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Abstract. Following Clunie and Sheil-Small denote by SH the
class of normalized univalent harmonic mappings in the unit disk.
The aim of a paper is to study the properties of a subclass of SH,
such that the analytic part is a convex function. We establish
estimates of some functionals and bounds of the Bloch constant
for co-analytic part.

1. Introduction

A complex-valued harmonic function f that is harmonic in a simply
connected domain Ω ⊂ C has the canonical representation

f = h+ g, (1.1)

where h and g are analytic in Ω with g(z0) = 0 for some prescribed point
z0 ∈ Ω. According to a theorem of Lewy [17], f is locally univalent, if
and only if its Jacobian Jf (z) = |fz(z)|2 − |fz̄(z)|2 = |h′(z)|2 − |g′(z)|2
does not vanish, and is sense-preserving if the Jacobian is positive.
Then h′(z) 6= 0 and the analytic function ω = g′/h′, called the second
complex dilatation of f , has the property |ω| < 1 in Ω. Throughout this
paper we will assume that f is locally univalent and sense-preserving,
and we call f a harmonic mapping. Also, we assume Ω = D ⊂ C,
and z0 = 0, where D is the open unit disk on the complex plane. The
class of all sense-preserving univalent harmonic mappings of D with
h(0) = g(0) = h′(0)− 1 = 0 is denoted by SH, and its subclass for that
g′(0) = 0 by S0

H (cf. [8]). Fundamental informations about harmonic
mappings in the plane can be found in [11]. Note that each f satisfying
(1.1) in D is uniquely determined by coefficients of the following power
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series expansions

h(z) =
∞∑
n=0

anz
n, g(z) =

∞∑
n=1

bnz
n (z ∈ D), (1.2)

with an ∈ C, n = 0, 1, 2, ..., and bn ∈ C, n = 1, 2, 3, .... When f ∈ SH
then a0 = 0, a1 = 1.

In [14] authors studied properties of a subclass SαH of SH, consisting
of all univalent anti-analytic perturbations of the identity in the unit

disc with |b1| = α, and in [15] there was studied the class Ŝα of all
f ∈ SH, such that |b1| = α ∈ (0, 1) and h ∈ CV , where CV denotes the
well-known family of normalized, univalent functions which are convex.

The classical Schwarz-Pick estimate for an analytic function ω which
is bounded by one on the unit disk of the complex plane is the inequality

|ω′(z)| ≤ 1− |ω(z)|2

1− |z|2
(|z| < 1). (1.3)

Ruscheweyh [21] has obtained the best-possible estimates of higher
order derivatives of bounded analytic functions on the disk. Similar
estimates were derived by other methods and for different classes of an-
alytic functions in one and several variables by Anderson and Rovnyak
[1]

(1− |z|2)n−1

∣∣∣∣ω(n)(z)

n!

∣∣∣∣ ≤ 1− |ω(z)|2

1− |z|2
(n = 1, 2, ...). (1.4)

The case z = 0 in (1.4) asserts that if

ω(z) = c0 + c1z + c2z
2 + · · · , (1.5)

then
|cn| ≤ 1− |c0|2, (1.6)

for every n ≥ 1. This result is classical and due to Wiener; see [2], [16].

2. Bounds of the Fekete-Szegö and other functionals

Theorem 2.1. Let f ∈ Ŝα, f = h + ḡ with the power series (1.2).
Then

|bn| ≤ α +
(1− α2)(n− 1)

2
(n = 2, 3, ...). (2.1)

Proof. Making use of a relation g′ = ωh′ and the power series expan-
sions (1.2), (1.5) we obtain

nbn =
n−1∑
p=0

(p+ 1)ap+1cn−p−1 (n = 2, 3, ...). (2.2)

Since h ∈ CV , then |ak| ≤ 1 (k = 1, 2, ...). Applying this for (2.2) we
have

|bn| ≤
1

n

n−1∑
p=0

(p+ 1)|cn−p−1|.
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The fact g′ = ωh′, for the case z = 0, implies that c0 = b1, so that by
(1.6) we obtain |cn−p−1| ≤ 1− |b1|2 = 1− α2. Therefore

|bn| ≤ α +
1

n

n−2∑
p=0

(p+ 1)(1− α2)

= α +
(1− α2)(n− 1)

2
.

