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Abstract. Let f(z) = h(z) + g(z) be a harmonic v-Bloch mapping defined in

the unit disk D with ‖f‖Bv
≤M , where h(z) =

∞∑
n=1

anz
n and g(z) =

∞∑
n=1

bnz
n are

analytic in D. In this paper, we obtain the coefficient estimates for f as follows:
|an|2 + |bn|2 ≤ An(v,M), where An(v, M) is given in Theorem 1. Furthermore we
prove that for v < 1, lim

n→∞
An(v, M) = 0 and for v ≥ 1, An(v, M) ≤ O(n2v−2).

Moreover if f is a harmonic K-quasiconformal self-mapping of D, then |an|+|bn| ≤
Bn(K), where Bn(K) is given in Theorem 3 such that lim

n→∞
Bn(K) = 0 and

Bn(1) = 4
nπ .

1. Introduction

A complex-valued function f(z) of class C2 is said to be a harmonic mapping, if
it satisfies fzz̄ = 0. Assume that f(z) is a harmonic mapping defined in a simply
connected domain Ω ⊆ C. Then f(z) has the canonical decomposition f(z) =

h(z) + g(z), where h(z) and g(z) are analytic in Ω. Let D = {z : |z| < 1} be the
unit disk, throughout this paper we consider harmonic mappings f(z) in D.

For z ∈ D, let

Λf (z) = max
0≤θ≤2π

|fz(z) + e−2iθfz̄(z)| = |fz(z)|+ |fz̄(z)|

and
λf (z) = min

0≤θ≤2π
|fz(z) + e−2iθfz̄(z)| = ||fz(z)| − |fz̄(z)||.

It is well known that f is locally univalent and sense-preserving in D if and only if
its Jacobian satisfies

Jf (z) = λf (z)Λf (z) = |fz(z)|2 − |fz̄(z)|2 > 0 for z ∈ D.
Let

βh = sup
z,w∈D, z 6=w

|f(z)− f(w)|
ρ(z, w)
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be the Bloch constant of f , where ρ denotes the hyperbolic distance in D, and
ρ(z, w) = 1

2
ln
(

1+r
1−r

)
where r is the modulus of z−w

1−z̄w . In [7], we see that the Bloch
constant of f = h + ḡ can be expressed in terms of the modulus of the derivatives
of h and g as follows:

βh = sup
z∈D

(1− |z|2)(|h′(z)|+ |g′(z)|).

For the extensive discussions on harmonic Bloch mappings, see [3], [4], [5] and [13].
For v ∈ (0,∞), a harmonic mapping f is called a harmonic v-Bloch mapping if

and only if

(1) ‖f‖Bv := |f(0)|+ sup
z∈D

(1− |z|2)vΛf (z) <∞.

Harmonic mappings are nature generalizations of analytic functions. Many classical
results of analytic functions under some suitable restrictions can be extended to
harmonic mappings. One of the well-known results is the Landau type theorems for
harmonic mappings. Many authors have considered such an active topic.

In [14], Liu proved the following theorems.

Theorem A. Suppose that f is a harmonic mapping of D with f(0) = λf (0)−1 = 0.
If Λf (z) ≤ Λ for all z ∈ D, then

(2) |an|+ |bn| ≤
Λ2 − 1

nΛ
n = 2, 3, . . . .

The above estimates are sharp for all n ≥ 2 with extremal functions fn(z) = Λ2z −
z∫
0

(Λ3−Λ)dz
Λ+zn−1 .

Theorem B. Let f be a harmonic mapping of D with f(0) = λf (0) − 1 = 0, and
Λf (z) ≤ Λ for all z ∈ D. Then f is univalent in the disk Dr1 with r1 = 1

1+Λ− 1
Λ

and

f(Dr1) contains a schlicht disk Dσ1 with

σ1 =


1 + (Λ− 1

Λ
) ln

Λ− 1
Λ

1+Λ− 1
Λ

Λ > 1

1 Λ = 1.

The result is sharp when Λ = 1.

Subsequently, in 2011 SH.Chen et al. [4] proved the following theorems.

Theorem C. Let f = h + ḡ be a harmonic v-Bloch mapping, where h and g are
analytic in D with the expansions

(3) h(z) =
∞∑
n=1

anz
n and g(z) =

∞∑
n=1

bnz
n.

