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1 Introduction

Throughout this paper, let X be a complex Banach space with the norm ‖ . ‖, X∗ be the

dual space of X, B be the open unit ball in X, and U be the Euclidean open unit disk in

C. We denote ∂B by the boundary of B, and B by the closure of B. Also, let Un denote
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the open unit polydisk in Cn, and N denote the set of all positive integers. Let the symbol
′ mean transpose. For each x ∈ X\{0}, we define

T (x) = {Tx ∈ X∗ : ‖Tx‖= 1, Tx(x) =‖x‖}.

By the Hahn-Banach theorem, T (x) is nonempty.

Let H(B) be the set of all holomorphic mappings from B into X. We know that if

f ∈ H(B), then

f(y) =
∞∑
n=0

1

n!
Dnf(x)((y − x)n)

for all y in some neighborhood of x ∈ B, where Dnf(x) is the nth-Fréchet derivative of f at

x, and for n ≥ 1,

Dnf(x)((y − x)n) = Dnf(x)(y − x, · · · , y − x︸ ︷︷ ︸
n

) .

Furthermore, Dnf(x) is a bounded symmetric n-linear mapping from
∏n

j=1X into X.

We say that a holomorphic mapping f : B → X is biholomorphic if the inverse f−1

exists and is holomorphic on the open set f(B). A mapping f ∈ H(B) is said to be locally

biholomorphic if the Fréchet derivative Df(x) has a bounded inverse for each x ∈ B. If

f : B → X is a holomorphic mapping, then we say that f is normalized if f(0) = 0 and

Df(0) = I, where I represents the identity operator from X into X. Let Aut(G) be the

automorphism group of biholomorphic mapping of domain G ⊂ X onto itself. A domain

is called homogeneous if for any x, y ∈ G, there exists a mapping ϕ ∈ Aut(G) such that

ϕ(x) = y.

We now introduce some definitions as follow.

Definition 1.1 Suppose that f : B → X is a normalized locally biholomorphic mapping. If

α ∈ [0, 1), and

(1.1)

< e
{
Tx
[
(Df(x))−1(f(x)− f(y))

]}
≥ α< e(‖x‖ − Tx(y)) , x, y ∈ B, ‖y‖ ≤ ‖x‖, Tx ∈ T (x),

then we say that f is an almost convex mapping of order α.

Especially, when B is the unit ball of complex Hilbert spaces, then (1.1) is replaced by

the following condition.

(1.2) < e〈Df(x))−1(f(x)− f(y)), x〉 ≥ α(‖x‖2 −< e〈y, x〉) , x, y ∈ B, ‖y‖ ≤ ‖x‖ .

When B = Bn, then (1.1) reduces to the following condition.

(1.3) < e〈Df(z))−1(f(z)− f(w)), z〉 ≥ α(‖z‖2 −< e〈w, z〉) , z, w ∈ Bn, ‖w‖ ≤ ‖z‖ .

Letting y = 0 in Definition 1.1, one obtains that f is an almost starlike mapping of order

α, is the sense introduced by Xu and Liu [22].
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Definition 1.2 [16] Suppose that f : B → X is a normalized locally biholomorphic mapping.

If α ∈ [0, 1), and

< e
{
Tx
[
(Df(x))−1(f(x)− f(ξx))

]}
≥ α< e(1− ξ)‖x‖ , ξ ∈ U, x ∈ B ,

then we say that f is an almost quasi-convex mapping of order α.

From Definitions 1.1 and 1.2, we easily see that almost convex mappings of order α is

the subclass of almost quasi-convex mappings of order α.

Definition 1.3 [10] Suppose that f : B → X is a normalized locally biholomorphic mapping.

If α ∈ (0, 1) and ∣∣∣∣ 1

‖x‖
Tx[(Df(x))−1f(x)]− 1

2α

∣∣∣∣ < 1

2α
, x ∈ B \ {0} ,

then we say that f is a starlike mapping of order α on B.

We denote by K(B) the set of normalized biholomorphic mappings on B, AKα(B) the

set of almost convex mappings of order α on B, AQα(B) the set of almost quasi-convex

mappings of order α on B, AS∗α(B) the set of almost starlike mappings of order α on B, and

S∗α(B) the set of starlike mappings of order α on B respectively.

