COEFFICIENT ESTIMATES FOR HARMONIC v-BLOCH MAPPINGS AND HARMONIC K-QUASICONFORMAL MAPPINGS

JIAN-FENG ZHU

Abstract

Let $f(z)=h(z)+\overline{g(z)}$ be a harmonic v-Bloch mapping defined in the unit disk \mathbb{D} with $\|f\|_{B_{v}} \leq M$, where $h(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ are analytic in \mathbb{D}. In this paper, we obtain the coefficient estimates for f as follows: $\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2} \leq A_{n}(v, M)$, where $A_{n}(v, M)$ is given in Theorem 1. Furthermore we prove that for $v<1, \lim _{n \rightarrow \infty} A_{n}(v, M)=0$ and for $v \geq 1, A_{n}(v, M) \leq O\left(n^{2 v-2}\right)$. Moreover if f is a harmonic K-quasiconformal self-mapping of \mathbb{D}, then $\left|a_{n}\right|+\left|b_{n}\right| \leq$ $B_{n}(K)$, where $B_{n}(K)$ is given in Theorem 3 such that $\lim _{n \rightarrow \infty} B_{n}(K)=0$ and $B_{n}(1)=\frac{4}{n \pi}$.

1. Introduction

A complex-valued function $f(z)$ of class C^{2} is said to be a harmonic mapping, if it satisfies $f_{z \bar{z}}=0$. Assume that $f(z)$ is a harmonic mapping defined in a simply connected domain $\Omega \subseteq \mathbb{C}$. Then $f(z)$ has the canonical decomposition $f(z)=$ $h(z)+\overline{g(z)}$, where $h(z)$ and $g(z)$ are analytic in Ω. Let $\mathbb{D}=\{z:|z|<1\}$ be the unit disk, throughout this paper we consider harmonic mappings $f(z)$ in \mathbb{D}.

For $z \in \mathbb{D}$, let

$$
\Lambda_{f}(z)=\max _{0 \leq \theta \leq 2 \pi}\left|f_{z}(z)+e^{-2 i \theta} f_{\bar{z}}(z)\right|=\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right|
$$

and

$$
\lambda_{f}(z)=\min _{0 \leq \theta \leq 2 \pi}\left|f_{z}(z)+e^{-2 i \theta} f_{\bar{z}}(z)\right|=\left|\left|f_{z}(z)\right|-\left|f_{\bar{z}}(z)\right|\right| .
$$

It is well known that f is locally univalent and sense-preserving in \mathbb{D} if and only if its Jacobian satisfies

$$
J_{f}(z)=\lambda_{f}(z) \Lambda_{f}(z)=\left|f_{z}(z)\right|^{2}-\left|f_{\bar{z}}(z)\right|^{2}>0 \text { for } z \in \mathbb{D}
$$

Let

$$
\beta_{h}=\sup _{z, w \in \mathbb{D}, z \neq w} \frac{|f(z)-f(w)|}{\rho(z, w)}
$$

[^0]be the Bloch constant of f, where ρ denotes the hyperbolic distance in \mathbb{D}, and $\rho(z, w)=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right)$ where r is the modulus of $\frac{z-w}{1-\bar{z} w}$. In [7], we see that the Bloch constant of $f=h+\bar{g}$ can be expressed in terms of the modulus of the derivatives of h and g as follows:
$$
\beta_{h}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left(\left|h^{\prime}(z)\right|+\left|g^{\prime}(z)\right|\right) .
$$

For the extensive discussions on harmonic Bloch mappings, see [3], [4], [5] and [13].
For $v \in(0, \infty)$, a harmonic mapping f is called a harmonic v-Bloch mapping if and only if

$$
\begin{equation*}
\|f\|_{B_{v}}:=|f(0)|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{v} \Lambda_{f}(z)<\infty \tag{1}
\end{equation*}
$$

Harmonic mappings are nature generalizations of analytic functions. Many classical results of analytic functions under some suitable restrictions can be extended to harmonic mappings. One of the well-known results is the Landau type theorems for harmonic mappings. Many authors have considered such an active topic.
In [14], Liu proved the following theorems.
Theorem A. Suppose that f is a harmonic mapping of \mathbb{D} with $f(0)=\lambda_{f}(0)-1=0$. If $\Lambda_{f}(z) \leq \Lambda$ for all $z \in \mathbb{D}$, then

$$
\begin{equation*}
\left|a_{n}\right|+\left|b_{n}\right| \leq \frac{\Lambda^{2}-1}{n \Lambda} \quad n=2,3, \ldots \tag{2}
\end{equation*}
$$

The above estimates are sharp for all $n \geq 2$ with extremal functions $f_{n}(z)=\Lambda^{2} z-$ $\int_{0}^{z} \frac{\left(\Lambda^{3}-\Lambda\right) d z}{\Lambda+z^{n-1}}$.

