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A BANACH ALGEBRA REPRESENTATION THEOREM

MOHAMMAD MEHRYAR

Abstract. For a space X denote by Cσ0 (X) the set of all bounded continuous

f : X → R such that |f |−1([ε,∞)) is σ-compact for all ε > 0.

We give sufficient (and in certain cases, necessary) conditions for a Banach
algebra to be of the form Cσ0 (X) for some locally compact space X.

1. Introduction

By a space it is meant a topological space; compact spaces and completely regular
spaces are assumed to be Hausdorff. The underlying field of scalars will be the real
line R.

Consider a completely regular space X. The set of all continuous bounded
f : X → R is denoted by Cb(X). Suppose that f ∈ Cb(X). The cozero-set of
f is X\f−1(0) and is denoted by Coz(f), and the support of f is clXCoz(f) and is
denoted by supp(f). Denote

Coz(X) =
{

Coz(f) : f ∈ Cb(X)
}
.

The set of all f ∈ Cb(X) such that |f |−1([ε,∞)) is compact for all ε > 0 is denoted
by C0(X) and the set of all f ∈ Cb(X) such that |f |−1([ε,∞)) is σ-compact for all
ε > 0 is denoted by Cσ0 (X).

In [10] (see also [9], [12] and [13]) it is proved that certain Banach subalgebras H
of Cb(X), where X is a completely regular space, are of the form C0(Y ) for some
locally compact space Y . The space Y is constructed as a subspace of the Stone–
Čech compactification of X. This motivated us to characterize Banach subalgebras
H of Cb(X) which are of the form Cσ0 (Y ) for some locally compact space Y . Spaces
similar to Cσ0 (Y ) have been defined and studied in [1], [3] and [14], though the
approach here is different. The theory of the Stone–Čech compactification will be
used here as a primary tool.

The Stone–Čech compactification. Consider a completely regular space X.
By a compactification γX of X it is meant a compact space γX which contains X
densely. The Stone–Čech compactification βX of X is the unique compactification
of X such that every continuous f : X → K, where K is a compact space, is
extendable to a mapping fβ : βX → K continuously. It is known that for every
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completely regular space the Stone–Čech compactification exists. For more infor-
mation and other background material on the subject the reader is referred to the
texts [4] and [5].

2. The representation theorem

Definition 2.1. Consider a space X. Define

Cσ0 (X) =
{
f ∈ Cb(X) : |f |−1

(
[ε,∞)

)
is σ-compact for all ε > 0

}
.

The following subspace of βX is defined in [10] and will be used in what follows.

Definition 2.2. Consider a completely regular space X. For a subset H of Cb(X)
define

eHX =
⋃{

intβXclβXCoz(h) : h ∈ H
}
.

Remark 2.3. The space eHX has been originally defined and studied in [6] (see also
[7] and [11]) with H considered to be the set of all elements of Cb(X) with support
having a given topological property P. For specific choices of the topological
property P the structure of the space eHX is known. For example, it is proved in
[8] that

eHX = intβXυX

if P is pseudocompactness, where υX is the Hewitt realcompactification of X, and
it is proved in [11] that

eHX = βX\clβX(υX\X)

if P is realcompactness. (A completely regular space X is said to be pseudocompact
if there is no unbounded continuous f : X → R. Also, a completely regular space
is realcompact if it is homeomorphic to a closed subspace of some product of the
real line R. The Hewitt realcompactification υX of a completely regular space X –
which may be assumed to be a subspace of βX – is a realcompact space containing
X densely, such that every continuous f : X → R is extendible to a mapping
fυ : υX → R continuously. The Hewitt realcompactification of a completely regular
space exists.)

Consider a space X and a dense subspace D of X. Then

clXU = clX(U ∩D)

for any open subspace U of X.
The following simple lemma will be used in the following.

Lemma 2.4. Consider a completely regular space X. Suppose that H is a subset
of Cb(X) such that for any x ∈ X there exists some h ∈ H with h(x) 6= 0. Then

X ⊆ eHX.

Proof. Suppose that x ∈ X. Suppose that h ∈ H with h(x) 6= 0. Because

Coz(hβ) ⊆ clβXCoz(hβ) = clβX
(
X ∩ Coz(hβ)

)
= clβXCoz(h),

then

x ∈ Coz(hβ) ⊆ intβXclβXCoz(h) ⊆ eHX.
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The following gives sufficient (and in some cases, necessary) conditions for a
Banach algebra H to be of the form Cσ0 (Y ) for some locally compact space Y . The
proof for the sufficiency part is a modification of the proof of Theorem 2.3 in [10];
full detail is provided here for completeness.

