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Abstract: Let ϕ be an analytic self-map of the unit disk D, H(D) the space of analytic functions
on D and g ∈ H(D). The boundedness and compactness of the generalized integration operator

I(n)
g,ϕf(z) =

∫ z

0

f (n)(ϕ(ξ))g(ξ)dξ, z ∈ D,

from mixed-norm space to the Zygmund-type space, and the little Zygmund-type space are investi-
gated in this article.
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1 Introduction

Let D be the unit disk in the finite complex plane C, ∂D boundary of D, H(D) the space of all
analytic functions on D, N0 the set of all nonnegative integers and N the set of all positive integers.

A positive continuous function φ on [0, 1) is called a normal if there exist positive numbers a, b,
0 < a < b and t0 ∈ [0, 1), such that

φ(t)
(1− t2)a

decreases for t0 ≤ t < 1 and lim
t→1−

φ(t)
(1− t2)a

= 0,

φ(t)
(1− t2)b

increases for t0 ≤ t < 1 and lim
t→1−

φ(t)
(1− t2)b

=∞

(see, for example, [28]).
For 0 < p <∞, 0 < q <∞ and a normal function φ, let H(p, q, φ) denote the space of all analytic

functions f on the unit disk D such that

‖f‖p,q,φ =
(∫ 1

0

Mp
q (f, r)

φp(r)
1− r

rdr

)1/p

,
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where the integral means Mp(f, r) are defined by

Mp(f, r) =
(

1
2π

∫ 2π

0

|f(reiθ)|pdθ
)1/p

, 0 ≤ r < 1.

For 1 ≤ p <∞, H(p, q, φ) equipped with the norm ‖·‖p,q,φ is a Banach space. When 0 < p < 1, ‖·‖p,q,φ
is a quasinorm on H(p, q, φ), H(p, q, φ) is a Fréchet space but not a Banach space. If 0 < p = q <∞,
then H(p, p, φ) is the Bergman-type space

H(p, p, φ) =
{
f ∈ H(D) :

∫
D
|f(z)|pφ

p(|z|)
1− |z|

dA(z) <∞
}
,

where dA(z) denotes the normalized Lebesgue area measure on the unit disk D such that A(D) = 1.
Note that if φ(r) = (1 − r)(α+1)/p, then H(p, p, φ) is the weighted Bergman space Apα(D) defined for
0 < p <∞ and α > −1, as the space of all f ∈ H(D) such that

‖f‖p
Apα

=
∫

D
|f(z)|p(1− |z|2)αdA(z) <∞

(see, for example, [1, 8]).
Let Zµ denote the space of all f ∈ H(D) ∩ C(D) such that

sup
z∈D

µ(|z|)|f ′′(z)| <∞.

Under the norm
‖f‖Zµ = |f(0)|+ |f ′(0)|+ sup

z∈D
µ(|z|)|f ′′(z)|, (1)

it is easy to see that Zµ is a Banach space. Some information on Zygmund-type spaces on the unit
disc and some operators on them, can be found, e.g., in [4, 5, 11, 15, 18, 23, 31], for the case of the
upper half-plane see [38], while some information in the setting of the unit ball can be found, e.g., in
[6, 17, 18, 20, 41, 54, 56, 57, 59].

The little Zygmund-type space Zµ,0 is defined to be the subspace of Zµ consisting of those f ∈ Zµ
such that [11]

lim
|z|→1

µ(|z|)|f ′′(z)| = 0.

It is easy to see that Zµ,0 is a closed subspace of Zµ and the set of all polynomials is dense in Zµ,0.
In this paper, we consider an integration operator I(n)

g,ϕ which is defined as

I(n)
g,ϕf(z) =

∫ z

0

f (n)(ϕ(ξ))g(ξ)dξ, z ∈ D.

This operator is called the generalized integral operator, which was introduced in [27] and studied in
[27, 49]. Also, the operator I(n)

g,ϕ is a generalization of the Rimann- Stieltjes operator Ig induced by g,
defined as

Igf(z) =
∫ z

0

f(ξ)g′(ξ)dξ, z ∈ D.

