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Abstract

This paper is concerned with a class of nonlinear diffusion equations coupled by the non-
linear boundary sources on the exterior domain of the unit ball in RN . We are interested in
the critical curves which can describe the large time behavior of the solutions. It is shown
that the critical global existence curve coincides with the critical Fujita curve for the system
we considered.
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1 Introduction

In this paper, we deal with a class of nonlinear diffusion equations on the exterior domain of the
unit ball in RN , i.e.,

∂u

∂t
= ∆um,

∂v

∂t
= ∆vn, x ∈ RN\B1(0), t > 0, , (1.1)

∇um · ~ν = vα(x, t), ∇vn · ~ν = uβ(x, t), x ∈ ∂B1(0), t > 0, (1.2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ RN \B1(0), (1.3)

where m,n > 1, α, β ≥ 0, N > 2, B1(0) is the unit ball in RN with boundary ∂B1(0), ~ν is
the inward normal vector on ∂B1(0), and u0(x), v0(x) are nonnegative, suitably smooth and
bounded functions with compact supports.

As well known that the equations in (1.1) are Newtonian filtration equations, they degen-
erate at the points where u = 0. The local existence of solutions can be established by the
standard method, see [3, 8, 14]. In this paper we mainly investigate the large time behavior of
solutions, such as the global existence in time and blow-up in a finite time. In particular, we
are interested in the critical exponents that may describe the large time behavior of solutions.

Since the begining work on critical exponent done by Fujita [4] in 1966, lots of Fujita type
results are established for various of problems, see the survey papers [2, 6]. It was Glalaktionov
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and Levine who first discussed the critical exponents for the one-dimensional nonlinear diffusion
equations with boundary sources in [6]:

∂u

∂t
=
∂2um

∂x2
, x > 0, t > 0, (1.4)

∂um

∂x
(0, t) = uα(0, t), t > 0, (1.5)

u(x, 0) = u0(x), x ∈ (0,+∞) (1.6)

here m > 1, α ≥ 0. For the problems (1.4)-(1.6), they proved that α0 = (m+ 1)/2, αc = m+ 1.
Here, we call α0 as the critical global existence exponent and αc as the critical Fujita exponent
respectively,

(i) if 0 < α < α0, then every nontrivial nonnegative solution is global in time;
(ii) if α0 < α < αc, then the nontrivial nonnegative solutions blow up in a finite time;
(iii) if α > αc, then the solutions exist globally for the small initial data and blow up in a

finite time for the large initial data.
The results obtained by Galakionov and Levine were extended to the problems with fast

diffusion, i.e., 0 < m < 1 in [5, 10]. However, for the multi-dimentional case, the critical
exponents for the nonlinear diffusion equation with the boundary sources remained open. In
[12], Wang et al considered this problem on the exterior domain RN\B1(0), namely, the system
(1.1)-(1.3) with m = n, α = β, N > 2, they obtained that α0 = αc = m, which indicates
that the critical global existence exponent coincides with the critical Fujita exponent for the
multi-dimensional case.

Instead of the critical global existence exponent and the critical Fujita exponent, there are
the critical global existence curve and the critical Fujita curve for the coupled system, they
were proposed by Deng et al in the study of the heat equations coupled by nonlinear boundary
sources, see [1]. For the one-dimensional nonlinear diffusion equations, Quirós and Rossi [11]
considered the coupled Newtonian filtration equations as follows

∂u

∂t
=
∂2um

∂x2
,

∂v

∂t
=
∂2vn

∂x2
, x > 0, t > 0,

− ∂um

∂x
(0, t) = vα(0, t), −∂v

n

∂x
(0, t) = uβ(0, t), t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0.

They showed that the critical global existence curve is given by αβ = (m+ 1)(n+ 1)/4 and the
critical Fujita curve is given by min{α1 + β1, α2 + β2} = 0, where

α1 =
2α+ n+ 1

(m+ 1)(n+ 1)− 4αβ
, β1 =

α(m− 1− 2β) + (n+ 1)m
(m+ 1)(n+ 1)− 4αβ

,

α2 =
2β +m+ 1

(m+ 1)(n+ 1)− 4αβ
, β2 =

β(n− 1− 2α) + (m+ 1)n
(m+ 1)(n+ 1)− 4αβ

.