Concerning the distortion theorem in several complex variables, the results of convex

mappings are numerous, such as the estimate for detDf(z) for convex mappings defined on

the Euclidean unit ball in C2 were first shown by Barnard, FitzGerald and Gong [1] in 1994,

and after that the above work was extended to the general case by Liu and Zhang [17].

Indeed, these are distortion theorems for the Jacobi determinant. On the other hand, with

respect to the distortion theorem for the Frećhet derivative, Gong, Wang and Yu [6] first

established the estimates of Df(z)Df(z)
′

for convex mappings, and Gong and Liu [5] then

extended their work to the bounded convex circular domain in Cn. Subsequently, Liu and

Zhang [18], Zhu and Liu [23] independently applied different methods to extend it to the unit

ball of the complex Banach spaces. Recently, Chu, Hamada, Honda and Kohr [2] established

the distortion theorem for convex mappings on homogeneous balls. For the unit ball of a

complex Hilbert space, Hamada and Kohr [9] gave the stronger upper bounds estimate of the

distortion theorem for convex mappings. We next recall convex functions of order α in one

complex variable, there are a number of classical results hold for them, such as the growth,

covering and distortion theorem. Further, the well-known Alexander theorem remains to be

valid for convex functions of order α(see [7]). However, in view of the difference between one

complex variable and several complex variables, there seem to be a few of analytical forms

for almost convex mappings of order α in several complex variables. Unfortunately, there
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are almost no geometric properties for most of them except for Liu and Zhu [19] establish

the radius of convexity and the sufficient condition for starlike mappings.

In this paper, we will first introduce one definition of almost convex mappings of order α in

several complex variables. Subsequently one sufficient condition and the distortion theorems

(include the Frećhet derivative and the Jacobi determinant) for the above mappings are

discussed. The derived results generalize many known results.

2 A sufficient condition for almost convex mappings

of order α

We begin with two concrete examples to state the criteria for almost convex mappings of

order α and almost quasi-convex mappings of order α.

Example 2.1 Let f(z) = (z1 + az2
2 , z2)

′, where z = (z1, z2)
′ ∈ B2. Then f ∈ AKα(B2) if

and only if |a| ≤ (1− α)/2.

Proof Let w = (w1, w2)
′ ∈ B2 with ‖w‖2 ≤ ‖z‖2. By similar reasoning of [20, Example

7], we conclude that

< e〈(Df(z))−1(f(z)− f(w)), z〉 − α(‖z‖2 −< e〈z, w〉)
= (1− α)(‖z‖2 −< e〈z, w〉)−< e{az1(z2 − w2)

2}
≥ (‖z‖2 −< e〈z, w〉)(1− α− 2|a||z1|) + |a||z1||z1 − w1|2 ≥ 0

for |a| ≤ (1− α)/2. Hence we know that f ∈ AKα(B2) from (1.3).

Conversely, if a > (1 − α)/2, then there exists z1 which satisfies z1a > (1 − α)/2, w1 =

z1, w2 = −z2 ∈ R. Consequently, with the analogous method of [20, Example 7], we also

have

< e〈(Df(z))−1(f(z)− f(w)), z〉 − α(‖z‖2 −< e〈z, w〉)
= (1− α)(‖z‖2 −< e〈z, w〉)−< e{az1(z2 − w2)

2}

< (1− α)(‖z‖2 −< e(z1z1 − z2z2))−
1− α

2
(2z2)

2 = 0 .

This completes the proof.

Example 2.2 [16] Let f(z) = (z1 + az2
2 , z2, · · · , zn)′, where z = (z1, z2, · · · , zn)′ ∈ Bn. If

|a| ≤ (1− α)/2, then f ∈ AQα(Bn).

It is easy to show that the following proposition holds from Examples 2.1 and 2.2 (we

omit the proof here).
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Proposition 2.1

(2.1) AKα(B) & K(B) , AKα(B) & AQα(B) & AS∗α(B) .

We will use the following two lemmas to prove the desired theorems in this section.

