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Abstract. Let R be a commutative ring and M an R-module. Let Specs(M)

be the collection of all second submodules of M . In this article, we consider a
new topology on Specs(M), called the second classical Zariski topology, and

investigate the interplay between the module theoretic properties of M and
the topological properties of Specs(M). Moreover, we study Specs(M) from

point of view of spectral space.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity. If N is
a subset of an R-module M we write N ≤M to indicate that N is a submodule of
M .

Let M be an R-module. A proper submodule N of M is said to be prime if for
any r ∈ R and m ∈M with rm ∈ N , we have m ∈ N or r ∈ (N :R M). The prime
spectrum of M denoted by Spec(M) is the set of all prime submodules of M .

A non-zero submodule N of M is said to be second if for each a ∈ R, the
homomorphism N

a→ N is either surjective or zero [24]. More information about
this class of modules can be found in [5], [6], [7], [14], and [15].

The concept of prime submodule has led to the development of topologies on the
spectrum of modules. A brief history of this development can be seen in [20, Page
808]. More information concerning the spectrum of rings, posets, and modules can
be found in [1], [2], [10], [11], [12], [13], [17], [18], and [23].

Let Specs(M) be the set of all second submodules of M . For any submodule N
of M , V s∗(N) is defined to be the set of all second submodules of M contained in N .
Of course, V s∗(0) is just the empty set and V s∗(M) is Specs(M). It is easy to see
that for any family of submodules Ni (i ∈ I) of M , ∩i∈IV

s∗(Ni) = V s∗(∩i∈INi).
Thus if ζs∗(M) denotes the collection of all subsets V s∗(N) of Specs(M), then
ζs∗(M) contains the empty set and Specs(M), and ζs∗(M) is closed under arbitrary
intersections. In general ζs∗(M) is not closed under finite unions. A module M is
called a cotop module if ζs∗(M) is closed under finite unions. In this case, ζs∗(M)
is called the quasi Zariski topology [7].

Now let N be a submodule of M . We define W s(N) = Specs(M)−V s∗(N) and
put Ωs(M) = {W s(N) : N ≤M}. Let ηs(M) be the topology on Specs(M) by the
sub-basis Ωs(M). In fact ηs(M) is the collection U of all unions of finite intersec-
tions of elements of Ωs(M) [21]. We call this topology the second classical Zariski
topology of M . It is clear that if M is a cotop module, then its related topology, as
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it was mentioned in the above paragraph, coincide with the second classical Zariski
topology. In this paper, we obtain some new results analogous to those for classical
Zariski topology considered in [12] and [13]. In Section 2 of this paper, among other
results, we investigate the relationship between the module theoretic properties of
M and the topological properties of Specs(M) (see Proposition 2.2, Corollary 2.6,
and Theorems 2.7, 2.9, 2.11, 2.12). Moreover, Theorems 2.12 and 2.19 provide some
useful characterizations for those modules whose second classical Zariski topologies
are cofinite topologies.

Following M. Hochster [16], we say that a topological space W is a spectral
space if W is homeomorphic to Spec(S), with the Zariski topology, for some ring
S. Spectral spaces have been characterized by M. Hochster as quasi-compact T0-
spaces W having a quasi-compact open base closed under finite intersection and
each irreducible closed subset of W has a generic point [16]. In Section 3, we
follow the Hochster’s characterization and consider Specs(M) from point view of
spectral spaces. We prove that if M has dcc on socle submodules, then for each
n ∈ N, and submodule Ni (1 ≤ i ≤ n) of M , W s(N1)∩W s(N2)∩, ...∩W s(Nn). In
particular Specs(M) is quasi compact with second classical Zariski topology (see
Theorem 3.15). It is shown that if M is a finite R-module, then Specs(M) is a
spectral space (see Theorem 3.10). Also, it is proved that if M is an R-module
such that M has dcc on socle submodules, then Specs(M) is a spectral space (see
Theorem 3.17). Moreover, we show that if R is a commutative Noetherian ring and
M is a comultiplication R-module with finite length, then Specs(M) is spectral (see
Proposition 3.9).

In the rest of this paper, Xs(M) will denote Specs(M).

2. Topology on Specs(M)

We will consider the cases that an R-module M satisfies the following condition:

(∗∗) For any submodules N1, N2 ≤M, V s∗(N1) = V s∗(N2)⇒ N1 = N2.