If λf (0) = α for some α ∈ (0, 1) and ‖f‖Bv ≤M for M > 0. Then for n ≥ 2,

|an|+ |bn| ≤ An(α, v,M) = inf
0<r<1

µ(r)
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where

µ(r) =
M2 − α2(1− r2)2v

nrn−1(1− r2)vM
.

Particularly, if v = M = α = 1, then A2(1, 1, 1) = 0, A3(1, 1, 1) = 1
3

and for n ≥ 4,

An(1, 1, 1) < (n+1)eM
2n

. The above results are sharp for n = 2 and n = 3.

Theorem D. Let f be a harmonic mapping with f(0) = λf (0)−α = 0 and ‖f‖Bv ≤
M , where M and α ∈ (0, 1] are constants. Then f is univalent in Dρ0, where

ρ0 = ψ(r0) = max
0<r<1

ψ(r), ψ(r) =
αr(1− r2)M

αM(1− r2)v − α2(1− r2)2v +M2
.

Moreover, f(Dρ0) contains a univalent disk DR0 with

R0 = r0

[
α +

M2 − α2(1− r2)2v

M(1− r2
0)v

log
M2 − α2(1− r2)2v

αM(1− r2
0)v − α2(1− r2

0)2v +M2

]
.

The coefficient estimates is crucial in obtaining Landau type theorems. In the
second part of this paper by using Parseval equation we first obtain the coefficient
estimates for harmonic v-Bloch mappings and then for 0 < v < 1

2
we obtain its

Landau type theorems.
Assume that

f(z) = P [F ](z) =

2π∫
0

P (r, x− ϕ)F (x)dx

is a sense-preserving univalent harmonic mapping of D with the boundary function
F (x) = eiγ(x) where

P (r, x− ϕ) =
1− r2

2π(1− 2r cos(x− ϕ) + r2)

is the Poission kernel and z = reiϕ ∈ D. Then f(z) is called a harmonic K-
quasiconformal mapping if there exists a constant k such that

sup
z∈D

∣∣∣∣fz̄(z)

fz(z)

∣∣∣∣ ≤ k =
K − 1

K + 1
.

For harmonic K-quasiconformal mappings defined in D, there are many interesting
results (see [10], [12], [14], [18], [21], [22], [23], [24]). In [17] D.Partyka and K.Sakan
proved the following theorem.

Theorem E. Given K ≥ 1 and let f(z) = P [F ](z) be a harmonic K-quasiconformal
mapping of D onto itself, with the boundary function F (t). If f(0) = 0, then for a.e.
z = eit ∈ ∂D

(4)
25(1−K2)/2

(K2 +K − 1)K
≤ |F ′(t)| ≤ K3K25(K− 1

K
)/2.
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Using this theorem, we obtain the coefficient estimates for f = P [F ] as follows:

|an|+ |bn| ≤ Bn(K) =
4

nπ
K3K25(K− 1

K
)/2, n = 1, 2, . . . .

2. Coefficient estimates for harmonic v-Bloch mappings

Theorem 1. Assume that f(z) = h(z) + g(z) is a harmonic v-Bloch mapping such
that f(0) = 0 and ‖f‖Bv ≤ M for some constants M > 0, where h(z) and g(z) are
given by (3). Then the following inequality

(5) |an|2 + |bn|2 ≤ An(v,M)

holds for all n = 1, 2, 3, . . ., where

An(v,M) =


M2

n
inf

0<t<1

1−(1−t2)1−2v

t2n(1−2v)
v 6= 1

2

M2

n
inf

0<t<1

− ln(1−t2)
t2n v = 1

2
.

Furthermore if 0 < v < 1, then lim
n→∞

An(v,M) = 0. If v ≥ 1, then An(v,M) ≤
M2

2v−1
(n+1)2v−1−1

n
(1 + 1

n
)n = O(n2v−2).

Proof. Using the assumption that f(0) = 0 and ‖f‖Bv ≤ M , according to (1) we
have

Λf (z) = |h′(z)|+ |g′(z)| ≤ M

(1− |z|2)v
:= Λr

holds for any z = reiθ ∈ D. Using fθ(z) = i
[
zh′(z)− zg′(z)

]
and applying Parseval

equation, then

1

2π

2π∫
0

|fθ(reiθ)|2dθ =
1

2π

2π∫
0

∣∣∣∣∣
∞∑
n=1

nanr
neinθ −

∞∑
n=1

nbnr
ne−inθ

∣∣∣∣∣
2

dθ

=
∞∑
n=1

n2(|an|2 + |bn|2)r2n.

