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Abstract

We explore the connection between the geometries generated by loga-
rithmic oscillations and the class of metric spaces satisfying the condition
of Gromov hyperbolicity. We start our discussion with the most funda-
mental examples, inspired from classical geometries, e.g. the Euclidean
distance on the infinite strip or Hilbert’s distance on the unit disk, and we
continue our study with Barbilian’s distance, which historically appeared
as a natural extension of a model of hyperbolic geometry. We introduce a
new metric, called the stabilizing metric, and study its properties. Contin-
uing this study, we explore a class of extensions of this distance and show
that, under some analytic conditions, infinitely many new examples of
Gromov hyperbolic metric spaces can be constructed. Using similar pro-
cedures, we construct Vuorinen’s stabilizing metric jG and its extensions
and we discuss their Gromov hyperbolicity.
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1 Introduction

M. Gromov’s influential work [15] inspired many investigations on classes of
metrics that are Gromov hyperbolic (see e.g. [7, 18, 19, 20]). An important
class of examples of Gromov hyperbolic spaces are the so-called CAT(κ) spaces,
with κ < 0 (see [11, 12]), and the fundamental geometric properties of Gromov
hyperbolic spaces parallel key facts in the geometry of CAT(κ) spaces. A recent
comprehensive treatment of the topic is [11] and new results and viewpoints are
still produced, e.g. [19]. Perhaps the natural context where the geometry of the
topic is revealed is the study of coarse geometries, as described in [21]. That’s
why we believe it’s particularly important to enrich the array of examples which
arise naturally from properties studied in the classical non-Euclidean geometry.

1



If we are looking for the best description of the questions we are studying in
the present article, we should remind here Mikhail Gromov’s view that: ”It is
hardly possible to find a convincing definition of the curvature for an arbitrary
metric space X, but one can distinguish certain classes of metric spaces corre-
sponding to Riemannian manifolds with curvatures of a given type. This can be
done, for example, by imposing inequalities between mutual distances of finite
configurations of points in X” (see [16]).

Quite independently from the developments in global topology, the geome-
tries induced by metrics given by a logarithmic oscillation originate in a paper
written in 1934 by Dan Barbilian [1]. We have described the historical context
in which the works [2, 3, 4] and [5] have been written in [9]. It is quite inter-
esting that the so-called Apollonian metric was rediscovered independently by
A.F. Beardon [6], and his work lead to a series of advances in the study of quasi-
conformal mappings that attracted the attention of many authors. However, we
need to point out that our present work is not motivated by these developments,
but rather by several geometric reasons, as we will show in detail below.

In the present work we are seeing these two theories naturally merging.
The examples developed here are showing how a unified treatment of the two
directions is the most natural standpoint that captures the whole nature of the
underlying geometric process. This thought motivates the structure of our whole
paper and we felt we should start our study with several examples that, by every
means, could be described as classical.

To remind the standard terminology, most of it established in [15], we con-
sider a metric space (M,d), where d satisfies the usual definition of a distance.
Given x, y, z ∈ M, the quantity (x|y)z = 1

2 [d(x, z) + d(y, z) − d(x, y)] is called
the Gromov product of x and y with respect to z (see p.76 in [15]). Denote
a ∧ b = min{a, b}. The metric space (M,d) is called Gromov hyperbolic if there
exists some constant δ ≥ 0 such that (see relation (*) at p.76 in [15]):

(x|y)w ≥ (x|z)w ∧ (z|y)w − δ,

for all x, y, w, z ∈ M. M. Gromov points out that this condition is inspired by
the ”well known properties of manifold of negative curvature” (also p.76 in [15]).
Using the fact that a∨ b = max{a, b}, the Gromov hyperbolic condition can be
rewritten in the following way. (M,d) is Gromov hyperbolic if there exists a
constant δ ≥ 0 such that

d(x, z) + d(y, w) ≤ [d(z, w) + d(y, z)] ∨ [d(x, y) + d(z, w)] + 2δ,

∀x, y, w, z ∈M. The notions before are available for semidistances, also.

2 A Fundamental Exploration

We start our array of examples with an exploration of several fundamental
geometries. As J. Roe points out ([21], p.87), ”many interesting properties of
metric spaces X depend on the distance properties of finite sets of points in X.”
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For the beginning, we claim that the minimum number of points we need
for our study is four, as we can see from the following example. Consider the
Euclidean plane endowed with the Euclidean distance. Denote this metric space
by (R2, | · |). The distance between the points x and y is |x− y|. Consider the
same set R2 endowed with another distance, d(x, y) := ln(1 + |x− y|). Looking
only at the length of the sides, one cannot distinguish between an equilateral
triangle constructed in the Euclidean plane (R2, |·|) and another one constructed
in (R2, d). The two triangles can have the same length for sides. That is, if the
length of the side of the Euclidean triangle is a, there exists a positive number
b such that a = ln(1 + b). No metric differences can be figured out in this case.
Now let us choose two four-point configurations, one of them in the Euclidean
plane and the other one in (R2, d). Both of them can be described in the same
way. Each configuration is made from two equal equilateral triangles with a
common side.

Figure 1: Four-point configuration comparison

We remark that the lengths of four sides and the length of one diagonal are
equal in the two configurations. However, while in the Euclidean case the other
diagonal is a

√
3, in (R2, d) the length of the other diagonal is ln(1 + b

√
3). If we

compare the lengths of the two diagonals, we see that a
√

3 =
√

3 · ln(1 + b) ≥
ln(1 + b

√
3). Therefore, in four-point configurations there are metric differences

between the two diagonals. We may expect to discover other inequalities when
we compare sums of other geometric elements from the two quadrilaterals.

The first classical example belongs to Gromov and is related to our previous
discussion. Let |x − y| be the Euclidean distance between the points x and y
from Rn. Denote by d(x, y) := ln(1 + |x− y|).
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Theorem 2.1. The metric space (Rn, d) is Gromov hyperbolic.

Proof: Obviously, d is a distance. To establish its Gromov hyperbolicity,
let us observe that for any four points in the plane represented by the complex
numbers z, z1, z2, z3, we have the identity

(z − z1)(z2 − z3) = (z − z2)(z1 − z3) + (z − z3)(z2 − z1).