Lemma 2.1 If f ∈ H(B), then

Dmf(0)(xm)−Dmf(0)(ym)−mDmf(0)(xm−1, x− y)

=


−D2f(0)((x− y)2), m = 2;

−D3f(0)((x− y)2, y)− 2D3f(0)((x− y)2, x), m = 3;

−Dmf(0)((x− y)2, ym−2)− 2Dmf(0)((x− y)2, x, ym−3)− · · · m > 4;

−(m− 1)Dmf(0)((x− y)2, xm−2).

Proof In view of Dmf(0)(m > 2) is a bounded symmetric m-linear mapping from
∏n

j=1X

into X, when m = 2, it yields that

D2f(0)(x2)−D2f(0)(y2)− 2D2f(0)(x, x− y)

= D2f(0)(x− y, x) +D2f(0)(x− y, y)− 2D2f(0)(x, x− y)

= −D2f(0)((x− y)2) ;

when m = 3, we have

D3f(0)(x3)−D3f(0)(y3)− 3D3f(0)(x2, x− y)

= D3f(0)(x− y, x2) +D3f(0)(x− y, x, y)

+D3f(0)(x− y, y2)− 3D3f(0)(x2, x− y)

= −2D3f(0)(x− y, x2) +D3f(0)(x− y, x, y) +D3f(0)(x− y, y2)

= −D3f(0)((x− y)2, x)− [D3f(0)((x− y)2, x) +D3f(0)((x− y)2, y)]

= −D3f(0)((x− y)2, y)− 2D3f(0)((x− y)2, x) ;

when m > 4, we obtain

Dmf(0)(xm)−Dmf(0)(ym)−mD3f(0)(xm−1, x− y)

= Dmf(0)(x− y, xm−1) +Dmf(0)(x− y, xm−2, y) + · · ·
+Dmf(0)(x− y, ym−1)−mDmf(0)(x− y, xm−1)

= −(m− 1)Dmf(0)(x− y, xm−1) +Dmf(0)(x− y, xm−2, y)

+ · · ·+Dmf(0)(x− y, ym−1)

= −Dmf(0)((x− y)2, xm−2)− [Dmf(0)((x− y)2, xm−2)

+Dmf(0)((x− y)2, xm−3, y)]− · · · − [Dmf(0)((x− y)2, xm−2)

+Dmf(0)((x− y)2, xm−3, y) + · · ·+Dmf(0)((x− y)2, ym−2)]

= −Dmf(0)((x− y)2, ym−2)− 2Dmf(0)((x− y)2, x, ym−3)− · · ·
−(m− 1)Dmf(0)((x− y)2, xm−2) .
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This completes the proof.

Lemma 2.2 If α ∈ [0, 1), f ∈ H(B), f(0) = 0, Df(0) = I and Σ∞m=2m(m− α)/(m!)

‖Dmf(0)‖ 6 1−α, where ‖Dmf(0)‖ = sup‖x(k)‖=1,16k6m ‖Dmf(0)(x(1), x(2), · · · , x(m))‖, then

(2.2) ‖(Df(x))−1‖ 6
1

1−
∞∑
m=2

m‖Dmf(0)‖‖x‖m−2

m!

,

(2.3)

‖f(x)−f(y)−Df(x)(x−y)‖ 6 (1−α)
‖x− y‖2

2

(
1−

∞∑
m=2

m‖Dmf(0)‖‖x‖m−2

m!

)
, ‖y‖ 6 ‖x‖ .

Proof SinceΣ∞m=2m(m − α)/(m!)‖Dmf(0)‖ 6 1 − α, then with the similar argument in

the proof of [14, Theorem 1.1], it yields that

‖(Df(x))−1‖ 6
1

1−
∞∑
m=2

m‖Dmf(0)‖‖x‖m−2

m!

.

Again by Lemma 2.1, for ‖y‖ 6 ‖x‖, we obtain

‖f(x)− f(y)−Df(x)(x− y)‖

=

∥∥∥∥∥
∞∑
m=2

Dmf(0)(xm)−Dmf(0)(ym)−mDmf(0)(xm−1, x− y)

m!