Theorem B. Let f be a harmonic mapping of \mathbb{D} with $f(0)=\lambda_{f}(0)-1=0$, and $\Lambda_{f}(z) \leq \Lambda$ for all $z \in \mathbb{D}$. Then f is univalent in the disk $D_{r_{1}}$ with $r_{1}=\frac{1}{1+\Lambda-\frac{1}{\Lambda}}$ and $f\left(D_{r_{1}}\right)$ contains a schlicht disk $D_{\sigma_{1}}$ with

$$
\sigma_{1}= \begin{cases}1+\left(\Lambda-\frac{1}{\Lambda}\right) \ln \frac{\Lambda-\frac{1}{\Lambda}}{1+\Lambda-\frac{1}{\Lambda}} & \Lambda>1 \\ 1 & \Lambda=1\end{cases}
$$

The result is sharp when $\Lambda=1$.
Subsequently, in 2011 SH.Chen et al. [4] proved the following theorems.
Theorem C. Let $f=h+\bar{g}$ be a harmonic v-Bloch mapping, where h and g are analytic in \mathbb{D} with the expansions

$$
\begin{equation*}
h(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} . \tag{3}
\end{equation*}
$$

If $\lambda_{f}(0)=\alpha$ for some $\alpha \in(0,1)$ and $\|f\|_{B_{v}} \leq M$ for $M>0$. Then for $n \geq 2$,

$$
\left|a_{n}\right|+\left|b_{n}\right| \leq A_{n}(\alpha, v, M)=\inf _{0<r<1} \mu(r)
$$

where

$$
\mu(r)=\frac{M^{2}-\alpha^{2}\left(1-r^{2}\right)^{2 v}}{n r^{n-1}\left(1-r^{2}\right)^{v} M} .
$$

Particularly, if $v=M=\alpha=1$, then $A_{2}(1,1,1)=0, A_{3}(1,1,1)=\frac{1}{3}$ and for $n \geq 4$, $A_{n}(1,1,1)<\frac{(n+1) e M}{2 n}$. The above results are sharp for $n=2$ and $n=3$.

Theorem D. Let f be a harmonic mapping with $f(0)=\lambda_{f}(0)-\alpha=0$ and $\|f\|_{B_{v}} \leq$ M, where M and $\alpha \in(0,1]$ are constants. Then f is univalent in $\mathbb{D}_{\rho_{0}}$, where

$$
\rho_{0}=\psi\left(r_{0}\right)=\max _{0<r<1} \psi(r), \quad \psi(r)=\frac{\alpha r\left(1-r^{2}\right) M}{\alpha M\left(1-r^{2}\right)^{v}-\alpha^{2}\left(1-r^{2}\right)^{2 v}+M^{2}}
$$

Moreover, $f\left(\mathbb{D}_{\rho_{0}}\right)$ contains a univalent disk $\mathbb{D}_{R_{0}}$ with

$$
R_{0}=r_{0}\left[\alpha+\frac{M^{2}-\alpha^{2}\left(1-r^{2}\right)^{2 v}}{M\left(1-r_{0}^{2}\right)^{v}} \log \frac{M^{2}-\alpha^{2}\left(1-r^{2}\right)^{2 v}}{\alpha M\left(1-r_{0}^{2}\right)^{v}-\alpha^{2}\left(1-r_{0}^{2}\right)^{2 v}+M^{2}}\right]
$$

The coefficient estimates is crucial in obtaining Landau type theorems. In the second part of this paper by using Parseval equation we first obtain the coefficient estimates for harmonic v-Bloch mappings and then for $0<v<\frac{1}{2}$ we obtain its Landau type theorems.