It is easy to see that |fθ(z)| ≤ |z|Λf (z) ≤ rΛr. Hence
∞∑
n=1

n2(|an|2 + |bn|2)r2n ≤ r2Λ2
r ≤

r2M2

(1− r2)2v
.

This implies that
∞∑
n=1

n2(|an|2 + |bn|2)r2n−1 ≤ rM2

(1− r2)2v
.

For any 0 < t < 1, integral from both sides gives

(6)
∞∑
n=1

n(|an|2 + |bn|2)
t2n

2
≤M2

t∫
0

r

(1− r2)2v
dr := M2ϕ(t).
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(i). For v = 1
2
. In this case, ϕ(t) = − ln(1−t2)

2
. It follows from (6) that

|an|2 + |bn|2 ≤
M2

n

− ln(1− t2)

t2n
.

If n = 1, then min
0<t<1

M2

n
− ln(1−t2)

t2
= M2. For n > 1, since lim

t→0

− ln(1−t2)
t2n = ∞ =

lim
t→1

− ln(1−t2)
t2n , we see that inf

0<t<1

− ln(1−t2)
t2n exists. Hence

|an|2 + |bn|2 ≤ An

(
1

2
,M

)
=
M2

n
inf

0<t<1

− ln(1− t2)

t2n
.

Let t0 =
√

n
n+1

. Then

(7) An

(
1

2
,M

)
≤ M2

n

− ln(1− t20)

t2n0
=
M2 ln(n+ 1)

n
(1 +

1

n
)n.

This implies that lim
n→∞

An(1
2
,M) = 0.

(ii). For v 6= 1
2
. In this case ϕ(t) = 1−(1−t2)1−2v

2(1−2v)
. It follows from (6) that

|an|2 + |bn|2 ≤
M2

n

1− (1− t2)1−2v

(1− 2v)t2n
:=

M2

n
m(t).

If v < 1
2
, then inf

0<t<1
m(t) = 1

1−2v
. Hence

(8) An(v,M) ≤ M2

n(1− 2v)
, (v <

1

2
).

For v > 1
2
, m(t) = 1−(1−t2)2v−1

(1−t2)2v−1(2v−1)t2n > 0. If n = 1, then inf
0<t<1

m(t) = 2v − 1. Else if

n > 1, then since lim
t→0

m(t) =∞ = lim
t→1

m(t) we see that inf
0<t<1

m(t) exists. Therefore

An(v,M) = M2

n
inf

0<t<1
m(t) and

(9) An(v,M) ≤ M2

n
m(t0) =

M2

2v − 1

(n+ 1)2v−1 − 1

n
(1 +

1

n
)n, (v >

1

2
).

It follows from (7), (8) and (9) that if v < 1, then lim
n→∞

An(v,M) = 0. If v = 1,

then An(1,M) ≤M2(1 + 1
n
)n. If v > 1, then An(v,M) ≤ M2

2v−1
(n+1)2v−1−1

n
(1 + 1

n
)n =

O(n2v−2).
This completes the proof. �

Remark 1. We point out that |an|+ |bn| ≤
√

2(|an|2 + |bn|2) ≤
√

2An(v,M). This
implies that for 0 < v < 1, the coefficients of harmonic v-Bloch mappings would close
to 0 as n→∞. Furthermore, our results shows that for v ≥ 1, |an|+|bn| ≤ O(nv−1).
The following example shows that Theorem 1 is sharp for v = 1.

Example 1. For v = 1, we consider harmonic function

f(z) =
∞∑
n=1

z2n

.
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Then

|zf ′(z)|
1− |z|

≤
∞∑
n=1

∑
2k≤n

2k

 |z|n ≤ ∞∑
n=1

2n|z|n =
2|z|

(1− |z|)2
,

hence

(1− |z|2)|f ′(z)| ≤ 4 (|z| < 1).

It follows from (1) that f(z) is a 1-Bloch harmonic function. Moreover, its coeffi-
cients do not tend to 0.

Theorem 2. Let f(z) = h(z)+g(z) be a harmonic v-Bloch mapping of D satisfying
f(0) = λf (0) − 1 = 0 and 0 < v < 1

2
. Then f is univalent in the disk Dr∗ := {z :

|z| < r∗}, where r∗ is the root of the following equation:

(10) 1−M
√

2

1− 2v
Φ(r) = 0

and Φ(r) :=
∞∑
n=1

√
n+ 1rn.