∥∥∥∥∥
6

∞∑
m=2

‖Dmf(0)(xm)−Dmf(0)(ym)−mDmf(0)(xm−1, x− y)‖
m!

6
∞∑
m=2

(1 + 2 + · · ·+m− 1)‖Dmf(0)‖‖x− y‖2‖x‖m−2

m!

=
∞∑
m=2

m(m−α)−m(1−α)
2

‖Dmf(0)‖‖x− y‖2‖x‖m−2

m!

6 (1− α)
‖x− y‖2

2

(
1−

∞∑
m=2

m‖Dmf(0)‖‖x‖m−2

m!

)
.

This completes the proof.

Theorem 2.1 If α ∈ [0, 1), f ∈ H(B), f(0) = 0, Df(0) = I and Σ∞m=2m(m − α)/(m!) ·
‖Dmf(0)‖ 6 1−α, where ‖Dmf(0)‖ = sup‖x(k)‖=1,16k6m ‖Dmf(0)(x(1), x(2), · · · , x(m))‖, then

f ∈ AQα(B).
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Proof In view of the condition of Theorem 2.1, (2.2) and (2.3), we have

< e
{
Tx
[
(Df(x))−1(f(x)− f(ξx))− α(1− ξ)x

]}
= < e

{
Tx
[
(Df(x))−1(f(x)− f(ξx)−Df(x)(1− ξ)x)

]}
+ (1−< eξ)‖x‖ − α(1−< eξ)‖x‖

> (1− α)(1−< eξ)‖x‖ − |Tx
[
(Df(x))−1(f(x)− f(ξx)−Df(x)(1− ξ)x)

]
|

> (1− α)(1−< eξ)‖x‖ − ‖(Df(x))−1(f(x)− f(ξx)−Df(x)(1− ξ)x)‖

> (1− α)(1−< eξ)‖x‖ −
(1− α) |1−ξ|

2‖x‖2
2

(1−
∞∑
m=2

m‖Dmf(0)‖‖x‖m−2

m!
)

1−
∞∑
m=2

m‖Dmf(0)‖‖x‖m−2

m!

≥ (1− α)(1−< eξ)‖x‖ − (1− α)(1−< eξ)‖x‖ = 0 .

Thus, it yields that f ∈ AQα(B) by Definition 1.2. This completes the proof.

Especially, when B is the unit ball of complex Hilbert spaces, we have the following

Theorem 2.2 If α ∈ [0, 1), f ∈ H(B), f(0) = 0, Df(0) = I and Σ∞m=2m(m− α)/(m!)

‖Dmf(0)‖ 6 1−α, where ‖Dmf(0)‖ = sup‖x(k)‖=1,16k6m ‖Dmf(0)(x(1), x(2), · · · , x(m))‖, then

f ∈ AKα(B).

Proof According to the hypothesis of Theorem 2.2, (1.2), (2.2) and (2.3), we have

< e{< (Df(x))−1(f(x)− f(y), x > −α < x− y, x >}
= < e{< (Df(x))−1(f(x)− f(y)−Df(x)(x− y)), x > + < x− y, x > −α < x− y, x >}
> (1− α)(‖x‖2 −< e < x, y >)− | < (Df(x))−1(f(x)− f(y)−Df(x)(x− y)), x > |
> (1− α)(‖x‖2 −< e < x, y >)− ‖(Df(x))−1(f(x)− f(y)−Df(x)(x− y))‖‖x‖

> (1− α)(‖x‖2 −< e < x, y >)−
(1− α)‖x−y‖

2

2
(1−

∞∑
m=2

m‖Dmf(0)‖‖x‖m−2

m!
)

1−
∞∑
m=2

m‖Dmf(0)‖‖x‖m−2

m!

=
1− α

2
(2‖x‖2 − 2< e < x, y > −‖x‖2 − ‖y‖2 + 2< e < x, y >)

=
1− α

2
(‖x‖2 − ‖y‖2) > 0 .

Therefore, f ∈ AKα(B). This completes the proof.

When α = 0, B = Bn, Theorem 2.1 reduces to [20, Theorem 2.1], and our proof seems to

be more concise.