Assume that

$$
f(z)=P[F](z)=\int_{0}^{2 \pi} P(r, x-\varphi) F(x) d x
$$

is a sense-preserving univalent harmonic mapping of \mathbb{D} with the boundary function $F(x)=e^{i \gamma(x)}$ where

$$
P(r, x-\varphi)=\frac{1-r^{2}}{2 \pi\left(1-2 r \cos (x-\varphi)+r^{2}\right)}
$$

is the Poission kernel and $z=r e^{i \varphi} \in \mathbb{D}$. Then $f(z)$ is called a harmonic K quasiconformal mapping if there exists a constant k such that

$$
\sup _{z \in \mathbb{D}}\left|\frac{f_{\bar{z}}(z)}{f_{z}(z)}\right| \leq k=\frac{K-1}{K+1} .
$$

For harmonic K-quasiconformal mappings defined in \mathbb{D}, there are many interesting results (see [10], [12], [14], [18], [21], [22], [23], [24]). In [17] D.Partyka and K.Sakan proved the following theorem.

Theorem E. Given $K \geq 1$ and let $f(z)=P[F](z)$ be a harmonic K-quasiconformal mapping of \mathbb{D} onto itself, with the boundary function $F(t)$. If $f(0)=0$, then for a.e. $z=e^{i t} \in \partial \mathbb{D}$

$$
\begin{equation*}
\frac{2^{5\left(1-K^{2}\right) / 2}}{\left(K^{2}+K-1\right)^{K}} \leq\left|F^{\prime}(t)\right| \leq K^{3 K} 2^{5\left(K-\frac{1}{K}\right) / 2} \tag{4}
\end{equation*}
$$

Using this theorem, we obtain the coefficient estimates for $f=P[F]$ as follows:

$$
\left|a_{n}\right|+\left|b_{n}\right| \leq B_{n}(K)=\frac{4}{n \pi} K^{3 K} 2^{5\left(K-\frac{1}{K}\right) / 2}, \quad n=1,2, \ldots
$$

2. Coefficient estimates for harmonic v-Bloch mappings

Theorem 1. Assume that $f(z)=h(z)+\overline{g(z)}$ is a harmonic v-Bloch mapping such that $f(0)=0$ and $\|f\|_{B_{v}} \leq M$ for some constants $M>0$, where $h(z)$ and $g(z)$ are given by (3). Then the following inequality

$$
\begin{equation*}
\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2} \leq A_{n}(v, M) \tag{5}
\end{equation*}
$$

holds for all $n=1,2,3, \ldots$, where

$$
A_{n}(v, M)=\left\{\begin{array}{cl}
\frac{M^{2}}{n} \inf _{0<t<1} \frac{1-\left(1-t^{2}\right)^{1-2 v}}{t^{2 n}(1-2 v)} & v \neq \frac{1}{2} \\
\frac{M^{2}}{n} \inf _{0<t<1} \frac{-\ln \left(1-t^{2}\right)}{t^{2 n}} & v=\frac{1}{2}
\end{array}\right.
$$

Furthermore if $0<v<1$, then $\lim _{n \rightarrow \infty} A_{n}(v, M)=0$. If $v \geq 1$, then $A_{n}(v, M) \leq$ $\frac{M^{2}}{2 v-1} \frac{(n+1)^{2 v-1}-1}{n}\left(1+\frac{1}{n}\right)^{n}=O\left(n^{2 v-2}\right)$.

Proof. Using the assumption that $f(0)=0$ and $\|f\|_{B_{v}} \leq M$, according to (1) we have

$$
\Lambda_{f}(z)=\left|h^{\prime}(z)\right|+\left|g^{\prime}(z)\right| \leq \frac{M}{\left(1-|z|^{2}\right)^{v}}:=\Lambda_{r}
$$

holds for any $z=r e^{i \theta} \in \mathbb{D}$. Using $f_{\theta}(z)=i\left[z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right]$ and applying Parseval equation, then

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{\theta}\left(r e^{i \theta}\right)\right|^{2} d \theta & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{n=1}^{\infty} n a_{n} r^{n} e^{i n \theta}-\sum_{n=1}^{\infty} n \overline{b_{n}} r^{n} e^{-i n \theta}\right|^{2} d \theta \\
& =\sum_{n=1}^{\infty} n^{2}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) r^{2 n}
\end{aligned}
$$

It is easy to see that $\left|f_{\theta}(z)\right| \leq|z| \Lambda_{f}(z) \leq r \Lambda_{r}$. Hence

$$
\sum_{n=1}^{\infty} n^{2}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) r^{2 n} \leq r^{2} \Lambda_{r}^{2} \leq \frac{r^{2} M^{2}}{\left(1-r^{2}\right)^{2 v}}
$$