Y. Yu and Y. Liu in [53] characterized the boundedness and compactness of Riemann-Stieltjes oper-
ator Ig from weighted Bloch spaces into Bergman-type spaces. J. Liu, Z. Lou and C. Xiong in [21]
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investigated the essential norm of the integral operator Ig on some classical Banach spaces (the Bloch
space, BMOA and the Dirichlet space). In fact, the operator I(n)

g,ϕ can induce many known operators.
For example, when n = 1, I(n)

g,ϕ reduces to an integration operator recently studied by S. Stevi’c, S. Li,
X. Zhu and W. Yang in [12, 13, 14, 16, 30]. When n = 1 and g(z) = ϕ′(z), we obtain the composition
operator Cϕ defined as Cϕf = f(ϕ) − f(ϕ(0)), f ∈ H(D). D = D1 be the differentiation operator,
that is, Df = f ′. If n ∈ N0 then the operator Dn is defined by D0f = f , Dnf = f (n), f ∈ H(D),
n = m + 1 and g(z) = ϕ′(z), then we get the operator CϕDmf(z) = f (m)(ϕ(z)) − f (m)(ϕ(0)) which
was studied in [9, 26, 55].

Especially recently years, S. D. Sharma and A. Sharmat in [27] have characterized the boundedness
and compactness of generalized integration operators I(n)

g,ϕ from Bloch type spaces to weighted BMOA
spaces by using logarithmic Carleson measure characterization of the weighted BMOA spaces. Y.
Liu and Y. Yu in [24] studied the boundedness and compactness of Riemann-Stieltjes operator from
mixed norm spaces to Zygmund-type spaces on the unit ball. S. Stević in [31] studied the boundedness
and compactness of the generalized composition operator from mixed-norm space to the Bloch-type
space, the little Bloch-type space, the Zygmund space, and the little Zygmund space. X. Zhu in
[58] investigated the boundedness and compactness of generalized integration operators from H∞ to
Zygmund-type spaces on the unit disk. Z. He and G. Cao in [7] investigated the boundedness and
compactness of generalized integration operators between Bloch-type spaces and F (p, q, s) spaces. For
related integral-type operators on the unit disc, see, for example [10, 11, 12, 13, 14, 40, 51, 52]. Some
related integral-type operators in Cn are treated, for example, in [2, 3, 13, 14, 16, 19, 22, 32, 33, 34,
35, 36, 37, 39, 41, 43, 44, 45, 46, 47, 48, 50, 55] (see also the related references therein). Motivated by
the results [7, 24, 31, 58], we consider the boundedness and compactness of the operators I(n)

g,ϕ from
H(p, q, φ) to the Zygmund space, and the little Zygmund space. For the proof, we need different test
functions and some complex calculation skills.

Throughout this paper, the letter C denotes a positive constant which may vary at each occurrence
but it is independent of the essential variables. Two quantities a and b are said to be comparable,
denoted by a � b, if there exists a positive constant C such that C−1a ≤ b ≤ Ca.

2 The boundedness and compactness of I
(n)
g,ϕ from H(p, q, φ) to

Zygmund space

In this section, we study the boundedness and compactness of I(n)
g,ϕ : H(p, q, φ)→ Zµ. To do so we

need the following lemmas.

Lemma 2.1 ([31]) Assume that p, q ∈ (0,∞), φ is normal and f ∈ H(p, q, φ). Then for each n ∈ N0,
there is a positive constant C independent of f such that

|f (n)(z)| ≤ C ‖f‖p,q,φ
φ(|z|)(1− |z|2)1/q+n

, z ∈ D.

By standard arguments (see, for example, [4] or Lemma 3 in [29]) the following lemma follows.