Using the properties of the moduli of complex numbers, we have

|z − z1| · |z2 − z3| ≤ |z − z2| · |z1 − z3|+ |z − z3| · |z2 − z1|.

The four points z, z1, z2, z3, are the vertices of a quadrilateral. Denoting by a; c,
and by b; d the length of the opposite sides, respectively, and by e; f the length
of diagonals, the previous inequality can be rewritten in three different ways:
e · f ≤ a · c+ b · d; a · c ≤ e · f + b · d; b · d ≤ a · c+ e · f .

In the case when the points are the vertices of a tetrahedron we apply an
inversion having a vertex x as pole and arbitrary power, k. The other vertices
y, z, w are transformed into y′, z′, w′ which belong to a plane. This plane is the
transformed of the sphere circumscribing the tetrahedron.

We have |y′−z′| = k |y−z|
|y−x|·|z−x| , |y

′−w′| = k |y−w|
|y−x|·|w−x| , |w

′−z′| = k |w−z|
|w−x|·|z−x| .

Since |y′ − z′| ≤ |y′ − w′| + |w′ − z′|, we derive that |y − z| · |w − x| ≤
|y − x| · |z − w| + |y − w| · |z − x|, i.e. e · f ≤ a · c + b · d. Therefore, the
three previous inequalities hold also in space. These inequalities are known as
Ptolemy’s inequalities.

The triangle inequality yields three relations: e+ f ≤ a+ c+ b+ d; a+ c ≤
e+ f + b+ d; b+ d ≤ a+ c+ e+ f .

Using the appropriate inequalities in each group of terms, we have:

(1+e)·(1+f) ≤ (1+a)·(1+c)+(1+b)·(1+d) ≤ 2·[(1+a)·(1+c)∨(1+b)·(1+d)],

(1+a)·(1+c) ≤ (1+e)·(1+f)+(1+b)·(1+d) ≤ 2·[(1+e)·(1+f)∨(1+b)·(1+d)],

(1+b)·(1+d) ≤ (1+a)·(1+c)+(1+e)·(1+f) ≤ 2·[(1+a)·(1+c)∨(1+e)·(1+f)],

that is

d(x, z) + d(y, w) ≤ [d(z, w) + d(y, z)] ∨ [d(x, y) + d(z, w)] + 2 ln
√

2.

As a consequence, we have obtained the Gromov hyperbolicity of the distance
d(x, y) := ln(1 + |x− y|) for δ = ln

√
2.

However, what can we say about the Euclidean plane endowed with the
Euclidean distance? This is the question that motivates our approach in the
following section.
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3 Classical Geometries and Gromov Hyperbol-
icity

The starting point of our discussion is the following.

Theorem 3.1. The Euclidean metric space (R2, | · |) is not Gromov hyperbolic.

Proof: Let x be the length of a side of a square in the Euclidean plane.
Therefore the length of a diagonal is x

√
2. Suppose by contrary that (R2, | · |) is

Gromov hyperbolic. Then there exists a constant δ ≥ 0 such that the Gromov’s
inequality holds. On the other hand, x

√
2 ≤ x + δ does not hold when x

approaches infinity, i.e. the Euclidean two dimensional metric space cannot be
Gromov hyperbolic.

Theorem 3.2. The Euclidean distance on the infinite strip {(x, y) ∈ R2 : 0 <
y < 1} is Gromov hyperbolic.

Sketch of the proof: Consider the quadrilateral ABCD and denote by {O} =
AC ∩BD. The one of the angles ∠AOD and ∠DOC is not acute.

A
B

E

C

X D

O

Figure 2: Gromov hyperbolicity for the Euclidean distance on the infinite strip.

Suppose this is ∠DOC. Consider the point E lying on the parallel to AC
through B, satisfying |BE| = |AC|. There are two possible positions for E. We
choose E such that the points C and E lie in the same half plane of the line
BD. The quadrilateral ABEC is a parallelogram and all the points of the entire
figure lie in a strip twice wider than the width of the original strip. Consider
the triangle BED and its height through B, which intersects DE in X. Since
∠EBD = ∠DOC, X belongs to the interior of segment DE.

We have |ED| ≤ |EC|+ |CD| and |BE|+ |BD| ≤ |ED|+2 · |BX|. Therefore

|AC|+ |BD| = |BE|+ |BD| ≤ |ED|+ 2 · |BX| ≤ |EC|+ |CD|+ 2 · |BX|.

However,
|EC|+ |CD|+ 2 · |BX| = |AB|+ |CD|+ 2 · |BX|.

Since angle ∠EBD is not acute, the following inequality holds: 2 · |BX| ≤ 3.
This implies |AC| + |BD| ≤ |AB| + |CD| + 3. In the same way, we obtain the
inequality |AC|+ |BD| ≤ |AD|+ |BC|+ 3. We conclude that

|AC|+ |BD| ≤ [|AD|+ |BC|] ∨ [|AB|+ |CD|] + 3

5



for any quadrilateral constructed in the interior of the strip. This means that
the Euclidean infinite strip satisfies the Gromov hyperbolicity condition.

We are studying next the Gromov hyperbolic property in the unit disk en-
dowed with Hilbert’s distance. Consider two points X and Y in the interior of
the unit disk D centered at the origin of the Euclidean plane. Denote by {s, S}
the intersection of the circle ∂D with the line XY , such that the order of the
points on the line is s,X, Y, S. The Hilbert distance between X and Y is given
by

h(X,Y ) = ln
SX

SY
· sY
sX

,

where SX is the Euclidean distance between the points S and X(see [20]).
(Although the next theorem appears in [20], for the sake of unitary exposition
and since we are using a different argument, we include its proof below.)

Theorem 3.3. The unit disk D endowed with Hilbert’s distance is Gromov
hyperbolic.

Proof: Consider four points A,B,C,D ∈ D. Denote by

L(B,D) = h(B,D) + h(A,C)− h(A,B)− h(C,D)

and
L(D,B) = h(D,B) + h(A,C)− h(A,D)− h(C,B).

The Gromov hiperbolicity condition may be restated in the following way. (D, h)
is Gromov hyperbolic if there exists a constant δ ≥ 0 such that

min(L(B,D), L(D,B)) ≤ δ.