This implies that

$$
\sum_{n=1}^{\infty} n^{2}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) r^{2 n-1} \leq \frac{r M^{2}}{\left(1-r^{2}\right)^{2 v}}
$$

For any $0<t<1$, integral from both sides gives

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) \frac{t^{2 n}}{2} \leq M^{2} \int_{0}^{t} \frac{r}{\left(1-r^{2}\right)^{2 v}} d r:=M^{2} \varphi(t) \tag{6}
\end{equation*}
$$

(i). For $v=\frac{1}{2}$. In this case, $\varphi(t)=\frac{-\ln \left(1-t^{2}\right)}{2}$. It follows from (6) that

$$
\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2} \leq \frac{M^{2}}{n} \frac{-\ln \left(1-t^{2}\right)}{t^{2 n}}
$$

If $n=1$, then $\min _{0<t<1} \frac{M^{2}}{n} \frac{-\ln \left(1-t^{2}\right)}{t^{2}}=M^{2}$. For $n>1$, since $\lim _{t \rightarrow 0} \frac{-\ln \left(1-t^{2}\right)}{t^{2 n}}=\infty=$ $\lim _{t \rightarrow 1} \frac{-\ln \left(1-t^{2}\right)}{t^{2 n}}$, we see that $\inf _{0<t<1} \frac{-\ln \left(1-t^{2}\right)}{t^{2 n}}$ exists. Hence

$$
\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2} \leq A_{n}\left(\frac{1}{2}, M\right)=\frac{M^{2}}{n} \inf _{0<t<1} \frac{-\ln \left(1-t^{2}\right)}{t^{2 n}}
$$

Let $t_{0}=\sqrt{\frac{n}{n+1}}$. Then

$$
\begin{equation*}
A_{n}\left(\frac{1}{2}, M\right) \leq \frac{M^{2}}{n} \frac{-\ln \left(1-t_{0}^{2}\right)}{t_{0}^{2 n}}=\frac{M^{2} \ln (n+1)}{n}\left(1+\frac{1}{n}\right)^{n} \tag{7}
\end{equation*}
$$

This implies that $\lim _{n \rightarrow \infty} A_{n}\left(\frac{1}{2}, M\right)=0$.
(ii). For $v \neq \frac{1}{2}$. In this case $\varphi(t)=\frac{1-\left(1-t^{2}\right)^{1-2 v}}{2(1-2 v)}$. It follows from (6) that

$$
\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2} \leq \frac{M^{2}}{n} \frac{1-\left(1-t^{2}\right)^{1-2 v}}{(1-2 v) t^{2 n}}:=\frac{M^{2}}{n} m(t)
$$

If $v<\frac{1}{2}$, then $\inf _{0<t<1} m(t)=\frac{1}{1-2 v}$. Hence

$$
\begin{equation*}
A_{n}(v, M) \leq \frac{M^{2}}{n(1-2 v)}, \quad\left(v<\frac{1}{2}\right) \tag{8}
\end{equation*}
$$

For $v>\frac{1}{2}, m(t)=\frac{1-\left(1-t^{2}\right)^{2 v-1}}{\left(1-t^{2}\right)^{2 v-1}(2 v-1) t^{2 n}}>0$. If $n=1$, then $\inf _{0<t<1} m(t)=2 v-1$. Else if $n>1$, then since $\lim _{t \rightarrow 0} m(t)=\infty=\lim _{t \rightarrow 1} m(t)$ we see that $\inf _{0<t<1} m(t)$ exists. Therefore $A_{n}(v, M)=\frac{M^{2}}{n} \inf _{0<t<1} m(t)$ and

$$
\begin{equation*}
A_{n}(v, M) \leq \frac{M^{2}}{n} m\left(t_{0}\right)=\frac{M^{2}}{2 v-1} \frac{(n+1)^{2 v-1}-1}{n}\left(1+\frac{1}{n}\right)^{n}, \quad\left(v>\frac{1}{2}\right) . \tag{9}
\end{equation*}
$$

It follows from (7), (8) and (9) that if $v<1$, then $\lim _{n \rightarrow \infty} A_{n}(v, M)=0$. If $v=1$, then $A_{n}(1, M) \leq M^{2}\left(1+\frac{1}{n}\right)^{n}$. If $v>1$, then $A_{n}(v, M) \leq \frac{M^{2}}{2 v-1} \frac{(n+1)^{2 v-1}-1}{n}\left(1+\frac{1}{n}\right)^{n}=$ $O\left(n^{2 v-2}\right)$.