Lemma 2.2 Assume that ϕ is an analytic self-map of D. Then I
(n)
g,ϕ : H(p, q, φ) → Zµ is compact if

and only if I(n)
g,ϕ : H(p, q, φ) → Zµ is bounded and for any bounded sequence {fk} in H(p, q, φ) which

converges to zero uniformly on compact subsets of D as k →∞, we have ‖I(n)
g,ϕfk‖Z → 0 as k →∞.
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The proof of the following lemma is similar to that of [25, Lemma 1], and the details are omitted
here.

Lemma 2.3 A closed set K in Zµ,0 is compact if and only if K is bounded and satisfies

lim
|z|→1

sup
f∈K

µ(|z|)|f ′′(z)| = 0.

Lemma 2.4 ([8]) For any real β, let

Jβ(z) =
∫ 2π

0

dθ

|1− ze−iθ|1+β
, z ∈ D.

Then we have

Jβ(z) �


1 , if β < 0,
log 1

1−|z|2 , if β = 0, as |z| → 1−.
1

(1−|z|2)β , if β > 0,

Lemma 2.5 ([28]) For β > −1 and γ > 1 + β we have∫ 1

0

(1− r)β

(1− rρ)γ
dr ≤ C(1− ρ)1+β−γ , 0 < ρ < 1.

Now we are in a position to characterize the boundedness of I(n)
g,ϕ : H(p, q, φ)→ Zµ.

Theorem 2.6 Assume that ϕ is an analytic self-map of D. Then I
(n)
g,ϕ : H(p, q, φ) → Zµ is bounded

if and only if the following conditions are satisfied,

M1 = sup
z∈D

µ(|z|)|ϕ′(z)g(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n+1

<∞, (2)

and

M2 = sup
z∈D

µ(|z|)|g′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n

<∞. (3)

Proof. Assume that conditions (2) and (3) hold. Then, for every z ∈ D and f ∈ H(p, q, φ), by Lemma
2.1, we have ∣∣∣µ(|z|)(I(n)

g,ϕf)′′(z)
∣∣∣

= µ(|z|)
∣∣∣∣(f (n)(ϕ(z))g(z)

)′∣∣∣∣
= µ(|z|)

∣∣∣f (n+1)(ϕ(z))ϕ′(z)g(z) + f (n)(ϕ(z))g′(z)
∣∣∣

≤ C
(

µ(|z|)|ϕ′(z)g(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n+1

+
µ(|z|)|g′(z)|

φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n

)
‖f‖p,q,φ

≤ C(M1 +M2)‖f‖p,q,φ. (4)



Generalized integration operators 5

On the other hand, we have

|(I(n)
g,ϕf)(0)| = 0, (5)

and

|(I(n)
g,ϕf)′(0)| = |f (n)(ϕ(0))g(0)|

≤ C |g(0)|
φ(|ϕ(0)|)(1− |ϕ(0)|2)1/q+n

‖f‖p,q,φ. (6)

Applying conditions (2), (3), (4), (5) and (6), we deduce that the operator I(n)
g,ϕ : H(p, q, φ) → Zµ is

bounded.
Conversely, assume that I(n)

g,ϕ : H(p, q, φ)→ Zµ is bounded, that is there exists a constant C such
that

‖I(n)
g,ϕf‖Zµ ≤ C‖f‖p,q,φ

for all f ∈ H(p, q, φ). For a fixed w ∈ D, set

fw(z) =
(1− |w|2)b+1

φ(|w|)

(
1

(1− wz)α
− α(1− |w|2)

(α+ n)(1− wz)α+1

)
, (7)

where the constant b is from the definition of the normality of the function φ and α = 1/q + b+ 1.
A straightforward calculation shows that

f
(n)
w (z) =

(1− |w|2)b+1

φ(|w|)
α(α+ 1) . . . (α+ n− 1)(w)n

(1− wz)α+n

− (1− |w|2)b+1

φ(|w|)
α(α+ 1)(α+ 2) . . . (α+ n− 1)(α+ n)(1− |w|2)(w)n

(α+ n)(1− wz)α+n+1
, (8)

f
(n+1)
w (z) =

(1− |w|2)b+1

φ(|w|)
α(α+ 1) . . . (α+ n)(w)n+1

(1− wz)α+n+1

− (1− |w|2)b+1

φ(|w|)
α(α+ 1)(α+ 2) . . . (α+ n+ 1)(1− |w|2)(w)n+1

(α+ n)(1− wz)α+n+2
. (9)

By Lemma 2.4, we have

Mq(fw, r) ≤ C
(1− |w|2)b+1

φ(|w|)(1− r|w|)b+1
.