The similar results were established in [9]. We see that these two critical curves don’t coincide
by some calculations.

The above papers motivate us to investigate the critical curves for the multi-dimensional
system (1.1)-(1.3). The purpose of this present paper is to verify the phenomenon that the
critical exponents α0 and αc coincide for the single nonlinear diffuison equation (see [12]) also
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occurs for the system (1.1)–(1.3). Namely, we prove that both the critical global existence curve
and the critical Fujita curve are determined by αβ = mn for the system (1.1)–(1.3).

Furthermore, by virtue of the radial symmetry of the exterior domain of the unit ball, we
can extend our results to the following more general equations

∂

∂t
(|x|λ1u) = div(|x|λ1∇um),

∂

∂t
(|x|λ2v) = div(|x|λ2∇vn), x ∈ RN\B1(0), t > 0 (1.7)

with λ1, λ2 > 2−N , N ≥ 1.
The rest of this paper is organized as follows. Section 2 is devoted to the large time behavior

of solutions to the nonlinear boundary problem for the Newonian filtration equations, namely
(1.1)–(1.3) and (1.7),(1.2),(1.3).

2 Main results and their proofs

In this section, we first introduce our results on the system of Newtonian filtration equations
coupled by nonlinear boundary sources, then we give the proofs.

Theorem 2.1 For the system (1.1)–(1.3) with N > 2, both the critical global existence curve
and the critical Fujita curve are given by αβ = mn. Namely, if 0 ≤ αβ < mn, then every
nonnegative solution (u, v) of the system (1.1)-(1.3) exists globally in time; if αβ > mn, then
the solutions with large initial data blow up in a finite time while the solutions with small initial
data exist globally in time.

Theorem 2.2 Assume λ1, λ2 > 2 − N , N ≥ 1. For the equation (1.7) with the initial and
boundary conditions (1.2),(1.3), the critical global existence curve and the critical Fujita curve
both are given by αβ = mn.

Before we give the proofs of Theorem2.1 and Theorem 2.2, we consider the problem

∂u

∂t
=
∂2um

∂r2
+
λ̃1

r

∂um

∂r
,

∂v

∂t
=
∂2vn

∂r2
+
λ̃2

r

∂vn

∂r
, r > 1, t > 0, (2.1)

− ∂um

∂r
(1, t) = vα(1, t), −∂v

n

∂r
(1, t) = uβ(1, t), t > 0, (2.2)

u(r, 0) = u0(r), v(r, 0) = v0(r), r > 1, (2.3)

where r = |x|, m,n > 1, α, β ≥ 0, N ≥ 1, λ̃1, λ̃2 > 1, and u0(r), v0(r) are nonnegative,
nontrivial functions with compact supports. Clearly, the solution (u, v) of the system (2.1)–
(2.3) with λ̃1 = λ̃2 = N − 1 is also the solution of the system (1.1)–(1.3) if u0(x), v0(x) are
radially symmetrical. If λ̃1 = λ1 + N − 1, λ̃2 = λ2 + N − 1, the same facts also hold valid
between the system (2.1)-(2.3) with the system (1.7), (1.2), (1.3). In order to obtain Theorem
2.1, Theorem 2.2, we firstly show the following results on the system (2.1)–(2.3).

Proposition 2.1 If 0 ≤ αβ < mn, then all nonnegative solutions of the system (2.1)–(2.3)
exist globally in time.

Proposition 2.2 If αβ > mn, then the nonnegative solution of the system (2.1)–(2.3) with
large initial data blows up in a finite time.
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Proposition 2.3 If αβ > mn, then every nonnegative nontrivial solution of the problem (2.1)–
(2.3) with small initial data exists globally.

Remark 2.1 Proposition 2.1, 2.2 and 2.3 make us to conclude that both the crtical global exis-
tence curve and the critical Fujita curve for the system (2.1)–(2.3) are determined by αβ = mn.