Using the notations from figure 2 we have

L(D,B) = ln
f + x′

x′
· f + x

x
· e+m′

m′
· e+m

m
· y′

b+ y′
· y

b+ y
· w′

d+ w′
· w

d+ w
.

From the power of the point in the circle, we derive the following relations:
m · (e+m′) = w · (d+w′), y · (b+ y′) = x · (f + x′), m · (e+m′) = w · (d+w′),
m′ · (e+m) = y′ · (b+y), w′ · (d+w) = x′ · (f+x). Replacing in L(D,B) formula
we have

L(D,B) = 2 · ln
(
f + x′

b+ y′

)
·
(
f + x

d+ w

)
·
(
e+m′

d+ w′

)
·
(
e+m

b+ y

)
.

Since A is a fixed point and e+m′

d+w′ ,m + e, d + w are bounded both from above
and from below, we have

L(D,B) ≤ 2 · lnM + 2 · ln
(
f + x′

b+ y′

)
·
(
f + x

b+ y

)
.

It remains to show that
(
f+x′

b+y′

)
·
(
f+x
b+y

)
is bounded from above. Because of

symmetry we may suppose x ≤ x′.
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Figure 3: Gromov hyperbolicity for the Hilbert distance in the disk

Case 1. b ≥ x′ or c ≥ x′. If b ≥ c then(
f + x′

b+ y′

)
·
(
f + x

b+ y

)
≤
(
b+ c+ x′

b

)
·
(
b+ c+ x

b

)
≤ 9b2

b2
= 9.

If b ≤ c we perform the same computations and we show that

L(B,D) ≤ 2 · lnM ′ + 2 · ln
(
f + x′

c+ t′

)
·
(
f + x

c+ t

)
≤ 2 lnM ′ + ln 9.

Case 2. b ≤ x′ and c ≤ x′. In this case, we show that L(B,D) is bounded from
above. But

f + x′

c+ t′
· f + x

c+ t
=
t′

x′
· f + x′

c+ t′
≤ t′

c+ t′
· b+ c+ x′

x′
≤ 3x′

x′
= 3

Our next goal is to study the Gromov hyperbolicity of Barbilian’s classical
distance [1, 2]. Consider a circle K centered at O and let I1 and I2 be arbitrary
points in the region enclosed by K, that is denoted J . Denote by {S, S′} :=
I1I2 ∩K, such that the order is S′, I1, I2, S. Define the half Hilbert distance in
the interior of the disk in terms of anharmonic ratio by

dH (I1, I2) =
1

2
ln [I1I2SS

′] .
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Consider the arc of circle g := SS′ orthogonal toK and denote by {Fi} := OI∩g,
for i = 1, 2. Let [F1F2SS

′]g be the anharmonic ratio on the orthogonal arc g.

For P ∈ K, consider the formula
maxP∈K

PF2

PF1

minP∈K
PF2

PF1

. Then we obtain the following.

Figure 4: Before inversion

Theorem 3.4. With the notations specified above, the following relations hold:
(i) [I1I2SS

′] = [F1F2SS
′]
2
g .

(ii)

[F1F2SS
′]g =

maxP∈K
PF2

PF1

minP∈K
PF2

PF1

.

Proof (i) Consider an inversion with pole S′ and power µ = (SS′)
2
. For

this inversion, S is a fixed point, that is S → S, but S′ → ∞. The circle K is
transformed into the line K̄, S ∈ K̄, the orthogonal arc g → into the line ḡ, and
ḡ ⊥ K̄.

The line d1 is transformed into the circle d̄1, S
′ ∈ d̄1, F̄1 ∈ d̄1, Ī1 ∈ d̄1, where

F̄1 and Ī1 are the inverse of F1 and I1. Since d1 is orthogonal to K, it results
d̄1 and K̄ are orthogonal, i.e. the circle d̄1 has the line K̄ as a diameter. For
the line d2, we obtain similar results. To refer to our figures, we can say that
the figure 4 transforms into figure 5.

Remark that

[I1I2SS
′] =

[
Ī1Ī2S∞

]
=
SĪ1
SĪ2

,

[F1F2SS
′]g =

[
F̄1F̄3S∞

]
=
SF̄1

SF̄2
.
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Figure 5: After the first inversion

By using the power of the point S with respect the circle d̄1, we obtain

SS′ · SĪ1 = SF̄1 · SF̄ ′1 = SF̄ 2
1 .

Similarly,
SS′ · SĪ2 = SF̄2 · SF̄ ′2 = SF̄ 2

2

that is
SĪ1
SĪ2

=

(
SF̄1

SF̄2

)2

.

It results [I1I2SS
′] = [F1F2SS

′]
2
g , which concludes the first part of the proof.

(ii) Consider an inversion of the configuration presented in figure 4, with pole
F1 and power µ′, where µ′ is the power of F1 with respect the circle K. The
circle K is preserved after this inversion, the orthogonal arc g transforms into
the line ḡ which is a diameter in K. Additionally, it turns out that F2 → F̄ ′2 ∈ ḡ,
such that F1F2 · F1F

′
2 = µ and F1 →∞.

Furthermore, P ∈ K → P ′ ∈ K, such that F1P ·F1P
′ = µ′ and P ′ ∈ K∩F1P.

We have

[F1F2SS
′]g =

[
∞F ′2S̄S̄′

]
=
S̄′F ′2
S̄F ′2

=
maxP ′∈K P

′F ′2
minP ′∈K P ′F ′2

.

Since

P ′F ′2 = µ′ · PF2

F1P · F1F2
=

µ′

F1F2
· PF2

PF1
,

it results that P ′F ′2 reaches its maximum, respectively its minimum, when the

ratio
PF2

PF1
reaches its corresponding extrema.
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Figure 6: After the second inversion

This conclusion can be rewritten as

[F1F2SS
′]g =

maxP∈K
PF2

PF1

minP∈K
PF2

PF1

,

which is the claim we had to prove.
Consider both the so-called Poincaré distance defined by

dP (F1, F2) := ln [F1F2SS
′]g

and the Barbilian distance in J , defined by

d∗ (F1, F2) = ln
maxP∈K

PF2

PF1

minP∈K
PF2

PF1

.