The following theorem provides a sufficient condition for starlike mappings of order α

(the case α ∈ [1/2, 1)) due to Liu and Liu [14].

Theorem 2.3 If α ∈ [1/2, 1), f ∈ H(B), f(0) = 0, Df(0) = I and
∞∑
m=2

(m−α)/(m!)‖Dmf(0)‖

6 1 − α, where ‖Dmf(0)‖ = sup‖x(k)‖=1,16k6m ‖Dmf(0)(x(1), x(2), · · · , x(m))‖, then f ∈
S∗α(B).
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Remark 2.1 Noticing that the fact Df(x)x = x + Σ∞m=2mD
mf(0)(xm)/(m!) if f(x) = x +

Σ∞m=2D
mf(0)(xm)/(m!), x ∈ B, Theorems 2.1 and 2.3 show that the classical Alexander

theorem is valid with some restricted conditions.

3 Distortion theorems of the Frechet derivative for

almost convex mappings of order α

In this section, let H(B,U) be the set of all holomorphic mappings from B into U . For each

x ∈ B, ξ ∈ X, the infinitesimal form of Carathéodory metric on B is defined by

FC(x, ξ) = sup{|Dϕ(x)ξ| : ϕ ∈ H(B,U), ϕ(x) = 0} .

the infinitesimal form of Carathéodory metric on B has some properties as follows.

(3.1) FC(x, ξ) ≥ |Tx(ξ)|
1− ‖x‖2

, x ∈ B, ξ ∈ X,

(3.2)
‖ξ‖

1 + ‖x‖
≤ FC(x, ξ) ≤ ‖ξ‖

1− ‖x‖
, x ∈ B, ξ ∈ X,

(3.3) FC(x, x) =
‖x‖

1− ‖x‖2
, x ∈ B

((3.1) see [15], (3.2) and (3.3) see [4]).

Lemma 3.1 [16] If f ∈ AQα(B), then

‖x‖
1 + (1− α)‖x‖

≤ ‖f(x)‖ ≤ ‖x‖
1− (1− α)‖x‖

, x ∈ B .

We first begin to establish the distortion theorem of Fréchet derivative for almost convex

mappings of order α on the unit ball of complex Banach spaces.

Theorem 3.1 If f ∈ AKα(B), then for x ∈ B, ξ ∈ X,

(1− ‖x‖)‖ξ‖
(1 + ‖x‖)(1 + (1− α)‖x‖)

≤ 1− ‖x‖
1 + (1− α)‖x‖

FC(x, ξ) ≤ ‖Df(x)ξ‖

≤ 1 + ‖x‖
1− (1− α)‖x‖

FC(x, ξ) ≤ (1 + ‖x‖)‖ξ‖
(1− ‖x‖)(1− (1− α)‖x‖)

and

‖Df(x)ξ‖ ≥ 1− ‖x‖
1 + (1− α)‖x‖

FC(x, ξ) ≥ |Tx(ξ)|
(1 + ‖x‖)(1 + (1− α)‖x‖)

.
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Proof By the same arguments as the proof of [4, Theorem 3.1.2], we deduce that

1

λ
≤ 1 + ‖x‖

1− (1− α)‖x‖
, x ∈ B

from (2.1) and Lemma 3.1, and

‖Df(x)ξ‖ ≤ 1

λ
FC(x, ξ) ≤ 1 + ‖x‖

1− (1− α)‖x‖
FC(x, ξ) ≤ (1 + ‖x‖)‖ξ‖

(1− ‖x‖)(1− (1− α)‖x‖)

from (3.2). On the other hand, with arguments similar to those in the proof of [4, Theorem

3.1.2], we obtain

1− µ ≥ 1− ‖x‖
1 + (1− α)‖x‖

, x ∈ B

by Lemma 3.1,

‖Df(x)ξ‖ ≥ (1− µ)FC(x, ξ) ≥ 1− ‖x‖
1 + (1− α)‖x‖

FC(x, ξ) ≥ (1− ‖x‖)‖ξ‖
(1 + ‖x‖)(1 + (1− α)‖x‖)

,

and

‖Df(x)ξ‖ ≥ (1− µ)FC(x, ξ) ≥ 1− ‖x‖
1 + (1− α)‖x‖

FC(x, ξ) ≥ |Tx(ξ)|
(1 + ‖x‖)(1 + (1− α)‖x‖)

from (3.1) and (3.2). This completes the proof.