Now, we prove Propostion 2.1 – Proposition 2.3.

Proof of Proposition 2.1. We prove this proposition by constructing a kind of global
upper solutions. Let

u1(r, t) = (T + t)k1h1(ξ1), ξ1 =
r − 1

(T + t)l1
, (2.4)

v1(r, t) = (T + t)k2h2(ξ2), ξ2 =
r − 1

(T + t)l2
, (2.5)

where T > 0, k2 = kk1 with k, k1 being the positive constants to be determined and

l1 =
1 + k1(m− 1)

2
, l2 =

1 + k2(n− 1)
2

.

For ξ1, ξ2 > 0, we take

h1(ξ1) =
(m− 1

m
(1− ξ1)+

)1/(m−1)
, h2(ξ2) =

(n− 1
n

(1− ξ2)+
)1/(n−1)

.

Denote

u2(r, t) = r−α1/mu1(r, t), v2(r, t) = r−α2/nv1(r, t), r > 1, t > 0, (2.6)

where α1, α2 are given by the following:

α1 =

 λ̃1 − 1, 1 < λ̃1 < 2,
1
2
λ̃1, λ̃1 ≥ 2;

α2 =

 λ̃2 − 1, 1 < λ̃2 < 2,
1
2
λ̃2, λ̃2 ≥ 2.

We claim that (u2, v2) is a upper solution to the problem (2.1)-(2.3). Firstly, we verify
u2(r, t), v2(r, t) satisfy the boundary conditions

−∂u
m
2

∂r
(1, t) ≥ vα2 (1, t), −∂v

n
2

∂r
(1, t) ≥ uβ2 (1, t). (2.7)

On the one hand, due to that

∂um1
∂r

= (T + t)mk1−l1(hm1 )′(ξ1) ≤ 0,
∂un2
∂r

= (T + t)nk2−l2(hn2 )′(ξ2) ≤ 0,

we have

−∂u
m
2

∂r
(1, t) =α1u

m
1 (1, t)− ∂um1

∂r
(1, t)

≥α1u
m
1 (1, t) = α1(T + t)k1m

(m− 1
m

)m/(m−1)
,
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−∂v
n
2

∂r
(1, t) =α2v

n
1 (1, t)− ∂vn1

∂r
(1, t)

≥α2v
n
1 (1, t) = α2(T + t)k2n

(n− 1
n

)n/(n−1)
.

On the other hand, it is clear that

vα2 (1, t) = vα1 (1, t) = (T + t)k2α
(n− 1

n

)α/(n−1)
,

uα2 (1, t) = uα1 (1, t) = (T + t)k1α
(m− 1

m

)α/(m−1)
.

Thus, the inequalities in (2.7) are valid if

α1

(m− 1
m

)m/(m−1)
(T + t)k1m ≥

(n− 1
n

)α/(n−1)
(T + t)k2α, (2.8)

α2

(n− 1
n

)n/(n−1)
(T + t)k2n ≥

(m− 1
m

)α/(m−1)
(T + t)k1β. (2.9)

Since αβ < mn, there exists a constant k > 0, such that β/n < k < m/α. For the above k and
k2 = k1k, (2.8) and (2.9) hold for the large enough T .

Secondly, we verify that u2, v2 are the upper solutions to the equations in (2.1). A direct
computation yields that

(hm1 )′′(ξ1) + ξ1h
′
1(ξ1)− 1

m− 1
h1(ξ1) = 0, ξ1 > 0,

(hn2 )′′(ξ2) + ξ2h
′
2(ξ2)− 1

n− 1
h2(ξ2) = 0, ξ2 > 0.

Then

∂u1

∂t
− ∂2um1

∂r2
= (T + t)k1−1

(
k1h1(ξ1)− l1ξ1h′1(ξ1)− (hm1 )′′(ξ1)

)
= (T + t)k1−1

[
(k1 −

1
m− 1

)h1(ξ1)− (l1 − 1)ξ1h′1(ξ1)
]

∂v1
∂t
− ∂2vn1

∂r2
= (T + t)k2−1

(
k2h2(ξ2)− l2ξ2h′2(ξ2)− (hn2 )′′(ξ2)

)
= (T + t)k2−1

[
(k2 −

1
n− 1

)h2(ξ2)− (l2 − 1)ξ2h′2(ξ2)
]
.