An important consequence of the previous theorem is the following.

Theorem 3.5. Barbilian distance, Poincaré distance and the half Hilbert dis-
tance coincide on the unit disk D, i.e.

d∗ (F1, F2) = dP (F1, F2) = dH (I1, I2) .

A consequence of Theorem 3.3 is the following.

Theorem 3.6. Barbilian distance and Poincaré distance are Gromov hyperbolic
on the disk.

The results established here allow us extensions to other classical models of
hyperbolic metrics. We use as starting point for this process the unit disk D.
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Figure 7: Poincare half plane

Consider a diameter SS′ and the inversion with pole S and power SS′2. This
inversion transforms the interior of the disk into the half-plane H in which S
doesn’t lie. An orthogonal arc of circle in J is transformed into a half circle g′

in H. The Poincaré distance in J for F1, F2 ∈ g is preserved for the transformed
points F̄1, F̄2, that is dP (F1, F2) = dH

(
F̄1, F̄2

)
. Based on these considerations

and according to Theorem 3.6, we obtain the following.

Theorem 3.7. Poincaré’s half plane H endowed with the Poincaré distance is
Gromov hyperbolic.

We conclude the present overview of the classical content with another im-
portant distance, namely the chordal distance. Consider a sphere of radius 1/2
tangent to the Euclidean plane in its origin. Let N be the north pole of the
sphere. For x, y in R2 denote by π(x), π(y) the intersections of the sphere with
the straight lines Nx,Ny. Stereographic projection defines the chordal distance
by

q(x, y) := |π(x)− π(y)| = |x− y|√
1 + |x|2

√
1 + |y|2

for x, y ∈ R2. First, remark that q is a distance. The first two axioms are clearly
satisfied. The triangle inequality reduces to

|x− y|
√

1 + |z|2 ≤ |x− z|
√

1 + |y|2 + |z − y|
√

1 + |x|2,
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Figure 8: The chordal metric

which is nothing else but Ptolomy’s inequality for the tetrahedron Nxyz.
It’s easy to see that the Riemannian metric corresponding to the chordal

distance is

ds2 =
1

(1 + x2 + y2)2
(dx2 + dy2).

By a direct computation, the Gaussian curvature of this metric is K = 4, which
means that this Riemannian metric is elliptic. Hence, the following.

Theorem 3.8. The sphere of radius 1/2 endowed with the chordal distance is
not Gromov hyperbolic.

Proof: Consider π(x), π(y), π (z), π(w) on the sphere such that x, y, z, w ∈ R2

are the vertices of a square with its center in the origin of R2. Let l be the length
of a side, therefore the length of a diagonal is l

√
2. Suppose by contrary that the

chordal distance q is Gromov hyperbolic. Then, there exists a constant δ ≥ 0
such that the Gromov’s inequality holds. However, l

√
2 ≤ l + δ does not hold

when l approaches infinity, which concludes the argument.
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4 Barbilian’s Logarithmic Oscillation and the Sta-
bilizing Distance

In this section we are bridging the gap between the developments in the study
of geometries generated by logarithmic oscillation and the study of Gromov
hyperbolic spaces. We start by adapting Barbilian’s metrization procedure to
our present goal.

We should start by pointing out why we refer to dB(x, y) as to a semi-
distance of Barbilian type. Consider x, y ∈ Rn − {0} with the property that
|x| = |x− 0| = δx > δy = |y − 0| = |y|. Consider a set K ⊂ Rn and p ∈ K. The
influence function (for terminology, see [2]) f : K × (Rn {0}) → R defined by
f(p, x) = |x− p| for the particular case when K = {0} leads us to

M1 = max
p∈K

f(p, x)

f(p, y)
= max

p∈K

|x− p|
|y − p|

=
|x− 0|
|y − 0|

=
|x|
|y|

=
δx
δy
,

m1 = min
p∈K

f(p, x)

f(p, y)
= min
p∈K

|x− p|
|y − p|

=
|x− 0|
|y − 0|

=
|x|
|y|

=
δx
δy
.

Since we are in the framework of the Barbilian’s work presented in [2] and
consistently used in works like e.g. [8, 9], the logarithmic oscillation is:

ln
M1

m1
= ln

(
δx
δy

)2

= 2 ln
δx
δy

= 2 ln
δx ∨ δy
δx ∧ δy

= 2dB(x, y).

We obtain that dB(x, y) is actually half of Barbilian’s classical distance induced
by logarithmic oscillation.

Theorem 4.1. Let G = Rn/{0} and M = {0}. Denote by δx = |x − 0| = |x|,
the Euclidean distance between x and the origin. Then:

i) dB(x, y) = ln
δx∨δy
δx∧δy is a semi-distance on G = Rn/{0};

ii) The semi-distance dB is Gromov hyperbolic on G, with δ = 0.

Proof: We need to prove only the second claim. To this goal, is sufficient to
show that

dB(x, y)+dB(z, w) ≤ (dB(x, z)+dB(y, w))∨(dB(x,w)+dB(y, z)),∀x, y, z ∈ Rn/{0},

i.e. the Gromov hyperbolicity condition is satisfied for δ = 0. The condition we
have to show rephrases as:

δx ∨ δy
δx ∧ δy

· δz ∨ δw
δz ∧ δw

≤
(
δx ∨ δz
δx ∧ δz

· δy ∨ δw
δy ∧ δw

)
∨
(
δx ∨ δw
δx ∧ δw

· δy ∨ δz
δy ∧ δz

)
. (1)

Without any loss of generality, assume that δx ≤ δy ∨ δz ∨ δw. Under this
assumption, (1) becomes:

δy
δx
· δz ∨ δw
δz ∧ δw

≤
(
δz
δx
· δy ∨ δw
δy ∧ δw

)
∨
(
δw
δx
· δy ∨ δz
δy ∧ δz

)
. (2)
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By using
δz ∨ δw
δz ∧ δw

=
δz
δw
∨ δw
δz
,

and after a simplification both sides by δx > 0, the inequality (2) turns into:

δy · δz
δw

∨ δy · δw
δz

≤
(
δy · δz
δw

∨ δw · δz
δy

)
∨
(
δy · δw
δz

∨ δw · δz
δy

)
,

which is certainly true.

