )

=
m−1∑
j=0

[
m∑
k=0

(−1)m−k
(
m
k

)
(nk)(j)]βj(T ).

Using Lemma 1, we observe that each inner summation in the above equality is zero.
Hence T n is an A-m-isometry. 2

It is known that the inverse of any invertible A-m-isometry is again an A-m-
isometry [16]. Since the identity operator is also an A-m-isometry, the following
result holds.

Corollary 1. Any integer power of an invertible A-m-isometry is an A-m-isometry.

In general, the class of A-isometric operators is a strict subclass of A-m-isometries
[16]. However, we can obtain the following result (see also Page 83 of [15]).

Theorem 2. Suppose that T ∈ B(H) is an A-m-isometry and there is a sequence
{ni}i of positive integers so that supi ‖T ni‖A <∞. Then T is an A-isometry.

Proof. The result is obvious for m = 1. Suppose that m > 1. For every h in the
closure of R(A), denoted by R(A), and every non-negative integer n

||T nh||2A =
m−1∑
k=0

n(k)〈βk(T )h, h〉. (2)

Assume that k0 is the largest integer so that 1 ≤ k0 ≤ m− 1 and 〈βk0(T )h, h〉 6= 0.

Then taking for granted that limn−→∞
n(k)

n(k0)
= 0 for i = 0, · · · , k0 − 1, we see that

lim
n−→∞

m−1∑
k=0

n(k)〈βk(T )h, h〉 = lim
n−→∞

n(k0)

k0∑
k=0

n(k)

n(k0)
〈βk(T )h, h〉 = +∞.

On the other hand, there is a real number M > 0 so that for every i and every
h ∈ R(A),

||T nih||A ≤M ||h||A;

consequently, limi−→∞ ||T nih||A cannot be +∞, which is a contradiction. Thus,

〈βk(T )h, h〉 = 0

for k = 1, · · · ,m− 1. This coupled with (2) for n = 1 implies that ||Th||A = ||h||A
for every h ∈ R(A).

Now, an arbitrary h in H can be written as h = h1 + h2 for some h1 ∈ kreA
1
2

and h2 ∈ R(A). Taking into account that ||h||A = ||A 1
2h|| = ||h2||A and ||Th||A =

||Th2||A, we conclude that ||Th||A = ||h||A for every h ∈ H. Thus, T is an A-
isometry.
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Recall that an operator T is said to be A-power bounded, if

sup
n
‖T n‖A <∞,

or equivalently, there exists M > 0 so that for every n and every u ∈ R(A), one has
‖T nu‖A ≤M‖u‖A ( see [16] for details). As a consequence of the above theorem, it is
remarkable that every A-power bounded A-m-isometry is an A-isometry. Moreover,
if T is an A-m-isometry so that T k is an A-isometry for some k, then T is an
A-isometry.

Lemma 2. An operator T ∈ B(H) is an A-m-isometry if and only if for every
non-negative integer n and every h ∈ H,

||T nh||2A =
m−1∑
j=0

(
m−1∑
k=j

(−1)k−j.
1

k!
n(k)

(
k
j

)
)||T jh||2A. (3)

Proof. Suppose that T is an A-m-isometry and h ∈ H. Then

||T nh||2A =
m−1∑
j=0

n(k)〈βk(T )h, h〉

=
m−1∑
k=0

n(k).
1

k!
(

k∑
j=0

(−1)k−j
(
k
j

)
)||T jh||2A

= [
m−1∑
k=0

n(k)(−1)k
(
k
0

)
.
1

k!
]||h||2A + [

m−1∑
k=1

n(k)(−1)k−1
(
k
1

)
.
1

k!
]||Th||2A

+ · · ·+ [
m−1∑

k=m−1

n(k)(−1)k−m+1

(
k

m− 1

)
.
1

k!
]||Tm−1h||2A

=
m−1∑
j=0

(
m−1∑
k=j

(−1)k−j.
1

k!
n(k)

(
k
j

)
)||T jh||2A.

Thus, (3) holds.
To prove the converse note that equality (3) shows that ||T nh||2A is, indeed, a

polynomial in n, and so we can write

||T nh||2A = a0 + a1n+ · · ·+ am−1n
m−1

for some scalars a0, · · · am−1. Consequently, applying Lemma 1 we observe that

m∑
n=0

(−1)m−n
(
m
n

)
‖T nh‖2A = 0.

Hence T is an A-m-isometry.
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Lemma 3. Suppose that T is an A-m-isometry, n ≥ m is an integer number and
h ∈ H. Then

n∑
k=0

(−1)k
(
n
k

)
ki||T n−kh||2A = 0, (4)

for i = 0, 1, · · · , n−m.

Proof. It is known that if T is an A-m-isometry, then it is an A-n-isometry for each
n ≥ m (see Proposition 2.4 of [16]). Thus, the hypotheses imply that (4) is valid
for i = 0. Suppose that i ≥ 1. We are going to prove (4) by applying induction on
n. The result clearly holds if n = m. Suppose that (4) holds for i = 1, · · · , n −m.
Then for i = 1, · · · , n−m+ 1,

n+1∑
k=0

(−1)k
(
n+ 1
k

)
ki||T n−k+1h||2A =

n∑
k=0

(−1)k+1

(
n+ 1
k + 1

)
(k + 1)i||T n−kh||2A

= −(n+ 1)
n∑

k=0

(−1)k
n!

k!(n− k)!
(k + 1)i−1||T n−kh||2A

= −(n+ 1)
n∑

k=0

(−1)k
(
n
k

)
(
i−1∑
j=0

(
i− 1
j

)
kj)||T n−kh||2A

= −(n+ 1)
i−1∑
j=0

(
i− 1
j

) n∑
k=0

(−1)k
(
n
k

)
kj||T n−kh||2A = 0.