For the fixed k ∈ (β/n,m/α) and k2 = kk1, we choose k1 > 0 such that

k1 > max{ 1
m− 1

,
1

k(n− 1)
},

which yields l1 > 1, l2 > 1. Combing with that h′1(ξ1) ≤ 0, h′2(ξ2) ≤ 0, we get

∂u1

∂t
≥ ∂2um1

∂r2
≥ ∂2um1

∂r2
+
α̃1

r

∂um1
∂r

,
∂v1
∂t
≥ ∂2vn1

∂r2
≥ ∂2vn1

∂r2
+
α̃2

r

∂vn1
∂r

(2.10)

with

α̃1 =

{
2− λ̃1, 1 < λ̃1 < 2,

0, λ̃1 ≥ 2;
α̃2 =

{
2− λ̃2, 1 < λ̃2 < 2,

0, λ̃2 ≥ 2.
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Note that
∂u1

∂t
= rα1/m∂u2

∂t
,

∂um1
∂r

= α1r
α1−1um2 + rα1

∂um2
∂r

,

∂2um1
∂r2

= rα1
∂2um2
∂r2

+ 2α1r
α1−1∂u

m
2

∂r
+ α1(α1 − 1)rα1−2um2 .

Substituting the above equalities into (2.10), we obtain that

rα1/m∂u2

∂t
≥ rα1

∂2um2
∂r2

+ (2α1 + α̃1)rα1−1∂u
m
2

∂r
+ α1(α1 − 1− α̃1)rα1−2um2

≥ rα1

(∂2um2
∂r2

+
λ̃1

r

∂um2
∂r

)
due to that α1 − 1− α̃1 ≥ 0 and 2α1 + α̃1 = λ̃1. The above inequality implies that for r > 1

∂u2

∂t
≥ rα1(1−1/m)

(∂2um2
∂r2

+
λ̃

r

∂um2
∂r

)
≥ ∂2um2

∂r2
+
λ̃

r

∂um2
∂r

.

Similarly,
∂v2
∂t
≥ ∂2vn2

∂r2
+
λ̃

r

∂vn2
∂r

.

Finally, we verify the initial conditions that

u2(r, 0) ≥ u0(r), v2(r, 0) ≥ v0(r). (2.11)

Let
M1 = max

r>1
u0(r), M2 = max

r>1
v0(r), suppu0 = [1, R1], suppv0 = [1, R2].

Then, (2.11) holds provided with

u2(R1, 0) ≥M1, v2(R2, 0) ≥M2, (2.12)

since that u2(r, 0) and v2(r, 0) are decreasing with respect to r. In fact, we can choose T to be
large such that

R
−α1/m
1 T k1

(m− 1
m

(1− R1 − 1
T l1

)+
)1/(m−1)

≥M1,

R
−α2/n
2 T k2

(n− 1
n

(1− R2 − 1
T l2

)+
)1/(n−1)

≥M2.

From the above, for large T satisfying (2.8) and (2.12), (u2, v2) given by (2.6) is a global
upper solution of the problem (2.1)-(2.3) in the distribution sense. Then the solutions to (2.1)-
(2.3) are global in time by using the comparison principle. The proof is completed. �

Proof of Proposition 2.2. The proposition is proved by constructing a kind of blow-up
lower solutions of the system (2.1)-(2.3). For r > 1, 0 < t < T , set

u(r, t) = (T − t)−µ1f1(η), v(r, t) = (T − t)−µ2f2(η), η = (r − 1)(T + t),

where T > 0 is a given constant,

µ1 =
1

m− 1
+

α

m(n− 1)
, µ2 =

m

α
µ1 =

m

α(m− 1)
+

1
n− 1

.
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Assume that f1, f2 satisfy f1, f2 ≥ 0, f ′1, f
′
2 ≤ 0, (fm1 )′′, (fn2 )′′ ≥ 0 , by computation we can see

that (u, v) with u(r, 0) ≤ u0(r), v(r, 0) ≤ v0(r) is a lower solution of the system (2.1)–(2.3) , if
the functions f1(η), f2(η) satisfy