Consider G an arbitrary subset in Rn. For any x and y in Rn denote by |x−y|
the Euclidean distance between x and y. Let M ∈ Rn such that M ∩ G = ∅.
Denote δx = minz∈M |x− z|, with x ∈ G. We introduce the stabilizing distance
on G by the following expression:

dG,M (x, y) = ln

(
δx ∨ δy
δx ∧ δy

+ |x− y|
)
. (3)

The set M is called the supporting set. Note that this distance is different than
the jG and j̃G metrics introduced by F. Gehring and B. Osgood [14], and by
M. Vuorinen [23], respectively, and whose Gromov hyperbolicity is studied by
P. Hästö in [18]. We are proposing this terminology since in the expression of
the logarithmic oscillation there is added further information inherited from the
Euclidean metric; this thought led us to this terminology.

Theorem 4.2. (i) With the notations specified above, dG,M is a distance on G.
(ii) If G is the punctured open unit ball D = {x ∈ Rn − {0}||x| < 1} and

M = {0} is the supporting set, then the stabilizing distance dD,M defined by (3)
is Gromov hyperbolic, with δ = 1

2 ln 9.

For the proof of Theorem 4.2, we need the following.

Lemma 4.1. In the conditions above we have:

δx ∨ δy
δx ∧ δy

≤ δx ∨ δy
δx ∧ δy

+ |x− y| ≤ 3 · δx ∨ δy
δx ∧ δy

(4)

Proof: The triangle inequality yields |x− y| < δx ∨ δy + δx ∧ δy. Hence:

δx ∨ δy
δx ∧ δy

≤ δx ∨ δy
δx ∧ δy

+ |x− y| ≤ δx ∨ δy
δx ∧ δy

+ δx ∨ δy + δx ∧ δy,

which immediately yields

δx ∨ δy
δx ∧ δy

≤ δx ∨ δy
δx ∧ δy

+ |x− y| ≤ δx ∨ δy
δx ∧ δy

+ 2 · δx ∨ δy.

Since 0 < δx ∧ δy < 1, then 1
δx∧δy > 1. Therefore,

δx∨δy
δx∧δy > δx ∨ δy, which gives

(4).
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We are ready now to prove Theorem 4.2.
Proof: We need to show that the stabilizing distance satisfies on D the

Gromov hyperbolicity condition with 2δ = ln 9, when the supporting set M
is just the singleton consisting of the origin. We have to prove that for any
x, y, z, w ∈ D the following inequality holds true:

1

9

(
δx ∨ δz
δx ∧ δz

+ |x− z|
)
·
(
δw ∨ δy
δw ∧ δy

+ |w − y|
)
≤ (5)

(
δx ∨ δw
δx ∧ δw

+ |x− w|
)
·
(
δy ∨ δz
δy ∧ δz

+ |y − z|
)
∨
(
δx ∨ δy
δx ∧ δy

+ |x− y|
)
·
(
δw ∨ δz
δw ∧ δz

+ |w − z|
)
.

Without loss of generality we can assume

δx ≤ δy ∧ δz ∧ δw. (6)

We also use in our argument

δy ∨ δz
δy ∧ δz

=
δy
δz
∨ δz
δy
. (7)

The inequality (5) is certainly true if when we maximize the left hand side and
we minimize the right hand side we obtain a true statement. By using (4) we
need to prove:

δx ∨ δz
δx ∧ δz

· δy ∨ δw
δy ∧ δw

≤ δx ∨ δw
δx ∧ δw

· δy ∨ δz
δy ∧ δz

∨ δx ∨ δy
δx ∧ δy

· δw ∨ δz
δw ∧ δz

.

By using (6) and (7) all that’s left to prove it

δz
δx
·
(
δy
δw
∨ δw
δy

)
≤ δw
δx
·
(
δy
δz
∨ δz
δy

)
∨ δy
δx
·
(
δw
δz
∨ δz
δw

)
.

By simplifying δx > 0 both sides, we obtain

δz · δy
δw

∨ δz · δw
δy

≤
(
δw · δy
δz

∨ δw · δz
δy

)
∨
(
δz · δy
δw

∨ δw · δy
δz

)
.

This last inequality is clearly true.

Remark 4.1. Consider now D ⊂ R2, the punctured open unit disk centered
at the origin (same notation as in the previous section, taking now n = 2).
We compute the Riemannian metric corresponding to the stabilizing distance.
To this goal, let x = (x1, y1), y = (x2, y2) = (x1 + dx, y1 + dy). We have

|x − y| =
√
dx2 + dy2. Bearing in mind that δx

δy
∨ δy
δx

= |y|
|x| and the stabilizing

distance

dD,M (x, y) ≈ ds = ln

(
1 +
|y|
|x|
− 1 + |x− y|

)
= ln

(
1 +
|y| − |x|+ |x| · |x− y|

|x|

)
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≈ |y| − |x|+ |x| · |x− y|
|x|

≈ 1 + |x|
|x|

· |x− y|,

where in the last step we have used |y| − |x| ≈ |y− x|. We derive the expression
of the Riemannian metric

ds2 =
(1 +

√
x2 + y2)2

x2 + y2
· (dx2 + dy2).

Remark 4.2. As one may intuitively expect, the Gaussian curvature of the Rie-
mannian metric corresponding to the stabilizing distance is everywhere negative
on the punctured disk:

K(x, y) = −
√
x2 + y2

1 + 6(x2 + y2) + x4 + y4 + 2x2y2 + 4
√
x2 + y2 + 4(x2 + y2)3/2

.

In polar coordinates the stabilizing metric

ds2 =
(1 +

√
x2 + y2)2

x2 + y2
· (dx2 + dy2)

becomes

ds2 =
a2

(a− 1)2
da2 + a2dθ2.

Consider the surface of revolution

h(a, θ) = (a cos θ, a sin θ, f(a)), a ∈ (1, 1 + r), r > 0, θ ∈ (0, 2π).

Since
∂h

∂a
= (cos θ, sin θ, f ′(a));

∂h

∂θ
= (−a sin θ, a cos θ, 0),

we have g11 = (1 + (f ′(a))2); g12 = g21 = 0; g22 = a2.
The Riemannian corresponding metric is

ds2 = (1 + (f ′(a))2)da2 + a2dθ2.