As φ is normal and by applying Lemma 2.5, we obtain (see [31, 42])

sup
w∈D
‖fw‖p,q,φ ≤ C. (10)

From (8) and (9), we have

f (n)
w (w) = 0, f (n+1)

w (w) = −α(α+ 1)(α+ 2) . . . (α+ n− 1)(w)n+1

φ(|w|)(1− |w|2)1/q+n+1
. (11)
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Hence

C ≥ ‖I(n)
g,ϕfϕ(w)‖Zµ ≥ µ(|w|)|ϕ′(w)g(w)|

∣∣∣f (n)
ϕ(w)(ϕ(w))

∣∣∣
= α(α+ 1)(α+ 2) . . . (α+ n− 1)

µ(|w|)|ϕ′(w)g(w)||ϕ(w)|n+1

φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+n+1
. (12)

From (12) we have

sup
|ϕ(w)|> 1

2

µ(|w|)|ϕ′(w)g(w)|
φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+n+1

≤ sup
|ϕ(w)|> 1

2

2n+1 µ(|w|)|ϕ′(w)g(w)||ϕ(w)|n+1

φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+n+1

≤ C <∞. (13)

Since f(w) = wn

n! ∈ H(p, q, φ) it follows that

µ(|w|)|g′(w)| ≤ ‖I(n)
g,ϕf‖Zµ ≤ ‖I(n)

g,ϕ‖ · ‖f‖p,q,φ ≤ C. (14)

Since h(w) = wn+1

(n+1)! ∈ H(p, q, φ), from (14) and the boundedness of ϕ it follows that

µ(|w|)|ϕ′(w)g(w)| ≤ ‖I(n)
g,ϕh‖Zµ + µ(|w|)|ϕ(w)g′(w)|

≤ ‖I(n)
g,ϕ‖ · ‖h‖p,q,φ + C ≤ 2C. (15)

From this and the fact φ is normal we obtain

sup
|ϕ(w)|≤ 1

2

µ(|w|)|ϕ′(w)g(w)|
φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+n+1

≤ C sup
|ϕ(w)|≤ 1

2

µ(|w|)|ϕ′(w)g(w)| ≤ C <∞. (16)

From (13) and (16) it follows that (2) holds.

For a fixed w ∈ D, set

gw(z) =
(1− |w|2)b+1

φ(|w|)

(
α+ n+ 1
(1− wz)α

− α(1− |w|2)
(1− wz)α+1

)
, (17)

It is easy to see that

g
(n)
w (z) =

(1− |w|2)b+1

φ(|w|)
α(α+ 1) . . . (α+ n− 1)(α+ n+ 1)(w)n

(1− wz)α+n

− (1− |w|2)b+1

φ(|w|)
α(α+ 1)(α+ 2) . . . (α+ n)(1− |w|2)(w)n

(1− wz)α+n+1
, (18)

g
(n+1)
w (z) =

(1− |w|2)b+1

φ(|w|)
α(α+ 1) . . . (α+ n+ 1)(w)n+1

(1− wz)α+n+1

− (1− |w|2)b+1

φ(|w|)
α(α+ 1)(α+ 2) . . . (α+ n+ 1)(1− |w|2)(w)n+1

(1− wz)α+n+2
. (19)
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By Lemmas 2.4 and 2.5, we get (see [31, 42])

sup
w∈D
‖gw‖p,q,φ ≤ C. (20)