T 2(fm1 )′′ + 2T
λ̃1

r
(fm1 )′ − µ1(T − t)µ1m−µ1−1f1(η) ≥ 0, (2.13)

T 2(fn2 )′′ + 2T
λ̃2

r
(fn2 )′ − µ2(T − t)µ2n−µ2−1f2(η) ≥ 0, (2.14)

− 2T (T − t)µ2α−µ1m(fm1 )′(0) ≤ fα2 (0), (2.15)

− 2T (T − t)µ1β−µ2n(fn2 )′(0) ≤ fβ1 (0). (2.16)

Note that r > 1 and

µ1m− µ1 − 1 =
α(m− 1)
m(n− 1)

> 0, µ2n− µ2 − 1 =
m

α(m− 1)
> 0,

µ2α− µ1m =
m

α
µ1α− µ1m = 0, µ1β − µ2n = µ1(β − m

α
n) > 0.

Thus, (2.13)-(2.16) hold if

T 2(fm1 )′′ + 2T λ̃1(fm1 )′ − µ1T
µ1m−µ1−1f1(η) ≥ 0, (2.17)

T 2(fn2 )′′ + 2T λ̃2(fn2 )′ − µ2T
µ2n−µ1−1f2(η) ≥ 0, (2.18)

− 2T (fm1 )′(0) ≤ fα2 (0), (2.19)

− 2Tµ1β−µ2n+1(fn2 )′(0) ≤ fβ1 (0). (2.20)

Take

f1(η) = A1(B − η)1/(m−1)
+ , f2(η) = A2(B − η)1/(n−1)

+ , η > 0, (2.21)

where A1, A2 are positive constants to be determined, and

B = min
{ T

4(m− 1)λ̃1

,
T

4(n− 1)λ̃2

,
mT 3+µ1−µ1m

2(m− 1)2µ1
,
nT 3+µ2−µ2n

2(n− 1)2µ2

}
.

In the following, we verify that the above f1, f2 satisfy (2.17)–(2.20). Substituting (2.21) into
(2.17) and (2.18) yields that

Am1
m

(m− 1)2
T 2 −Am1 λ̃1

m

m− 1
2T (B − η)+ −A1α1T

α1m−α1−1(B − η)+ ≥ 0,

An2
n

(n− 1)2
T 2 −An2 λ̃2

n

n− 1
2T (B − η)+ −A2α2T

α2n−α2−1(B − η)+ ≥ 0,

which can be obtained by the following

Am1
m

(m− 1)2
T 2 ≥ 1

2
Am1 λ̃1

m

m− 1
2TB, Am1

m

(m− 1)2
T 2 ≥ 1

2
A1µ1T

µ1m−µ1−1B,

An2
n

(n− 1)2
T 2 ≥ 1

2
An2 λ̃2

n

n− 1
2TB, An2

n

(n− 1)2
T 2 ≥ 1

2
A2α2T

µ2n−µ2−1B.

7



The choice of B makes us to conclude that the above inequalities hold for A1, A2 > 1. This
indicated that f1, f2 satisfy (2.17) and (2.18).

Next, substitute (2.21) into (2.19) and (2.20), we have

2T
m

m− 1
B1/(m−1)Am1 ≤ Bα/(n−1)Aα2 , (2.22)

2Tµ1β−µ2n+1 n

n− 1
B1/(n−1)An2 ≤ Bβ/(m−1)Aβ1 . (2.23)

Thanks to the assumption αβ > mn, there exists a constant k, such that m/α < k < β/n. Let
A2 = Ak1, then (2.22) and (2.23) are equivalent to the following

2T
m

m− 1
B1/(m−1)Am1 ≤ Bα/(n−1)Akα1 , (2.24)

2Tµ1β−µ2n+1 n

n− 1
B1/(n−1)Akn1 ≤ Bβ/(m−1)Aβ1 . (2.25)

Choose A1 large enough to satisfy (2.24) and (2.25), then we get (2.19) and (2.20).
Therefore, the solution (u, v) of the system (2.1)–(2.3) blows up in a finite time if (u0, v0)

is large enough such that

u0(r) ≥ u(r, 0), v0(r) ≥ v(r, 0), r > 1.