A condition for the existence of a surface of revolution having the same metric
is

f ′(a) =

√
2a− 1

a− 1
,

that is

f(a) = 2
√

2a− 1 + ln

√
2a− 1− 1√
2a− 1 + 1

+ C.

Then, the surface of revolution

h(a, θ) = (a cos θ, a sin θ, 2
√

2a− 1 + ln

√
2a− 1− 1√
2a− 1 + 1

),

a ∈ (1, 1+r), r > 0, θ ∈ (0, 2π), is a spatial representation, a submanifold having
the Riemannian metric coincident to the Riemannian metric determined by the
stabilizing distance.
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Figure 9: The surface having the same metric as the stabilizing distance

Remark 4.3. Since in Remark 4.2 we’ve discussed the Gaussian curvature of the
Riemannian metric generated by the stabilizing metric, we should see how much
this is for Barbilian’s semi-distance dB . We obtain the following:

ds2 =
1

x2 + y2
(dx2 + dy2)

on D − {0} ⊂ R2. This metric has Gaussian curvature everywhere vanishing
K ≡ 0, since if one switches to polar coordinates x = r cos θ, y = r sin θ, we get

ds2 =
1

r2
dr2 + dθ2.

If in this last form we swap r → 1
r1
, we get ds2 = dr21 + dθ2, which is the flat

Euclidean metric.

5 Extensions of the Stabilizing Metric

We are ready now to discuss possible extensions of the stabilizing metrics. More
precisely, we’ll study a construction of the following type:

df (x, y) = ln

(
δx ∨ δy
δx ∧ δy

+ f(|x− y|)
)
,
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where f is a appropriate function.
To explore this idea, we start with the following.
Question 1: Let a, b, c ∈ [0,∞). Are there any polynomial functions f with

vanishing free term satisfying both f(|a− b|) + f(|b− c|) ≥ f(|a− c|), a, b, c ∈
[0,∞) and f(x) > 0 for x ≥ 0 ? Suppose such polynomial exists. Then the rela-
tion holds true in particular for c = 0, hence f(|a− b|) ≥ f(|a|)− f(|b|), ∀a, b ∈
[0,∞). That is, we have f(|a − b|) ≥ f(a) − f(b), ∀a, b ∈ [0,∞). Suppose now
that a > b. Divide this last relation by a− b both sides and obtain:

f(a− b)
a− b

≥ f(a)− f(b)

a− b
.

Bearing in mind that our class of polynomials f satisfies the condition f(0) = 0,
this last relation can be viewed as:

f(a− b)− f(0)

a− b− 0
≥ f(a)− f(b)

a− b
.

Fixing b and letting a approach b, this last relation turns out into f ′(0) :=
α ≥ f ′(b), ∀b ∈ [0,∞). This means f(b) − f(0) ≤ αb,∀b ∈ [0,∞). According
to our initial assumptions we can write 0 ≤ f(b) ≤ f(0) + αb,∀b ∈ [0,∞).
Suppose f(b) = α1b+ ...αkb

k, k ≥ 2. Dividing by b we obtain, α1 + ...αkb
k−1 ≤

f(0)
b +α,∀b ≥ 0. Since limb→∞

f(b)
bk

= αk it results αk ≥ 0 and if k ≥ 2, the right
hand of the previous inequality approaches ∞ while the second is constant. It
means that the polynomial could have degree one. In conclusion, we got the
answer to the question stated above. Should the polynomial f exist, then it is
f(b) = αb, with α > 0.

Question 2: Are there any functions f : [0,∞) → [0,∞) satisfying the
following four properties

(i) f(x) = 0 if and only if x = 0;
(ii) f is increasing on [0,∞);
(iii) f is subadditive on [0,∞);
(iv) βx ≤ f(x) ≤ αx, ∀x ≥ 0, α > β > 0?
The answer to Question 2 is yes, and it’s suggested by our exploration in

the answer to Question 1. We can construct many exemples, all as piecewise-
defined functions. Take, for example, the piecewise-defined function f defined
as follows. f(x) = αx, for x ∈ [0, x0); f(x) = α1(x− x0) +αx0, for x ∈ [x0, x1),
with β < α1 < α; f(x) = α2(x− x1) + α1(x1 − x0) + αx0, for x ∈ [x1, x2), β <
α2 < α1 < α, and so on. The image of this function is like an inclined ”broken
line” lying between the lines y = βx and y = αx.

The reason to address first these elementary details is the following.

Theorem 5.1. (a) Let f be a function satisfying the conditions (i)-(iv) listed
above. Consider df : Rn × Rn → [0,∞) defined by

df (x, y) = ln

(
δx ∨ δy
δx ∧ δy

+ f(|x− y|)
)
,
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where δx expresses the distance from to the support set M = {0}. Then df is a
distance.

(b) On the punctured open unit disk D−{0} ⊂ Rn, df is Gromov hyperbolic
with δ = 1

2 ln(1 + 2α).

Proof: The equality df (x, y) = 0 is equivalent to

δx ∨ δy
δx ∧ δy

+ f(|x− y|) = 1.

Since
δx∨δy
δx∧δy ≥ 1 and f(|x − y|) ≥ 0, we obtain that df (x, y) = 0 is ultimately

equivalent to x = y.
The symmetry condition holds true: df (x, y) = df (y, x), ∀x, y ∈ Rn.
To prove the triangle inequality, remark that since f is increasing on [0,∞)

(by condition (ii)), from

|x− z| ≤ |x− y|+ |y − z|

we obtain:

f(|x− z|) ≤ f(|x−y|+ |y− z|) ≤ f(|x−y|) +f(|y− z|), ∀x, y, z ∈ [0,∞), (8)

the last inequality being due to the subadditive condition (iii). Therefore

df (x, y) + df (y, z) ≥ df (x, z), ∀x, y, z ∈ Rn.

This concludes the proof of part (a).
To prove (b), remark that for δx < 1 and δy < 1, we have

δx ∨ δy
δx ∧ δy

<
δx ∨ δy
δx ∧ δy

+ f(|x− y|) <

<
δx ∨ δy
δx ∧ δy

+ f(2δx ∨ δy) < (1 + 2α)
δx ∨ δy
δx ∧ δy

,

where the last inequality uses condition (iv), namely f(x) ≤ αx, ∀x ≥ 0, α > 0.
This concludes the argument for (b).