Applying (3.3) to Theorem 3.1, we immediately deduce the following

Corollary 3.1 If f ∈ AKα(B), then

‖x‖
(1 + ‖x‖)(1 + (1− α)‖x‖)

≤ ‖Df(x)x‖ ≤ ‖x‖
(1− ‖x‖)(1− (1− α)‖x‖)

, x ∈ B .

When α = 0, Theorem 3.1 and Corollary 3.1 reduce to [18, Theorem 3.3].

Banach spaces with a homogeneous open unit ball are precisely the JB∗-triplles [11].

They are the complex Banach spaces X equipped with a triple product {., ., . : X3 → X}
which is conjugate linear in the middle variable, but linear and symmetric in the other

variables such that

(i) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}};
(ii) the mapa2a : x ∈ X 7→ {a, a, x} ∈ X is hermitian with nonnegative spectrum;

(iii) {a, a, a} = ‖a‖3

for a, b, x, y, z ∈ X. On the open unit ball B of a JB∗-triple, each point a ∈ B induces the

Möbius transformation ga ∈ Aut(B) given by

ga(x) = a+B(a, a)1/2(I + x2a)−1x(x ∈ X) ,

9



where x2a is the box operator (x2a)(y) = {x, a, y}. Moreover, ga(0) = a, g−1
a = g−a and

Dga(0) = B(a, a)1/2, Dga(a) = B(a, a)−1/2.

In any dimension, we have

‖B(a, a)−1/2‖ =
1

1− ‖a‖2

from [12, Corollary 3.6]. More details of JB∗-triple may consult [21] or [8].

We next establish the distortion theorem of Fréchet derivative for almost convex mappings

of order α on the unit ball B of a JB∗-triple X.

Theorem 3.2 If f ∈ AKα(B), then for x ∈ B, ξ ∈ X,

(1− ‖x‖)‖ξ‖
(1 + (1− α)‖x‖)‖B(x, x)1/2‖

≤ ‖Df(x)ξ‖ ≤ ‖ξ‖
(1− ‖x‖)(1− (1− α)‖x‖)

.

Proof For any x ∈ B, ξ ∈ X, we have

FC(x, ξ) = FC(0, Dg−x(x)ξ) = ‖B(x, x)−1/2ξ‖ ≤ ‖ξ‖
1− ‖x‖2

for the Möbius transformation g−x ∈ Aut(B) such that g−x(0) = 0(see [2]). Note that

‖B(a, a)−1/2‖ = 1
1−‖a‖2 , a ∈ B. Take into account 1−‖x‖

1+(1−α)‖x‖FC(x, ξ) ≤ ‖Df(x)ξ‖ ≤ 1+‖x‖
1−(1−α)‖x‖

FC(x, ξ). By the same arguments as the proof of [2, Lemmas 2.5 and 2.6], it follows the de-

sired results. This completes the proof.

In particular, when B is the unit ball of complex Hilbert spaces, we have the following

theorem.

Theorem 3.3 If f ∈ AKα(B), then for x ∈ B, ξ ∈ X,√
1− ‖x‖2‖ξ‖

(1 + ‖x‖)(1 + (1− α)‖x‖)
≤
√

(1− ‖x‖2)‖ξ‖2 + |〈x, ξ〉|2
(1 + ‖x‖)(1 + (1− α)‖x‖)

≤ 1− ‖x‖
1 + (1− α)‖x‖

FC(x, ξ) ≤ ‖Df(x)ξ‖ ≤ 1 + ‖x‖
1− (1− α)‖x‖

FC(x, ξ)

≤
√

(1− ‖x‖2)‖ξ‖2 + |〈x, ξ〉|2
(1− ‖x‖)(1− (1− α)‖x‖)

≤ ‖ξ‖
(1− ‖x‖)(1− (1− α)‖x‖)

.