The proof is completed. �

Proof of Proposition 2.3. In fact, we can show the precent proposition is valid for all
αβ 6= mn. Let

ū(r, t) = (B1r
1−λ̃1)1/m, v̄(r, t) = (B2r

1−λ̃2)1/n, r > 1, t > 0,

where

B1 = (λ̃1 − 1)−mn/(mn−αβ)(λ̃2 − 1)−mα/(mn−αβ),

B2 = (λ̃1 − 1)−nβ/(mn−αβ)(λ̃2 − 1)−mn/(mn−αβ).

By some calculations, we get

∂ū

∂t
− ∂2ūm

∂r2
− λ̃1

r

∂ūm

∂r
= 0,

∂v̄

∂t
− ∂2v̄n

∂r2
− λ̃2

r

∂v̄n

∂r
= 0, r > 1, t > 0,

− ∂ūm

∂r
(1, t) = v̄α(1, t), − ∂v̄n

∂r
(1, t) = ūβ(1, t), t > 0.

That is to say that (u, v) is a stationary solution of the problem (2.1)–(2.3). Due to the com-
parison principle, for any initial value (u0(r), v0(r)) which is small enough to satisfy

u0(r) ≤ ū(r, 0), v0(r) ≤ v̄(r, 0), r > 1,

the solutions of the system (2.1)–(2.3) exist globally in time. �

Now, we prove the main result for the system (1.1)–(1.3), i.e., Theorem 2.1.
Proof of Theorem 2.1 Noticing that the functions u0(x), v0(x) have compact supports,

we can choose two bounded, radially symmetrical functions, denoted by u1(x) = u1(|x|) ≥
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u0(x), v1(x) = v1(|x|) ≥ v0(x). By using Proposition 2.1 and the comparison principle, we can
obtain the global existence of solutions for the system (1.1)–(1.3). However, for the large and
radially symmetric functions u(|x|, 0), v(|x|, 0) defined in the proof of Proposition 2.2, if (u0, v0)
is large enough such that u0(x) ≥ u(|x|, 0), v0(x) ≥ v(|x|, 0), then the solutions of the system
(1.1)–(1.3) with αβ > mn blow up by the comparison principle and Proposition 2.2. This
clarifies that the critical global existence curve is αβ = mn for the system (1.1)–(1.3).

On the other hand, using the comparison principle again, we conclude that the solution
(u, v) of (1.1)–(1.3) with

u0(x) ≤ (B1|x|2−N )1/m, v0(x) ≤ (B2|x|2−N )1/n, x ∈ RN\B1(0) (2.26)

where

B1 = (N − 2)−m(n+α)/(mn−αβ), B2 = (N − 2)−n(m+β)/(mn−αβ)

exists globally for αβ > mn by Proposition 2.3. This combined with Proposition 2.2 indicates
that the critical Fujita curve αβ = mn for the system (1.1)–(1.3). �

Proof of Theorem 2.2 By virtue of the same discussion in the proof of Theorem 2.1, if
we prove this theorem by taking λ̃1 = λ1 + N − 1, λ̃2 = λ2 + N − 1 in the system (2.1)–(2.3),
and replacing (2.26) with

u0(x) ≤ (B1|x|λ1+2−N )1/m, v0(x) ≤ (B2|x|λ2+2−N )1/n,

where

B1 = (λ1 +N − 2)−mn/(mn−αβ)(λ2 +N − 2)−mα/(mn−αβ),

B2 = (λ1 +N − 2)−nβ/(mn−αβ)(λ2 +N − 2)−mn/(mn−αβ).

The proof is complete. �
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