Theorem 2.5. Suppose that H is a Banach algebra contained in Cb(X) for a
completely regular space X such that

(1) for any x ∈ X there exists some h ∈ H such that h(x) 6= 0, and
(2) for any f ∈ Cb(X), if supp(f) ⊆ supp(h) for some h ∈ H, then f ∈ H.

Then

H = Cσ0 (Y )

for a locally compact space Y . The converse holds true if Y is also metrizable.

Proof. Suppose that H is a Banach subalgebra of Cb(X) for a completely regular
space X such that conditions (1) and (2) hold true. It will be shown that

H = Cσ0 (Y )

with Y = eHX.
For any f ∈ Cb(X) set

fH = fβ |eHX.
Because X ⊆ eHX by Lemma 2.4, the mapping fH extends f .

Claim. Suppose that f ∈ Cb(X). Then the following are equivalent:

(i) f ∈ H.
(ii) fH ∈ Cσ0 (eHX).

Proof of the claim. (i) implies (ii). Because

intβXclβXCoz(f) ⊆ eHX

and

Coz(fβ) ⊆ intβXclβXCoz(f),

since

Coz(fβ) ⊆ clβXCoz(fβ) = clβX
(
X ∩ Coz(fβ)

)
= clβXCoz(f),

we have Coz(fβ) ⊆ eHX. Assume that ε > 0. Then

|fH |−1
(
[ε,∞)

)
= |fβ |−1

(
[ε,∞)

)
is closed in βX and is then compact, and of course is then σ-compact.

(ii) implies (i). Fix a natural number n. Then |fH |−1([1/n,∞)) is a σ-compact
subspace of eHX. Hence

|fH |−1
(
[1/n,∞)

)
⊆
∞⋃
i=1

intβXclβXCoz(hi)

with h1, h2, . . . ∈ H. (It may be assumed that hi 6= 0 for each natural number i.)
We have

∞⋃
i=1

intβXclβXCoz(hi) ⊆
∞⋃
i=1

clβXCoz(hi)

⊆ clβX

( ∞⋃
i=1

Coz(hi)

)
= clβXCoz

( ∞∑
i=1

2−i
h2i
‖h2i ‖

)
.
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Set

gn =

∞∑
i=1

2−i
h2i
‖h2i ‖

.

We have gn ∈ H. Considering the above relations it follows that

|fH |−1
(
[1/n,∞)

)
⊆ clβXCoz(gn).

Hence

|f |−1
(
[1/n,∞)

)
= X ∩ |fH |−1

(
[1/n,∞)

)
⊆ X ∩ clβXCoz(gn) = clXCoz(gn) = supp(gn).

Set

g =

∞∑
n=1

2−n
gn
‖gn‖

.

(It is clear that gn 6= 0 for each natural number n.) Then g ∈ H. Because

Coz(f) =

∞⋃
n=1

|f |−1
(
[1/n,∞)

)
⊆
∞⋃
n=1

supp(gn) ⊆ supp(g)

we have supp(f) ⊆ supp(g). Now (2) implies that f ∈ H. This concludes the proof
of the claim.

Claim. Suppose that ψ : H → Cσ0 (eHX) is defined by ψ(h) = hH for any h ∈ H.
Then ψ is an isometric isomorphism.

Proof of the claim. The mapping ψ is well-defined; this follows from the first claim.
It is also clear that ψ is a homomorphism and it is injective. (Use the fact that any
two scalar-valued continuous mappings on eHX are identical, provided that they
are so on the dense subspace X of eHX.) It will be shown that ψ is surjective.
Suppose that g ∈ Cσ0 (eHX). Then (g|X)H = g (because (g|X)H and g are identical
on X) and consequently g|X ∈ H by the first claim. We have ψ(g|X) = g. To
show that ψ is an isometry, take some h ∈ H. We have

|hH |(eHX) = |hH |(cleHXX) ⊆ |hH |(X) = |h|(X) ⊆
[
0, ‖h‖

]
where the bar notation denotes the closure in R. Hence ‖hH‖ ≤ ‖h‖. Because hH
extends h, it is clear that ‖h‖ ≤ ‖hH‖. This concludes the proof of the claim.

It is clear that eHX is open in βX by its definition. Because βX is compact,
it then follows that eHX is locally compact. This concludes the proof of the first
part of the theorem.

For the converse, suppose that

H = Cσ0 (Y )

where Y is a locally compact metrizable space. It will be shown that H is a Banach
subalgebra of Cb(Y ) satisfying conditions (1) and (2) (with X = Y therein).