This completes the proof.
Remark 1. We point out that $\left|a_{n}\right|+\left|b_{n}\right| \leq \sqrt{2\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right)} \leq \sqrt{2 A_{n}(v, M)}$. This implies that for $0<v<1$, the coefficients of harmonic v-Bloch mappings would close to 0 as $n \rightarrow \infty$. Furthermore, our results shows that for $v \geq 1,\left|a_{n}\right|+\left|b_{n}\right| \leq O\left(n^{v-1}\right)$. The following example shows that Theorem 1 is sharp for $v=1$.

Example 1. For $v=1$, we consider harmonic function

$$
f(z)=\sum_{n=1}^{\infty} z^{2^{n}}
$$

Then

$$
\frac{\left|z f^{\prime}(z)\right|}{1-|z|} \leq \sum_{n=1}^{\infty}\left(\sum_{2^{k} \leq n} 2^{k}\right)|z|^{n} \leq \sum_{n=1}^{\infty} 2 n|z|^{n}=\frac{2|z|}{(1-|z|)^{2}}
$$

hence

$$
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leq 4 \quad(|z|<1)
$$

It follows from (1) that $f(z)$ is a 1-Bloch harmonic function. Moreover, its coefficients do not tend to 0 .

Theorem 2. Let $f(z)=h(z)+\overline{g(z)}$ be a harmonic v-Bloch mapping of \mathbb{D} satisfying $f(0)=\lambda_{f}(0)-1=0$ and $0<v<\frac{1}{2}$. Then f is univalent in the disk $\mathbb{D}_{r_{*}}:=\{z:$ $\left.|z|<r_{*}\right\}$, where r_{*} is the root of the following equation:

$$
\begin{equation*}
1-M \sqrt{\frac{2}{1-2 v}} \Phi(r)=0 \tag{10}
\end{equation*}
$$

and $\Phi(r):=\sum_{n=1}^{\infty} \sqrt{n+1} r^{n}$.
Proof. Let $z_{1}=r_{1} e^{i \theta_{1}} \in \mathbb{D}_{r}$ and $z_{2}=r_{2} e^{i \theta_{2}} \in \mathbb{D}_{r}$, where $0<r<r_{*}$ and $z_{1} \neq z_{2}$. For $0<v<\frac{1}{2}$, applying Theorem 1 we have

$$
\left|a_{n}\right|+\left|b_{n}\right| \leq \sqrt{2\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right)} \leq \sqrt{\frac{2}{1-2 v}} \frac{M}{\sqrt{n}}
$$

Then

$$
\begin{aligned}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| & \geq \lambda_{f}(0)\left|z_{1}-z_{2}\right|-\left|z_{1}-z_{2}\right| \sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) n r^{n-1} \\
& \geq\left|z_{1}-z_{2}\right|\left(1-M \sqrt{\frac{2}{1-2 v}} \sum_{n=2}^{\infty} \sqrt{n} r^{n-1}\right) \\
& =\left|z_{1}-z_{2}\right|\left(1-M \sqrt{\frac{2}{1-2 v}} \Phi(r)\right) \\
& :=\left|z_{1}-z_{2}\right| \varphi(r) .
\end{aligned}
$$

Since $\varphi(r)$ is a continuous decreasing function satisfying $\varphi(0)=1, \lim _{r \rightarrow 1^{-}} \varphi(r)=-\infty$, we see that equation $\varphi(r)=0$ has the root $0<r_{*}<1$. Then for any $0<r<r_{*}$, we have $\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|>0$. This shows that $f(z)$ is univalent in the disk $D_{r_{*}}$.

The proof is completed.

For $M=1$ and some constants $v \in\left(0, \frac{1}{2}\right)$, calculate by computer we obtain some r_{*} which were shown by the following table.