Proof. Let z1 = r1e
iθ1 ∈ Dr and z2 = r2e

iθ2 ∈ Dr, where 0 < r < r∗ and z1 6= z2. For
0 < v < 1

2
, applying Theorem 1 we have

|an|+ |bn| ≤
√

2(|an|2 + |bn|2) ≤
√

2

1− 2v

M√
n
.

Then

|f(z1)− f(z2)| ≥ λf (0)|z1 − z2| − |z1 − z2|
∞∑
n=2

(|an|+ |bn|)nrn−1

≥ |z1 − z2|

(
1−M

√
2

1− 2v

∞∑
n=2

√
nrn−1

)

= |z1 − z2|

(
1−M

√
2

1− 2v
Φ(r)

)
:= |z1 − z2|ϕ(r).

Since ϕ(r) is a continuous decreasing function satisfying ϕ(0) = 1, lim
r→1−

ϕ(r) = −∞,

we see that equation ϕ(r) = 0 has the root 0 < r∗ < 1. Then for any 0 < r < r∗, we
have |f(z1)− f(z2)| > 0. This shows that f(z) is univalent in the disk Dr∗ .

The proof is completed. �
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For M = 1 and some constants v ∈
(
0, 1

2

)
, calculate by computer we obtain some

r∗ which were shown by the following table.
M v r∗
1 1/5 0.264534
1 1/4 0.248227
1 1/3 0.214222
1 49/100 0.0650995

3. Coefficient estimates for harmonic K-quasiconformal mappings

Theorem 3. Given K ≥ 1, let f(z) = P [F ](z) = h(z) + g(z) be a harmonic K-
quasiconformal self-mapping of D satisfying f(0) = 0 with the boundary function F ,
where

h(z) =
∞∑
n=1

anz
n and g(z) =

∞∑
n=1

bnz
n

are analytic in D. Then

(11) |an|+ |bn| ≤ Bn(K) :=
4

nπ
K3K25(K−1/K)/2 n = 1, 2, . . . .

In particular, if K = 1 then |an|+ |bn| ≤ Bn(1) = 4
nπ
.

Proof. For every z = reiθ ∈ D,

f(reiθ) =
∞∑
n=1

anr
neinθ +

∞∑
n=1

bnr
ne−inθ.

We find that

anr
n =

1

2π

2π∫
0

f(reiθ)e−inθdθ, n = 1, 2, . . . ,

bnr
n =

1

2π

2π∫
0

f(reiθ)einθdθ, n = 1, 2, . . . .

For every n (see [15] and [20]) we set an = |an|eiαn , bn = |bn|eiβn and θn = αn+βn

2n
.

Then

(|an|+ |bn|)rn =

∣∣∣∣∣∣ 1

2π

2π∫
0

f(reiθ)[e−iαne−inθ + eiβneinθ]dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

2π

2π∫
0

f(reiθ)[e−in(θ+θn) + ein(θ+θn))]dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1π
2π∫

0

f(reiθ) cosn(θ + θn)dθ

∣∣∣∣∣∣ .
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Integrating by parts we have

(12) (|an|+ |bn|)rn =

∣∣∣∣∣∣ 1

nπ

2π∫
0

fθ(re
iθ) sinn(θ + θn)dθ

∣∣∣∣∣∣ .
In [11, Theorem 2.8], D.Kalaj proved that the radial limits of fθ and fr exist almost
everywhere and

lim
r→1−

fθ(re
iθ) = F ′(θ),

for almost every z = reiθ ∈ D. Here F is the boundary function of f . Hence, tending
r → 1− in (12) and also using (4) we obtain:

|an|+ |bn| ≤
1

nπ

∫ 2π

0

|F ′(θ)|| sinn(θ + θn)|dθ ≤ 4K3K25(K−1/K)/2

nπ
.

This completes the proof. �

Remark 2. Given the boundary function F (t) = ρ(t)eiγ(t) of R onto a convex Jor-
dan curve γ ∈ C1,µ(0 < µ ≤ 1), suppose that f(z) = P [F ](z) is a harmonic K-
quasiconformal mapping of D onto the convex domain bounded by γ. According
to [11, Theorem 3.1] we know that ‖F ′(t)‖∞ < ∞. Using (12) we can see that

|an|+ |bn| ≤ 4‖F ′‖∞
nπ

→ 0, as n→∞.
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