From (18) and (19), we have

g(n)
w (w) =

α(α+ 1) . . . (α+ n− 1)(w)n

φ(|w|)(1− |w|2)1/q+n
, g(n+1)

w (w) = 0. (21)

Hence

C ≥ ‖I(n)
g,ϕgϕ(w)‖Zµ ≥ |µ(|w|)g′(w)|g(n)

ϕ(w)(ϕ(w))|

=
α(α+ 1) . . . (α+ n− 1)|µ(|w|)g′(w)||ϕ(w)|n

φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+n
. (22)

From (22) we have that

sup
|ϕ(w)|> 1

2

µ(|w|)|g′(w)|
φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+n

≤ α(α+ 1) . . . (α+ n− 1) sup
|ϕ(w)|> 1

2

2n
µ(|w|)|g′(w)|ϕ(w)|n

φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+n

≤ C <∞. (23)

Using (14) and the fact φ is normal we obtain

sup
|ϕ(z)|≤ 1

2

µ(|w|)|g′(w)|
φ(|ϕ(w)|)(1− |ϕ(w)|2)1/q+n

≤ C sup
|ϕ(w)|≤ 1

2

µ(|w|)|g′(w)| ≤ C <∞. (24)

Combining (23) with (24) we get (3), finishing the proof of the theorem.

Theorem 2.7 Assume that ϕ is an analytic self-map of D. Then I
(n)
g,ϕ : H(p, q, φ) → Zµ is compact

if and only if I(n)
g,ϕ : H(p, q, φ)→ Zµ is bounded, and

lim
|ϕ(z)|→1

µ(|z|)|ϕ′(z)g(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n+1

= 0 (25)

and

lim
|ϕ(z)|→1

µ(|z|)|g′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n

= 0. (26)

Proof. Assume that I(n)
g,ϕ : H(p, q, φ) → Zµ is bounded and that conditions (25) and (26) hold.

For any bounded sequence {fk} in H(p, q, φ) with fk → 0 uniformly on compact subsets of D. To
establish the assertion, it suffices, in view of Lemma 2.2, to show that

‖I(n)
g,ϕfk‖Zµ → 0 as k →∞.
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We assume that ‖fk‖p,q,φ ≤ 1. From (25) and (26), given ε > 0, there exists a δ ∈ (0, 1), when
δ < |ϕ(z)| < 1, we have

µ(|z|)
φ(|ϕ(z)|)

(
|ϕ′(z)g(z)|

(1− |ϕ(z)|2)1/q+n+1
+

|g′(z)|
(1− |ϕ(z)|2)1/q+n

)
< ε. (27)

From the boundedness of I(n)
g,ϕ : H(p, q, φ)→ Zµ, we see that (14) and (15) hold by Theorem 2.6. Since

fk → 0 uniformly on compact subsets of D, Cauchy’s estimate gives that f (n)
k and f

(n+1)
k converges

to 0 uniformly on compact subsets of D, there exists a K0 ∈ N such that k > K0 implies that

|f (n)
k (ϕ(0))g(0)|+ sup

|ϕ(z)|≤δ
µ(|z|)|ϕ′(z)g(z)f (n+1)

k (ϕ(z))|+ sup
|ϕ(z)|≤δ

µ(|z|)
∣∣∣g′(z)f (n)

k (ϕ(z))
∣∣∣

≤ |f (n)
k (ϕ(0))g(0)|+ C sup

|ϕ(z)|≤δ
|f (n+1)
k (ϕ(z))|+ C sup

|ϕ(z)|≤δ

∣∣∣f (n)
k (ϕ(z))

∣∣∣ < Cε. (28)

From (27) and (28) we have

‖I(n)
g,ϕfk‖Zµ = |(I(n)

g,ϕfk)(0)|+ |(I(n)
g,ϕfk)′(0)|+ sup

z∈D
µ(|z|)|(I(n)

g,ϕfk)′′(z)|

≤ |f (n)
k (ϕ(0))g(0)|+ sup

|ϕ(z)|≤δ
µ(|z|)

∣∣∣ϕ′(z)g(z)f (n+1)
k (ϕ(z))