(2.3)

Specially, we get

|b2| ≤ α +
1− α2

2
, |b3| ≤ 1 + α− α2.

For the case, when n = 2 the inequality is sharp, with the equality
realized by the function

f(z) =
z

1− z
+

z

1− z
− 1− α

1 + α
log

1 + αz

1− z
.

We note that for α close to 1 the above bounds are better than obtained
in [15]. �

In conclusion, we obtain:

Corollary 2.2. Let f ∈ Ŝα, f = h + ḡ with the power series (1.2).
Then

|bn| ≤ min

{
α +

(1− α2)(n− 1)

2
,
α +

√
(n− α2)(n− 1)

n

}
(n = 2, 3, ...).

(2.4)

Theorem 2.3. Let f ∈ Ŝα, f = h + ḡ with the power series (1.2).
Then for µ ∈ R

|b3−µb2
2| ≤

1− α2

3

{
1 +

3

4
|µ|(1− α2) + |2− 3µb1|

}
+αmax

{
1

3
, |1− µb1|

}
,

(2.5)
and

|bn+1 − bn| ≤ 2α + (1− α2)
2n− 1

2
. (2.6)

Proof. From the relation (2.2) we have

2b2 = c1 + 2a2c0, 3b3 = c2 + 2a2c1 + 3a3c0.

Then

|b3 − µb2
2| =

∣∣∣13c2 + 2
3
a2c1 + a3c0 − µ

(
1
2
c1 + a2c0

)2
∣∣∣

=
∣∣(1

3
c2 − µ

4
c2

1

)
+ a2c1

(
2
3
− µc0

)
+ c0(a3 − µc0a

2
2)
∣∣

≤ 1
3

∣∣c2 − 3
4
µc2

1

∣∣+ |a2||c1|
∣∣2

3
− µc0

∣∣+ α|a3 − µc0a
2
2|.
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Apply now the estimate that holds for the coefficients of convex func-
tions: |an| ≤ 1 (n = 2, 3, ...), |a3 − νa2

2| ≤ max{1/3, |1 − ν|} (ν ∈ R),
and the relation (1.6). We obtain then

|b3 − µb2
2| ≤ 1

3

[
|c2|+ 3

4
|µc2

1|
]

+ |a2||c1|
∣∣2

3
− µc0

∣∣+ α|a3 − µb1a
2
2|

≤ 1−α2

3

[
1 + 3

4
|µ|(1− α2)

]
+ (1− α2)

∣∣2
3
− µb1

∣∣
+ αmax{1/3, |1− µb1|}.

Next, by (2.2), we have

|bn+1 − bn| =

∣∣∣∣ 1
n+1

n+1∑
p=1

papcn+1−p − 1
n

n∑
p=1

papcn−p

∣∣∣∣
≤ |an+1c0|+ |anc0|+ 1

n+1

n∑
p=1

p|apcn+1−p|+ 1
n

n−1∑
p=1

p|apcn−p|

≤ 2α + 1−α2

n+1

n∑
p=1

p+ 1−α2

n

n−1∑
p=1

p

= 2α + (1− α2)2n−1
2
.

The proof is now complete, however the results are not sharp, for ex-
ample the function that realizes the accuracy of |b2| in the previous
theorem, gives |b2 − b1| = (1 − α2)/2 ≤ 2α + (1 − α2)/2, for any
α ∈ (0, 1). The right hand side is obtained from (2.6) for the case
when n = 1. �

Theorem 2.4. For f ∈ Ŝα, f = h+ ḡ and |z| = r < 1 it holds∣∣∣∣ r

1 + r
− 1− α

1 + α
log

1 + r

1− αr

∣∣∣∣ ≤ |g(z)| ≤ r

1− r
+

1− α
1 + α

log
1− r

1 + αr
,

(2.7)

2r

1 + r
− r(1− α2)

|r − α|(1− αr)
≤
∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣ ≤ 2r

1− r
+

r(1− α2)

|r − α|(1− αr)
, (2.8)

Re

(
1 +

zg′′(z)

g′(z)

)
>

r(α2 − 1)

|α− r|(1− αr)
+

1− r
1 + r

. (2.9)

Proof. Applying the relation g′ = ωh′ we estimate |g′(z)| as follows
[15]:

|α− r|
(1− αr)(1 + r)2

≤ |g′(z)| ≤ α + r

(1 + αr)(1− r)2
(|z| = r < 1).