Proof For any x ∈ B, ξ ∈ X, it is shown that

FC(x, ξ) =

√
(1− ‖x‖2)‖ξ‖2 + |〈x, ξ〉|2

1− ‖x‖2

(see [3]). Hence, the desired result holds from Theorem 3.1.

When α = 0, Theorem 3.3 reduces to [23, Theorem 2.4].
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4 Distortion theorems of the Jacobi determinant for

almost convex mappings of order α

In this section, we denote by Jf (z) the Jacobi matrix of the holomorphic mapping f(z),

and det Jf (z) the Jacobi determinant of the holomorphic mapping f(z). Let H(Ω,Ω) be the

holomorphic mappings from Ω into Ω, where Ω is a bounded domain in Cn.

We will use the following lemma (see [13]).

Lemma 4.1 Suppose that Ω is a bounded domain in Cn. If ϕ : Ω → Ω is biholomorphic,

then

| det Jϕ(z)| =

√
K(z, z)

K(ϕ(z), ϕ(z))
, z ∈ Ω .

The following lemma is also applied to prove the desired theorem in this section.

Lemma 4.2 Suppose that Ω is a bounded convex circular homogeneous domain in Cn. If

ϕ ∈ H(Ω,Ω), then

| det Jϕ(z)| ≤

√
K(z, z)

K(ϕ(z), ϕ(z))
, z ∈ Ω .

In particular, when Ω = Bn (resp. Un)

(4.1) | det Jϕ(z)| ≤
(

1− ‖ϕ(z)‖2

1− ‖z‖2

)n+1
2

(resp.| det Jϕ(z)| ≤
n∏
j=1

1− ‖ϕj(z)‖2

1− ‖zj‖2
) .

Proof We write τϕ(z) =
√

K(ϕ(z),ϕ(z))
K(z,z)

| det Jϕ(z)|. Taking into account Lemma 4.1, a

direct computation shows that

τψ◦ϕ◦ω(z)

=

√
K(ψ(ϕ(ω(z))), ψ(ϕ(ω(z)))

K(z, z)
| det Jψ(ϕ(ω(z)))|| det Jϕ(ω(z))|| det Jω(z)|

=

√
K(ϕ(ω(z)), ϕ(ω(z))

K(z, z)
| det Jϕ(ω(z))|| det Jω(z)|

=

√
K(ϕ(ω(z)), ϕ(ω(z))

K(ω(z), ω(z))
| det Jϕ(ω(z))| = τϕ(ω(z))

for every ψ, ω ∈ Aut(Ω). That is,

(4.2) τψ◦ϕ◦ω(z) = τϕ(ω(z)), z ∈ Ω .
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Let ρ(z) be the Minkowski functional of Ω. Fix ξ ∈ Cn \ {0} and denote ξ0 = ξ
ρ(ξ)

. When

ϕ(0) = 0 if z = 0, we may define

w(λ) = TJϕ(0)ξ0(ϕ(λξ0)), λ ∈ U ,

then w ∈ H(U,U), w(0) = 0. Hence, in view of Schwarz lemma, we conclude that

(4.3) |w′(0)| = ρ(Jϕ(0)ξ0) ≤ 1 .

If λ is the eigenvalue of Jϕ(0), then

(4.4) Jϕ(0)η = λη ,

where η is the eigenvector of Jϕ(0). Letting η0 = η
ρ(η)

, then η0 ∈ ∂Ω. According to (4.3) and

(4.4), we obtain

ρ(Jϕ(0)η0) = ρ(λη0) = |λ| ≤ 1 .

Therefore

(4.5) τϕ(0) = | det Jϕ(0)| ≤ 1 .

For the general case, take ψ, ω ∈ Aut(Ω) which satisfy ω(0) = z and ψ(ϕ(z)) = 0. It

yields that

τϕ(z) = τϕ(ω(0)) = τψ◦ϕ◦ω(0) ≤ 1

from (4.2) and (4.5). This implies that

| det Jϕ(z)| ≤

√
K(z, z)

K(ϕ(z), ϕ(z))
, z ∈ Ω .