∣∣∣+ sup
|ϕ(z)|≤δ

µ(|z|)
∣∣∣g′(z)f (n)

k (ϕ(z))
∣∣∣

+ sup
δ<|ϕ(z)|<1

(
µ(|z|)

∣∣∣ϕ′(z)g(z)f (n+1)
k (ϕ(z))

∣∣∣+ µ(|z|)
∣∣∣g′(z)f (n)

k (ϕ(z))
∣∣∣)

≤ Cε+ C sup
δ<|ϕ(z)|<1

µ(|z|)
φ(|ϕ(z)|)

(
|ϕ′(z)g(z)|

(1− |ϕ(z)|2)1/q+n+1
+

|g′(z)|
(1− |ϕ(z)|2)1/q+n

)
< 2Cε,

when k > K0. It follows that the operator I(n)
g,ϕ : H(p, q, φ)→ Zµ is compact.

Conversely, assume that I(n)
g,ϕ : H(p, q, φ)→ Zµ is compact. Then it is clear that I(n)

g,ϕ : H(p, q, φ)→
Zµ is bounded. Let {zk} be a sequence in D such that |ϕ(zk)| → 1 as k → ∞. We can use the test
functions

fk(z) = fϕ(zk)(z), (29)

fw here is defined in (7). From (10) and (11) we have

sup
k∈N
‖fk‖p,q,φ ≤ C

and

f
(n)
k (ϕ(zk)) = 0, f (n+1)

k (ϕ(zk)) = −α(α+ 1)(α+ 2) . . . (α+ n− 1)(ϕ(zk))n+1

φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q+n+1
.

For |z| = r < 1, using the fact that φ is normal, we have

|fk(z)| ≤ C

(1− r)1/q+1
(1− |ϕ(zk)|)→ 0 (as k →∞),
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that is, fk converges to 0 uniformly on compact subsets of D, using the compactness of I(n)
g,ϕ :

H(p, q, φ)→ Zµ we obtain

µ(|zk|)|ϕ′(zk)g(zk)||ϕ(zk)|n+1

φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q+n+1
≤ ‖I(n)

g,ϕfk‖Zµ → 0 as k →∞.

From this, and |ϕ(zk)| → 1, it follows that

lim
k→∞

µ(|zk|)|ϕ′(zk)g(zk)|
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q+n+1

= 0,

and consequently (25) holds.
In order to prove (26), choose

gk(z) = gϕ(zk)(z), (30)

gw here is defined in (17). It follows from (20) and (21) that

sup
k∈N
‖gk‖p,q,φ ≤ C

and

g
(n)
k (ϕ(zk)) =

α(α+ 1) . . . (α+ n− 1)(ϕ(zk))n

φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q+n
, g

(n+1)
k (ϕ(zk)) = 0,

and gk converges to 0 uniformly on compact subsets of D. The compactness of I(n)
g,ϕ : H(p, q, φ)→ Zµ

implies that
lim
k→∞

‖I(n)
g,ϕgk‖Zµ = 0.

It follows that

µ(|zk|)|g′(zk)|
∣∣∣(ϕ(zk))n

∣∣∣
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q+n

≤ C‖I(n)
g,ϕgk‖Zµ → 0 as k →∞. (31)

|ϕ(zk)| → 1 implies that

lim
k→∞

µ(|zk|)|g′(zk)|
φ(|ϕ(zk)|)(1− |ϕ(zk)|2)1/q+n

= 0,

(26) holds.

3 The boundedness and compactness of I
(n)
g,ϕ from H(p, q, φ) to

the little Zygmund-type space

In this section, we study the boundedness and compactness of I(n)
g,ϕ : H(p, q, φ)→ Zµ,0.

The following result is proved similar to Theorem in [31], hence we omit it.