Then integrating along a radial line ζ = teiθ the right hand side of (2.7)
is obtained immediately [15].

In order to prove the left side of (2.7) we note first that g is univalent.
Let Γ = g({z : |z| = r}) and let ξ1 ∈ Γ be the nearest point to the
origin. By a rotation we may assume that ξ1 > 0. Let γ be the line
segment 0 ≤ ξ ≤ ξ1 and suppose that z1 = g−1(ξ1) and L = g−1(γ).
With ζ as the variable of integration on L we have that dξ = g′(ζ)dζ >
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0 on L. Hence

ξ1 =

ξ1∫
0

dξ =

z1∫
0

g′(ζ)dζ =

z1∫
0

|g′(ζ)||dζ| ≥
r∫

0

|g′(teiθ)|dt

≥
r∫

0

|α− r|
(1− αr)(1 + r)2

dr =

∣∣∣∣ r

1 + r
− 1− α

1 + α
log

1 + r

1− αr

∣∣∣∣ .
From the relation g′ = ωh′ we obtain

zg′′(z)

g′(z)
=
zω′(z)

ω(z)
+
zh′′(z)

h′(z)
. (2.10)

Since h is convex, so is univalent, then it holds [13, p. 118]

2r

1 + r
≤
∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ 2r

1− r
(|z| = r). (2.11)

Moreover, ω satisfies [12, p. 320]∣∣∣∣∣ ω(z)− ω(0)

1− ω(0)ω(z)

∣∣∣∣∣ ≤ |z| (|z| = r), (2.12)

from which it follows∣∣∣∣ω(z)− ω(0)(1− r2)

1− |ω(0)|2r2

∣∣∣∣ ≤ r(1− |ω(0)|2)

1− |ω(0)|2r2
. (2.13)

We note that |ω(0)| = |c0| = |b1| = α, so that by (2.13) we have

|r − α|
1− αr

≤ |ω(z)| ≤ r + α

1 + αr
. (2.14)

Taking into account (2.10), (2.11), (2.14) and the Schwarz-Pick in-
equality (1.3) we obtain for |z| = r < 1∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣ ≤ ∣∣∣∣zω′(z)

ω(z)

∣∣∣∣+

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣
≤ r(1− |ω(z)|2)

|ω(z)|(1− r2)
+

2r

1− r

≤ r(1− r2)(1− α2)

(1− r2)|r − α|(1− αr)
+

2r

1− r

=
r(1− α2)

|r − α|(1− αr)
+

2r

1− r
.
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Similarly, we have∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣ ≥ ∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣− ∣∣∣∣zω′(z)

ω(z)

∣∣∣∣
≥ 2r

1 + r
− r(1− |ω(z)|2)

|ω(z)|(1− r2)

≥ 2r

1 + r
− r(1− r2)(1− α2)

(1− r2)|r − α|(1− αr)

=
2r

1 + r
− r(1− α2)

|r − α|(1− αr)
.

Moreover

1 +
zg′′(z)

g′(z)
=

zω′(z)

ω(z)
+ 1 +

zh′′(z)

h′(z)
(2.15)

and h is convex, therefore

Re

(
1 +

zg′′(z)

g′(z)

)
= Re

zω′(z)

ω(z)
+ Re

(
1 +

zh′′(z)

h′(z)

)
> Re

zω′(z)

ω(z)
+

1− r
1 + r

.
(2.16)

By the above, (1.3) and (2.14), we have

Re

(
1 +

zg′′(z)

g′(z)

)
>

r(α2 − 1)

|α− r|(1− αr)
+

1− r
1 + r

, (2.17)

as asserted. �

3. Estimates of the Bloch constant

A harmonic function f is called the Bloch function if

Bf = sup
z,w∈D,z 6=w

|f(z)− f(w)|
%(z, w)

<∞, (3.1)

where

%(z, w) =
1

2
log

(
1 +

∣∣ z−w
1−z̄w

∣∣
1−

∣∣ z−w
1−z̄w

∣∣
)

= artanh

∣∣∣∣ z − w1− z̄w

∣∣∣∣
denotes the hyperbolic distance in D, and Bf is called the Bloch con-
stant of f . The harmonic Bloch constant was studied by Colonna [9].
Colonna established that the Bloch constant Bf of a harmonic map-
ping f = h + ḡ can be expressed in terms of moduli of the derivatives
of h and g