We recall the fact that

K(z, z) =
n!

πn(1− ‖z‖2)n+1
, z ∈ Bn, K(z, z) =

1

πn

n∏
j=1

1

(1− ‖zj‖2)2
, z ∈ Un

(see [13]), then the estimates of (4.1) are valid. This completes the proof.

We now begin to present the desired theorem in this section.

Theorem 4.1 Suppose that Ω is a bounded convex circular homogeneous domain in Cn. If

f ∈ AKα(Ω)(α ∈ [0, 1)), then(
1− ρ(z)

1 + (1− α)ρ(z)

)n√
K(z, z)

K(0, 0)
≤ | det Jf (z)| ≤

(
1 + ρ(z)

1− (1− α)ρ(z)

)n√
K(z, z)

K(0, 0)
, z ∈ Ω .

In particular, when Ω = Bn, we have

(4.6)

(1− ‖z‖)n−1
2

(1 + (1− α)‖z‖)n(1 + ‖z‖)n+1
2

≤ | det Jf (z)| ≤ (1 + ‖z‖)n−1
2

(1− (1− α)‖z‖)n(1− ‖z‖)n+1
2

, z ∈ Bn .
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Proof With arguments similar to those in the proof of [4, Theorem 3.1.2], we have

(4.7)
1

λ
≤ 1 + ρ(z)

1− (1− α)ρ(z)
, z ∈ Ω

from Lemma 3.1. Define

(4.8) ϕ(w) = f−1(λf(w) + (1− λ)f(z∗)), w ∈ Ω ,

where z∗ ∈ ∂Ω. It is shown that f ∈ AKα(Ω) ⊂ K(Ω) from (2.1), then ϕ(w) is well defined,

further, ϕ ∈ H(Ω,Ω) and ϕ(z) = 0. From (4.8), we have

f(ϕ(w)) = λf(w) + (1− λ)f(z∗) .

Differentiating both sides of the above equality with respect to w, we obtain

Jf (ϕ(w))Jϕ(w) = λJf (w) .

Noticing that ϕ(z) = 0, especially taking w = z, we deduce that

Jf (0)Jϕ(z) = λJf (z) .

This implies that

Jf (z) =
1

λ
Jf (0)Jϕ(z) =

1

λ
Jϕ(z) .

Using Lemma 4.2 and (4.7), we conclude that

| det Jf (z)| = 1

λn
| det Jϕ(z)|

≤
(

1 + ρ(z)

1− (1− α)ρ(z)

)n√
K(z, z)

K(0, 0)
.

On the other hand, by the same arguments as in the proof of [4, Theorem 3.1.2], we

conclude that

(4.9) 1− µ ≥ 1− ρ(z)

1 + (1− α)ρ(z)
, z ∈ Ω

from Lemma 3.1.

Let

(4.10) ψ(w) = f−1((1− µ)f(w) + µf(z̃)), w ∈ Ω ,

where z̃ ∈ ∂Ω. Since f ∈ AKα(Ω) ⊂ K(Ω), then ψ(w) is well defined, moreover, ψ ∈ H(Ω,Ω)

and ψ(0) = z. From (4.10), we obtain

f(ψ(w)) = (1− µ)f(w) + µf(z̃) .
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Differentiating both sides of the above equality with respect to w, we also obtain

Jf (ψ(w))Jψ(w) = (1− µ)Jf (w) .

Note that ψ(0) = z, especially take w = 0. We conclude that

Jf (z)Jψ(0) = (1− µ)Jf (0) = (1− µ)In ,

where In is a unit matrix of n× n. Applying Lemma 4.2 and (4.9), we deduce that

| det Jf (z)| = (1− µ)n
1

| det Jψ(0)|

≥
(

1− ρ(z)

1 + (1− α)ρ(z)

)n√
K(z, z)

K(0, 0)
.

In particular, if Ω = Bn, taking into account the fact K(z, z) = n!
πn(1−‖z‖2)n+1 , z ∈ Bn, it

is easy to see that the estimate of (4.6) holds.

When α = 0, the estimate of (4.6) reduce to the corollary of [4, Theorem 3.1.1].
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