Theorem 3.1 Assume that ϕ is an analytic self-map of D. Then I
(n)
g,ϕ : H(p, q, φ)→ Zµ,0 is bounded

if and only if I(n)
g,ϕ : H(p, q, φ)→ Zµ is bounded,

lim
|z|→1

µ(|z|) |ϕ′(z)g(z)| = 0,
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and
lim
|z|→1

µ(|z|)|g′(z)| = 0.

In the next theorem, we characterize the compactness of I(n)
g,ϕ : H(p, q, φ)→ Zµ,0.

Theorem 3.2 Assume that ϕ is an analytic self-map of D. Then I
(n)
g,ϕ : H(p, q, φ)→ Zµ,0 is compact

if and only if

lim
|z|→1

µ(|z|) |ϕ′(z)g(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n+1

= 0, (32)

and

lim
|z|→1

µ(|z|)|g′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n

= 0. (33)

Proof. Assume that conditions (32) and (33) hold. Then it is clear that (2) and (3) hold. Hence
I
(n)
g,ϕ : H(p, q, φ) → Zµ is bounded by Theorem 2.6. From inequality (4) we see that I(n)

g,ϕf ∈ Zµ,0
for each f ∈ H(p, q, φ), it follows that I(n)

g,ϕ : H(p, q, φ) → Zµ,0 is bounded. Taking the supremum in
inequality (4) over all f ∈ H(p, q, φ) such that ‖f‖p,q,φ ≤ 1 and letting |z| → 1, yields

lim
|z|→1

sup
‖f‖p,q,φ≤1

µ(|z|)|(I(n)
g,ϕf)′′(z)| = 0.

Hence, by Lemma 2.3 we see that the operator I(n)
g,ϕ : H(p, q, φ)→ Zµ,0 is compact.

Now assume that I(n)
g,ϕ : H(p, q, φ) → Zµ,0 is compact. Then I

(n)
g,ϕ : H(p, q, φ) → Zµ,0 is bounded,

and by taking the function f(z) = zn

n! , it follows that

lim
|z|→1

µ(|z|)|g′(z)| = 0. (34)

By taking the function f(z) = zn+1

(n+1) , we have

lim
|z|→1

µ(|z|)|ϕ′(z)g(z) + ϕ(z)g′(z)| = 0, (35)

from (34), (35), we get
lim
|z|→1

µ(|z|)|ϕ′(z)g(z)| = 0. (36)

Since fϕ(z), gϕ(z) ∈ H(p, q, φ), we have I(n)
g,ϕfϕ(z), I

(n)
g,ϕgϕ(z) ∈ Zµ,0. Because |ϕ(z)| → 1 implies |z| → 1,

we obtain

lim
|ϕ(z)|→1

µ(|z|)|ϕ′(z)g(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n+1

= 0, (37)

and

lim
|ϕ(z)|→1

µ(|z|)|g′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n

= 0. (38)

We only prove that (36) and (37) imply (32). The proof of (33) is similar, hence it will be omitted.
From (37), it follows that for every ε > 0, there exists δ ∈ (0, 1) such that

µ(|z|)|ϕ′(z)g(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n+1

< ε, (39)
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when δ < |ϕ(z)| < 1. Using (36) we see that there exists τ ∈ (0, 1) such that

µ(|z|)|ϕ′(z)g(z)| < ε inf
t∈[0,δ]

φ(t)(1− t2)1/q+n+1, (40)

when τ < |z| < 1.
Therefore, when τ < |z| < 1 and δ < |ϕ(z)| < 1, by (39) we have

µ(|z|)|ϕ′(z)g(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n+1

< ε. (41)

On the other hand, when τ < |z| < 1 and |ϕ(z)| ≤ δ, by (40) we obtain

µ(|z|)|ϕ′(z)g(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q+n+1

≤ µ(|z|)|ϕ′(z)g(z)|
inf

t∈[0,δ]
φ(t)(1− t2)1/q+n+1

< ε. (42)

From (41) and (42), we obtain (32), as desired. The proof is completed.
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[34] S. Stević, On a new operator from H∞ to the Bloch-type space on the unit ball, Util. Math. 77 (2008), 257–263.
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