6 Extensions of Vuorinen’s Metric

In this section we focus our study on Vuorinen’s metric [23] defined by

jG(x, y) = ln

(
1 +
|x− y|
δx ∧ δy

)
.

The construction we propose below is similar to the construction of our stabiliz-
ing metric. If for the stabilizing metric we had as starting point a metric studied
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by M. Gromov, by considering instead of 1 the geometric quantity
δx∨δy
δx∧δy , in the

present section we study a construction of the following type:

dV H,s(x, y) = ln

(
δx ∨ δy
δx ∧ δy

+
|x− y|
δx ∧ δy

)
.

For this metric, we prove the following.

Theorem 6.1. (a) Consider dV H,s : Rn\M × Rn\M → [0,∞) defined by

dV H,s(x, y) = ln

(
δx ∨ δy
δx ∧ δy

+
|x− y|
δx ∧ δy

)
,

where δx expresses the distance from x to the support set M , i.e. δx = minz∈M |x−
z|, with x ∈ Rn\M. Then dV H,s is a distance.

(b) If M = {0}, then dV H,s is Gromov hyperbolic with δ = 1
2 ln 9.

Proof: (a) The equality dV H,s(x, y) = 0 is equivalent to

δx ∨ δy
δx ∧ δy

+
|x− y|
δx ∧ δy

= 1.

Since
δx∨δy
δx∧δy ≥ 1 and |x−y|

δx∧δy ≥ 0, it results that dV H,s(x, y) = 0 is equivalent to
x = y.

Obviously, the symmetry condition holds true:

dV H,s(x, y) = dV H,s(y, x), ∀x, y ∈ Rn\{0}.

It remains to prove(
δx ∨ δy
δx ∧ δy

+
|x− y|
δx ∧ δy

)
·
(
δy ∨ δz
δy ∧ δz

+
|y − z|
δy ∧ δz

)
≥
(
δx ∨ δz
δx ∧ δz

+
|x− z|
δx ∧ δz

)
.

Since this inequality is symmetric in x and z, we distinguish three cases.
Case 1. δx ≤ δy ∧ δz. The inequality becomes

|x−y|·|y−z|+|x−y|·δy∨δz+δy ·|y−z|+δy ·(δy∨δz) ≥ δy∧δz ·|x−z|+δz ·(δy∧δz)

which is true because δ2y ∨ δyδz ≥ δ2z ∧ δyδz and

|x− y| · δy ∨ δz + δy · |x− y| ≥ δy ∧ δz · |x− z|.

Note that the last inequality is a version of the triangle inequality.
Case 2. δy ≤ δx ∧ δz. The inequality becomes

|x−y|· |y−z|·δx∧δz+ |x−y|·δz ·(δx∧δz)+ |y−z|·δx ·(δx∧δz)+δx ·δz ·(δx∧δz) ≥

≥ δ2y · |x− z|+ δ2y · (δx ∨ δz),
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which is true because δx · δz · (δx ∧ δz) ≥ δ2y · (δx ∨ δz) and

|x− y| · δz · (δx ∧ δz) + |y − z| · δx · (δx ∧ δz) ≥ δ2y · (δx ∨ δz).

As in the previous case, note that the last inequality is a version of the triangle
inequality.

Case 3. δy ≥ δx ∧ δz can be addressed by a similar argument.
(b). Start with the triangle inequality

|x− y| ≤ δx ∨ δy + δx ∧ δy ≤ 2 · δx ∨ δy.

It follows
δx ∨ δy
δx ∧ δy

≤ δx ∨ δy
δx ∧ δy

+
|x− y|
δx ∧ δy

≤ 3 · δx ∨ δy
δx ∧ δy

.

This means

ln
δx ∨ δy
δx ∧ δy

− ln 3 ≤ ln

(
δx ∨ δy
δx ∧ δy

+
|x− y|
δx ∧ δy

)
≤ ln

δx ∨ δy
δx ∧ δy

+ ln 3.

Remark that ln
δx∨δy
δx∧δy is the Barbilian hyperbolic semidistance, therefore the

previous inequality becomes

dB(x, y)− ln 3 ≤ dV H,s(x, y) ≤ dB(x, y) + ln 3,

which, according to the general theory (see e.g. P. Hästö’s Theorem 1, [18], p.
1138) leads to the fact that dV H,s(x, y) is Gromov hyperbolic with δ = 1

2 ln 3.

We are calling this metric Vuorinen’s stabilizing metric. (We are using the
subscript H in our definition since P. Hästö obtained interesting results on Vuori-
nen’s original metric in [18].)

Theorem 6.2. If the Vuorinen stabilizing metric dV H,s is Gromov hyperbolic,
then the support set M has exactly one point.

Proof: Suppose that the Vuorinen stabilizing metric is Gromov hyperbolic on
Rn\M. Suppose by contrary that M does not have exactly one point. Therefore,
there exist at least two points u and v in M , u 6= v. Consider two spheres
centered at u and v, S1(u) and S2(v), such that S1(u) ∩ S2(v) = ∅.

Let x ∈
∫
S1(u) and w ∈

∫
S2(v) such that δx = |x−u| = ε , δw = |w−v| = ε,

where ε < min{1, |u− v|}.
On segments ux, vw, we consider y and z, respectively, such that δy =

|y − u| = ε2 and δz = |z − v| = ε2. Then,

dV H,s(x, y) = dV H,s(z, w) = ln

(
2

ε
− 1

)

dV H,s(x,w) = ln

(
1 +
|x− w|

ε

)
; dV H,s(y, z) = ln

(
1 +
|y − z|
ε2

)
;
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dV H,s(x, z) = ln

(
1

ε
+
|x− z|
ε2

)
; dV H,s(y, w) = ln

(
1

ε
+
|y − w|
ε2

)
.

From our hypothesis, it exists 2δ := ln a, a > 1, such that the following inequality
holds

dV H,s(x, z)+dV H,s(y, w) ≤ [dV H,s(x,w)+dV H,s(y, z)]∨[dV H,s(x, y)+dV H,s(z, w)]+2δ.