It is clear that H is non-empty, because 0 ∈ H trivially. To show that H is
closed under addition, suppose that f, g ∈ H. Assume that ε > 0. Because

|f + g|−1
(
[ε,∞)

)
⊆ |f |−1

(
[ε/2,∞)

)
∪ |g|−1

(
[ε/2,∞)

)
and the latter is σ-compact, since it is the union of two σ-compact spaces, its closed
subspace |f + g|−1([ε,∞)) is σ-compact. Consequently f + g ∈ H. Next, it will be
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shown that H is closed under multiplication. Suppose that f, g ∈ H. Assume that
ε > 0. Suppose that M > 0 such that ‖g‖ ≤M . Because

|fg|−1
(
[ε,∞)

)
⊆ |f |−1

(
[ε/M,∞)

)
,

and |f |−1([ε/M,∞)) is σ-compact, its closed subspace |fg|−1([ε,∞)) is σ-compact.
Consequently fg ∈ H. The proof that H is closed under scalar multiplication is
similar. Consequently H is a subalgebra of Cb(Y ). To show that H is a Banach
space it clearly suffices to show that H is closed in Cb(Y ). Suppose that f is in
the closure in Cb(Y ) of H; we check that f ∈ H. Assume that ε > 0. Then
‖f − g‖ < ε/2 for some g ∈ H. Suppose that t ∈ |f |−1([ε,∞)). Then

ε ≤
∣∣f(t)

∣∣ ≤ ∣∣f(t)− g(t)
∣∣+
∣∣g(t)

∣∣ ≤ ‖f − g‖+
∣∣g(t)

∣∣ ≤ ε/2 +
∣∣g(t)

∣∣
and consequently |g(t)| ≥ ε/2. That is t ∈ |g|−1([ε/2,∞)). Hence

|f |−1
(
[ε,∞)

)
⊆ |g|−1

(
[ε/2,∞)

)
.

Because the latter is σ-compact, its closed subspace |f |−1([ε,∞)) is σ-compact.
Hence f ∈ H.

It will be now verified that H satisfies conditions (1) and (2). To show that
H satisfies condition (1), suppose that y ∈ Y . Because Y is locally compact,
there exists an open neighborhood U of y in Y with compact closure clY U . There
exists a continuous g : Y → [0, 1] with g(y) = 1 and g|(Y \U) = 0. Consequently,
|g|−1([ε,∞)) ⊆ U if ε > 0, and then |g|−1([ε,∞)) is compact, because it is closed
in clY U . Hence g ∈ H. To show that H satisfies condition (2), suppose that
f ∈ Cb(X) such that supp(f) ⊆ supp(h) for some h ∈ H. Because

Coz(h) =

∞⋃
n=1

|h|−1
(
[1/n,∞)

)
is a countable union of σ-compact subspaces, it is consequently σ-compact. But
in any metrizable space σ-compactness is identical to separability. Hence, in par-
ticular, Coz(h) is separable, and consequently its closure supp(h) in Y is sepa-
rable. Hence supp(h) is σ-compact and then its closed subspace supp(f) is also
σ-compact. Now, if ε > 0, then |f |−1([ε,∞)) is closed in supp(f), and is conse-
quently σ-compact. Hence f ∈ H. �

Remark 2.6. Consider a space X. By an open covering of X it is meant a collection
of open subspaces of X whose union of its elements is the whole X. Suppose that U
and V are open coverings of X. It is said that U refine V if every element of U is
contained in an element of V . The open covering U of X is said to be locally finite
if each point of X has a neighborhood in X which meets only a finite number of
elements from U . A regular space X is called paracompact if for every open covering
U of X there exists an open covering of X which refines U . Paracompactness is
viewed as the simultaneous generalization of metrizability and compactness, for
every metrizable space as well as every compact space is paracompact.

The converse statement in Theorem 2.4 remains true if one replaces the metriz-
ability requirement of Y by the paracompactness requirement; this is because para-
compactness is hereditary with respect to closed subspaces and a paracompact space
with a dense σ-compact subspace is σ-compact. (See Problem 3.8.C(b), Theorem
5.1.25 and Corollary 5.1.29 of [4].)
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Question 2.7. It is shown in [2] that for locally compact spaces X and Y if C0(X)
and C0(Y ) are isomorphic (as rings) then X and Y are homeomorphic (as spaces).
Does the existence of an isomorphism between Cσ0 (X) and Cσ0 (Y ), in which X and
Y are locally compact spaces, imply the existence of a homeomorphism between X
and Y ?

The above question is important, because, if answered in the positive, it shows
that the space Y as introduced in Theorem 2.5 is indeed unique up to homeomor-
phism.
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