Theorem 3. Suppose that T is an A-m-isometry and S is an A-n-isometry. If
TS = ST then ST is an A-m+ n− 1-isometry.

Proof. For any h ∈ H, using Lemma 2 we observe that

m+n−1∑
j=0

(−1)j
(
m+ n− 1

j

)
||(TS)m+n−1−jh||2A

=
m+n−1∑
j=0

(−1)j
(
m+ n− 1

j

)
||Tm+n−1−jSm+n−1−jh||2A

=
m+n−1∑
j=0

(−1)j
(
m+ n− 1

j

)
Rm,j

where

Rm,j =
m−1∑
i=0

m−1∑
k=i

(−1)k−i(m+ n− 1− j)(k)
(
k
i

)
.
1

k!
||Sm+n−1−j(T ih)||2A.
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So to prove the theorem, it is enough to show that for i = 0, 1, ...,m− 1,

m+n−1∑
j=0

Q
(i)
m,n,j = 0 (5)

where

Q
(i)
m,n,j =

m−1∑
k=i

(−1)j+k−i
(
m+ n− 1

j

)
(m+n−1−j)(k)

(
k
i

)
.
1

k!
||Sm+n−1−j(T ih)||2A.

Notice that (m + n− 1− j)(k) =
∑k

l=0 alj
l, where each al is a scalar in terms of m

and n. So the left hand side of (5) is

m−1∑
k=i

(−1)k−i
1

k!

(
k
i

) k∑
l=0

al

m+n−1∑
j=0

(−1)jjl
(
m+ n− 1

j

)
||Sm+n−1−j(T ih)||2A.

Now, taking into account that S is an A-n-isometry and applying Lemma 3, we see
that

m+n−1∑
j=0

(−1)jjl
(
m+ n− 1

j

)
||Sm+n−1−j(T ih)||2A = 0, (6)

when k = i, i+ 1, ...,m− 1, for l = 0, 1, ..., k.

Theorem 1 along with the preceding theorem leads to the following result.

Corollary 2. Let S, T be operators satisfying ST = TS. If T is an A-m-isometry
and S is an A-n-isometry, then the operators SpT q, (p, q = 0, 1, 2, · · · ) are A-m +
n− 1-isometries.

3. Supercyclicity of A-m-Isometric Operators

In this section, we show that an A-m-isometric operator cannot be supercyclic. This
generalizes a similar result obtained for m-isometries in [12]. The following lemma
will be useful.

Lemma 4. The null space kerA is a closed subspace of (H, ||.||A).

Proof. Suppose that {un}n is a sequence in kerA and u ∈ H. Note that

||un − u||2A = 〈A(un − u), un − u〉 = −〈u,A(un − u)〉 = 〈u,Au〉.

Consequently, if ||un − u||A −→ 0 then 〈u,Au〉 = 0. Taking into account that A
is a positive operator, we get Au = 0, and so u ∈ kerA. Hence kerA is closed in
(H, ||.||A).
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Define ||.||A on the quotient space H/kerA via

||u+ kerA||A = inf{||u+ x||A : x ∈ kerA}. (7)

The above lemma implies that ||u+ kerA||A defines a norm on the space H/kerA.

Theorem 4. Every A-m-isometric operator is not supercyclic.

Proof. Let T be an A-m-isometric operator on a Hilbert space H. For each u ∈ H,

||u||2A = |〈Au, u〉| ≤ ||A||.||u||2.

Thus, if T : (H, ||.||) −→ (H, ||.||) is a supercyclic operator, then so is T : (H, ||.||A) −→
(H, ||.||A).

Now, define the operator T̃ : H/kerA −→ H/kerA by

T̃ (u+ kerA) = Tu+ kerA.

For any u ∈ H, ||u + kerA||A = ||u||A, which implies that T̃ is an m-isometric
operator. Indeed,

m∑
k=0

(−1)k
(
m
k

)
||T̃m−k(u+ kerA)||2A

=
m∑
k=0

(−1)k
(
m
k

)
||Tm−ku+ kerA||2A

=
m∑
k=0

(−1)k
(
m
k

)
||Tm−ku||2A = 0.

Denote the completion of H/kerA by K , and let S be the extension of T̃ on the
Hilbert space K. Then define the operator Q : H −→ H/kerA by Q(x) = x+ kerA,
and consider

H T−→ H
Q ↓ ↓ Q
H/kerA T̃−→ H/kerA
I ↓ ↓ I
K S−→ K

The comparison principle [4] states that if T is supercyclic then so is T̃ , which, in
turn, implies that S is supercyclic. But the operator S, being an m-isometry on a
Hilbert space K cannot be supercyclic [12]. This leads to a contradiction.
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