However,

ln
|x− z| · |y − w|

ε4
≤ dV H,s(x, z) + dV H,s(y, w)

and

[dV H,s(x,w) + dV H,s(y, z)] ∨ [dV H,s(x, y) + dV H,s(z, w)] + 2δ ≤

≤ ln
A

ε3
∨ ln

4B

ε2
+ ln a,

where A and B are some real positive quantities which satisfy the above in-
equality. Pursuing this idea,

|x− z| · |y − w|
ε4

≤ aA

ε3
∨ 4aB

ε2
, ∀ε > 0.

However, when ε approaches 0, the previous inequality does not hold any
longer, therefore if Vuorinen stabilizing metric was Gromov hyperbolic, the sup-
port set M cannot have more then one point. This concludes our proof.

When we stated Question 2 in the previous section, we considered a class
of functions that could support an extension of a given metric. We study the
similar idea in the context of Vuorinen’s metric.

Consider the functions f : [0,∞) → [0,∞) satisfying the following four
properties:

(i) f(x) = 0 if and only if x = 0;
(ii) f is increasing on [0,∞);
(iii) f is subadditive on [0,∞);
(iv) x ≤ f(x) ≤ αx, ∀x ≥ 0, α > 1.
In this context, we prove the following.

Theorem 6.3. (a) Let f be a function satisfying the conditions (i)-(iv) listed
above. Consider dV,f : Rn\{0} × Rn\{0} → [0,∞) defined by

dV,f (x, y) = ln

(
1 +

f(|x− y|)
δx ∧ δy

)
,

where δx expresses the distance from to the support set M = {0}. Then dV,f is
a distance.

(b) On Rn\{0}, dV,f is Gromov hyperbolic with δ = 1
2 ln(1 + 2α).
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Proof: (a) The equality dV,f (x, y) = 0 is equivalent to f(|x−y|)
δx∧δy = 0, that is

f(|x− y|) = 0, i.e. x = y.
Obviuosly, the symmetry condition holds true: dV,f (x, y) = dV,f (y, x), ∀x, y ∈

Rn\{0}.
It remains to prove(

1 +
f(|x− y|)
δx ∧ δy

)(
1 +

f(|y − z|)
δy ∧ δz

)
≥
(

1 +
f(|x− z|)
δx ∧ δz

)
.

Case 1. δx ≥ δy ≥ δz. The inequality becomes(
1 +

f(|x− y|)
δy

)(
1 +

f(|y − z|)
δz

)
≥
(

1 +
f(|x− z|)

δz

)
.

It is enough to prove that

f(|x− y|)
δy

(
1 +

f(|y − z|)
δz

)
≥ f(|x− z|)

δz
− f(|y − z|)

δz
.

The previous inequality still holds true if

f(|x− y|)
δy

(
1 +

f(|y − z|)
δz

)
≥ f(|x− y|)

δz
.

Some computations show that the previos inequality is true because of the
triangle inequality and (iv), i.e.

δz + f(|y − z|) ≥ δz + |y − z| ≥ δy.

Case 2. δx ≥ δz ≥ δy. The inequality becomes(
1 +

f(|x− y|)
δy

)(
1 +

f(|y − z|)
δy

)
≥
(

1 +
f(|x− z|)

δz

)
,

and it may be reduced to

f(|x− y|)
δy

+
f(|y − z|)

δy
≥ f(|x− z|)

δy
≥ f(|x− z|)

δz
.

Case 3. δy ≥ δx ≥ δz. The inequality to prove becomes(
1 +

f(|x− y|)
δx

)(
1 +

f(|y − z|)
δz

)
≥
(

1 +
f(|x− z|)

δz

)
.

After some computations, exactly as in the first case it remains to prove

f(|x− y|)
δx

(
1 +

f(|y − z|)
δz

)
≥ f(|x− z|)

δz
− f(|y − z|)

δz
.
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Increasing the right hand side at f(|x−y|)
δz

, the inequality is solved using the same
reasons as in Case 1, i.e.

δz + f(|y − z|) ≥ δz + |y − z| ≥ δy ≥ δx.

(b) We start from the triangle inequality δx ∨ δy ≤ |x − y| + δx ∧ δy by
applying the function f which satisfies (i)-(iv) as in the statement. It follows

δx ∨ δy ≤ f(δx ∨ δy) ≤ f(|x− y|) + f(δx ∧ δy) ≤ αf(|x− y|) + αδx ∧ δy

that is
1

α

δx ∨ δy
δx ∧ δy

≤ 1 +
f(|x− y|)
δx ∧ δy

.

Starting from |x− y| ≤ δx ∨ δy + δx ∧ δy, we obtain, exactly as before, another
important inequality

1 +
f(|x− y|)
δx ∧ δy

≤ (1 + 2α)
δx ∨ δy
δx ∧ δy

.

The two previous inequalities lead to

1

(2α+ 1)

δx ∨ δy
δx ∧ δy

≤ 1

α

δx ∨ δy
δx ∧ δy

≤ 1 +
f(|x− y|)
δx ∧ δy

≤ (1 + 2α)
δx ∨ δy
δx ∧ δy

,

that is

ln
δx ∨ δy
δx ∧ δy

− ln(2α+ 1) ≤ ln(1 +
f(|x− y|)
δx ∧ δy

) ≤ ln
δx ∨ δy
δx ∧ δy

+ ln(2α+ 1).

Remark that ln
δx∨δy
δx∧δy is the Barbilian hyperbolic semidistace, therefore the

previos inequality becomes

dB(x, y)− ln(2α+ 1) ≤ dV,f (x, y) ≤ dB(x, y) + ln(2α+ 1),

which according to the general theory (see P. Hästö’s Theorem 1, [18], p. 1138)
yields that the extension of Vuorinen’s metric is Gromov hyperbolic with δ =
1
2 ln(1 + 2α).

If α < 1, then the formula above does not represent a metric. To see this,
remark that any three radial points do not satisfy the triangle inequality. That’s
why the condition (iv) is needed.

The authors express their thanks to the editor and the referee for their useful
suggestions in preparing the final form of the present paper.
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