M	v	r_{*}
1	$1 / 5$	0.264534
1	$1 / 4$	0.248227
1	$1 / 3$	0.214222
1	$49 / 100$	0.0650995

3. Coefficient estimates for harmonic K-Quasiconformal mappings

Theorem 3. Given $K \geq 1$, let $f(z)=P[F](z)=h(z)+\overline{g(z)}$ be a harmonic K quasiconformal self-mapping of \mathbb{D} satisfying $f(0)=0$ with the boundary function F, where

$$
h(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}
$$

are analytic in \mathbb{D}. Then

$$
\begin{equation*}
\left|a_{n}\right|+\left|b_{n}\right| \leq B_{n}(K):=\frac{4}{n \pi} K^{3 K} 2^{5(K-1 / K) / 2} \quad n=1,2, \ldots \tag{11}
\end{equation*}
$$

In particular, if $K=1$ then $\left|a_{n}\right|+\left|b_{n}\right| \leq B_{n}(1)=\frac{4}{n \pi}$.
Proof. For every $z=r e^{i \theta} \in \mathbb{D}$,

$$
f\left(r e^{i \theta}\right)=\sum_{n=1}^{\infty} a_{n} r^{n} e^{i n \theta}+\sum_{n=1}^{\infty} \overline{b_{n}} r^{n} e^{-i n \theta}
$$

We find that

$$
\begin{aligned}
& a_{n} r^{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) e^{-i n \theta} d \theta, n=1,2, \ldots \\
& \overline{b_{n}} r^{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) e^{i n \theta} d \theta, n=1,2, \ldots
\end{aligned}
$$

For every n (see [15] and [20]) we set $a_{n}=\left|a_{n}\right| e^{i \alpha_{n}}, b_{n}=\left|b_{n}\right| e^{i \beta_{n}}$ and $\theta_{n}=\frac{\alpha_{n}+\beta_{n}}{2 n}$. Then

$$
\begin{aligned}
\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{n} & =\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right)\left[e^{-i \alpha_{n}} e^{-i n \theta}+e^{i \beta_{n}} e^{i n \theta}\right] d \theta\right| \\
& =\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right)\left[e^{-i n\left(\theta+\theta_{n}\right)}+e^{\left.i n\left(\theta+\theta_{n}\right)\right)}\right] d \theta\right| \\
& =\left|\frac{1}{\pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) \cos n\left(\theta+\theta_{n}\right) d \theta\right|
\end{aligned}
$$

Integrating by parts we have

$$
\begin{equation*}
\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{n}=\left|\frac{1}{n \pi} \int_{0}^{2 \pi} f_{\theta}\left(r e^{i \theta}\right) \sin n\left(\theta+\theta_{n}\right) d \theta\right| \tag{12}
\end{equation*}
$$

In [11, Theorem 2.8], D.Kalaj proved that the radial limits of f_{θ} and f_{r} exist almost everywhere and

$$
\lim _{r \rightarrow 1^{-}} f_{\theta}\left(r e^{i \theta}\right)=F^{\prime}(\theta)
$$

for almost every $z=r e^{i \theta} \in \mathbb{D}$. Here F is the boundary function of f. Hence, tending $r \rightarrow 1^{-}$in (12) and also using (4) we obtain:

$$
\left|a_{n}\right|+\left|b_{n}\right| \leq \frac{1}{n \pi} \int_{0}^{2 \pi}\left|F^{\prime}(\theta) \| \sin n\left(\theta+\theta_{n}\right)\right| d \theta \leq \frac{4 K^{3 K} 2^{5(K-1 / K) / 2}}{n \pi}
$$

This completes the proof.

Remark 2. Given the boundary function $F(t)=\rho(t) e^{i \gamma(t)}$ of \mathbb{R} onto a convex Jordan curve $\gamma \in C^{1, \mu}(0<\mu \leq 1)$, suppose that $f(z)=P[F](z)$ is a harmonic K quasiconformal mapping of \mathbb{D} onto the convex domain bounded by γ. According to [11, Theorem 3.1] we know that $\left\|F^{\prime}(t)\right\|_{\infty}<\infty$. Using (12) we can see that $\left|a_{n}\right|+\left|b_{n}\right| \leq \frac{4\left\|F^{\prime}\right\|_{\infty}}{n \pi} \rightarrow 0$, as $n \rightarrow \infty$.