Bf = supz∈D(1− |z|2) (|h′(z)|+ |g′(z)|)
= supz∈D(1− |z|2)|h′(z)|(1 + |ω(z)|), (3.2)

which agrees with the well known notion of the Bloch constant for
analytic functions. Moreover, the function f is Bloch if and only if h
and g are, and

max(Bh,Bg) ≤ Bf ≤ Bh + Bg.
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Colonna also obtained the best possible estimate of the Bloch constant
for the family of harmonic mappings of D into itself. Recently, the
Bloch constant was studied by many authors, see, for example [3, 4, 19].
Very interesting results in this direction were obtained in [5, 6, 7, 18,
20, 22]. Our aim is to determine bounds for the Bloch constant in the

class S
α

and Ŝα.

Theorem 3.1. Let f = h + ḡ with h(z) = z/(1 − Bz),−1 < B < 1,
and let |B| = A, 0 ≤ A < 1. Then the Bloch constant Bf is bounded
by

Bf ≤ (1 + α)
(1 + r0)3(1− r0)2

(1− Ar0)2(1 + αr0)
, (3.3)

where r0 is given by

r0 =
α(1 + 3A)− 3− A+

√
(1 + α)(1 + A)(9− 7A+ α(−7 + 9A))

4α + 2A(α− 1)
.

(3.4)

Proof. Applying the distortion theorem

|h′(z)| ≤ 1

(1− Ar)2
(|z| = r),

and (3.2), we find

Bf = sup
z∈D

(1−|z|2)|h′(z)|(1+ |ω(z)|) ≤ (1+α) sup
0≤r<1

(1 + r)(1− r2)

(1− Ar)2(1 + αr)
.

Setting

q(r) =
(1 + r)(1− r2)

(1− Ar)2(1 + αr)
,

we observe that q′(r) = 0, if and only if

(1 + r)[(2α + αA− A)r2 + (3 + A− α− 3αA)r + α− 1− 2A] = 0.

The last equation has solution in the interval (0, 1) at the point r0 given
by (3.4), and the function q attains its maximum at r0. �

Setting B = 0 in the above theorem, we obtain the estimate of Bf

in the class S̄α, below.

Corollary 3.2. For f ∈ S̄α, f = h + ḡ, the Bloch constant Bf is
bounded by

Bf ≤ (1 + α)
(1 + r0)3(1− r0)2

(1 + αr0)
, (3.5)

where r0 is given by

r0 =
α− 3 +

√
9 + 2α− 7α2

4α
. (3.6)
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Remark. By the fact that the Bloch constant is finite we already have
that the family of harmonic mappings with h(z) ≡ z, and |b1| = α, is
a normal family. A function f is normal, if the constant σf is finite,
where

σf = sup
z∈D

(1− |z|2)|f ′(z)|
1 + |f(z)|

,

see [10]. Indeed, since the quantity |f(z)| in Sα is bounded [15]:

|f(z)| ≥


(

1− 1

α

)
r −

(
1− 1

α2

)
log(1 + αr) for α 6= 0,

r − r2

2
for α = 0,

(3.7)
therefore, by (3.5) and (3.7), we obtain

σf ≤

 (1 + α) (1+r)(1−r2)
1+αr

1

1+(1− 1
α)r−(1− 1

α2
) log(1+αr)

for α 6= 0,

(1 + α) (1+r)(1−r2)
1+αr

1

1+r− r2
2

for α = 0,

(3.8)
where r = r0 is given by (3.6), and we see that in both cases σf are
finite.
Remark. The univalent Bloch functions can be described in terms
of geometry of their images; they are precisely those functions whose
images do not contain disks of arbitrarily large radius [10]. Therefore,

we suppose that the functions from the class Ŝα may not be the Bloch
functions. Indeed, reasoning similarly as in the Theorem 3.1 we note

that in the class Ŝα we have h(z) = z/(1−z), then |h′(z)| ≤ 1/(1−r)2.
Thus

Bf = (1 + α) sup
0≤r<1

(1 + r)2

(1− r)(1 + αr)
,

and the function p(r) = (1+r)2/[(1−r)(1+αr)] increases in the whole
interval (0, 1), with infinity as the supremum.
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