References

1. M. Bonk, On Bloch's constant, Proc. Amer. Math. Soc. 10(4)(1990), 889-894.
2. H.H. Chen, P.M. Gauthier and M. Hengartner, Bloch constants for planar harmonic mappings, proc. Amer. Math. Soc. 128(2000), 3231-3240.
3. SH. Chen, S. Ponnusamy and X. Wang, Coefficient estimate and Landau-Bloch's constant for planar harmonic mappings, Bull. Malaysian. Math. Sci. Soc. 34(2011), 255-265.
4. SH. Chen, S. Ponnusamy and X. Wang, Landau's theorem and Marden constant for harmonic v-Bloch mappings, Bull. Aust. Math. Soc. 84(2011), 19-32.
5. SH. Chen, S. Ponnusamy, M.Vuorinen and X. Wang, Lipschitz spaces and bounded mean oscillation of planar harmonic mappings, Bull. Aust. Math. Soc. 88(2013), 143-157.
6. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9(1984), 3-25.
7. F. Colonna, The Bloch's constant of bounded harmonic mappings, Indiana U. Math. J. 38(4)(1989), 829-840.
8. P. Duren, Harmonic mappings in the plane, Cambridge University Press, New York, 2004.
9. I. Graham and G. Kohr, Geometric Function Theorey in One and Higher Domensions, New York:Marcel Dekker Inc, 2003.
10. D. Kalaj and M. Pavlovic, Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane, Ann. Acad. Sci. Fenn. Ser. A. I. 30(2005), 159-165.
11. D. Kalaj, Quasiconformal and harmonic mappings between Jordan domains, Math. Z. 260(2)(2008), 237-252.
12. D. Kalaj, S. Ponnusamy and M. Vuorinen, Radius of close-to-convexity of harmonic functions, Complex Var. Elliptic Equ., To appear. See also, http://arxiv.org/pdf/1107.0610v1.pdf.
13. P. Li, S. Ponnusamy and X. Wang, Some properties of p-harmonic and $\log p$-harmonic mappings, Bull. Malays. Math. Sci. Soc. 236(2013), 595-609.
14. M.S. Liu, Estimate on Bloch constants for planar harmonic mappings, Sci. China Math. 521(2009), 87-93.
15. M.S. Liu, Z.W. Liu and Y.C. Zhu, Landau Theorem for some class of biharmonic mappings, Acta Math. Sinica (Chin. Ser.) 2011 54(11), 69-80.
16. M.Özt $̈$ rk and S.Yalcin, On univalent harmonic functions, J. Inequal. Pure and Appl. Math., 3(2002), 1-8.
17. D.Partyka and K.Sakan, On bi-Lipschitz type inequalities for quasiconformal harmonic mappings, Ann. Acad. Sci. Fenn. Math. 32(2007), 579-594.
18. M. Pavlovic, Boundary correspondence under harmonic quasiconformal homeomorphisma of the unit disk, Ann. Acad. Sci. Fenn. Math. 27(2002), 365-372.
19. T. Sheil-Small, Constants for planar harmonic mappings, J. Lond. Math. Soc. 42(1990), 237248.
20. W.Szapiel, Bounded harmonic mappings, J. d' Analyse Math. 111(2010), 47-76.
21. J.F. Zhu and X.M. Zeng, Estimate for Heinz inequality in the small dilatation of harmonic quasiconformal mappings, J. Compu. Analy. and Appl. 13(2011), 1081-1087.
22. J.F. Zhu, Harmonic quasiconformal mappings between unit disk and convex domains, Adv. Math. (China), 41(2012), 50-54.
23. J.F. Zhu and X.Z. Huang, The univalent radius of harmonic mappings under complexoperator, To appear in Acta Math. Sci. (Chinese) 33(5)(2013).
24. J.F. Zhu, Some estimates for harmonic mappings with given boundary function, J. Math. Anal. Appl. (2013), DOI.http://dx.doi.org/10.1016/j.jmaa.2013.10.001

Jian-Feng Zhu, School of Mathematical Sciences, Huaqiao University, Quanzhou362021, China.

E-mail address: flandy@hqu.edu.cn.

[^0]: 2000 Mathematics Subject Classification. Primary: 30C62; Secondary: 30C20, 30F15.
 Key words and phrases. Harmonic quasiconformal mappings; Coefficient estimates; S_{H}^{0} Class; harmonic Bloch mappings.

 File: Zhu(2013).tex, printed: 28-11-2013, 15.28.
 The author of this work was supported by the National Natural Science Foundation of China under Grant 11101165 and Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-YX110).