Example 2.1. Every vector space satisfies the (∗∗) condition.

We recall that for an R-module M , the second socle of M is defined to be the
sum of all second submodules of M and denoted by soc(M) (or sec(M)). If M has
no second submodule, then soc(M) is defined to be 0. Also, a submodule N of M
is said to be a socle submodule of M if soc(N) = N [5].

Proposition 2.2. Let M be a nonzero R-module. Then the following statements
are equivalent.

(a) M satisfies the (∗∗) condition.
(b) Every nonzero submodule of M is a socle submodule of M .

Proof. (a)⇒ (b). Let S1 be a nonzero submodule ofM . We claim that V s∗(S1) 6= ∅.
Otherwise, V s∗(S1) = ∅ = V s∗(0) implies that S1 = 0, a contradiction. Now let
S2 =

∑
Ś∈V s∗(S1) Ś. Clearly, V s∗(S1) = V s∗(S2). So by hypothesis, S1 = S2.

Hence S1 is a socle submodule of M .
(b)⇒ (a). This follows from the fact that every submodule N of M is a sum of

second submodules if and only if N =
∑

S∈V s∗(N) S. �

Corollary 2.3. Every semisimple R-module M satisfies the (∗∗) condition.
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Proof. This follows from the fact that every minimal submodule of M is a second
submodule of M by [24, 1.6] �

Let M be an R-module. A proper submodule P of M is said to be a semiprime
submodule if I2N ⊆ P , where N ≤ M and I is an ideal of R, then IN ⊆ P . M is
said to be fully semiprime if each proper submodule of M is semiprime.

A nonzero submodule N of M is said to be semisecond if rN = r2N for each
r ∈ R [4].

Remark 2.4. Let M be an R-module and N be a submodule of M . Let denote the
set of all prime submodules of M by SpecR(M). Define V (N) = {P ∈ SpecR(M) :
P ⊇ N}. An R-module M is said to satisfy the (∗) condition provided that if
N1, N2 are submodules of M with V (N1) = V (N2), then N1 = N2 [12].

Definition 2.5. We call an R-module M fully semisecond if each nonzero submod-
ule of M is semisecond.

Corollary 2.6. Let M be an R-module. Then the following statements are equiv-
alent.

(a) M satisfies the (∗) condition.
(b) M is a fully semiprime module.
(c) M is a cosemisimple module.
(d) M satisfies the (∗∗) condition.
(e) M is a fully semisecond module.

Proof. (a)⇔ (b)⇔ (c). By [12, 2.6].
(d)⇔ (e). By Proposition 2.2.
(b)⇔ (e). By [4, 4.8]. �

The second submodule dimension of an R-module M , denoted by S.dimM , is
defined to be the supremum of the length of chains of second submodules of M if
Xs(M) 6= ∅ and −1 otherwise [8].

Let X be a topological space and let x and y be points in X. We say that x and
y can be separated if each lies in an open set which does not contain the other point.
X is a T1-space if any two distinct points in X can be separated. A topological
space X is a T1-space if and only if all points of X are closed in X.

Theorem 2.7. Let M be an R-module. Then Xs(M) is a T1-space if and only if
S.dim(M) ≤ 0.

Proof. First assume that Xs(M) is a T1-space. If Xs(M) = ∅, then dim(M) = −1.
Also, if Xs(M) has one element, clearly S.dimM = 0. So we can assume that
Specs(M) has more than two elements. We show that every element of Xs(M)
is minimal. To show this, let S1 ⊆ S2, where S1, S2 ∈ Xs(M). Now {S2} =
∩i∈I(∪ni

j=1V
s∗(Nij)), where Nij ≤ M and I is an index set. So for each i ∈ I,

S2 ∈ ∪ni
j=1V

s∗(Nij)) so that S2 ∈ V s∗(Nit), 1 ≤ t ≤ ni. Thus S1 ∈ V s∗(Nit)
for 1 ≤ t ≤ ni. This implies that S1 ∈ ∪ni

j=1V
s∗(Nij)) for each i. Therefore,

S1 ∈ ∩i∈I(∪ni
j=1V

s∗(Nij)) = {S2} as desired.
Conversely, suppose that S.dim(M) ≤ 0. If S.dim(M) = −1, then Xs(M) = ∅

and hence it is a T1-space. Now let S.dim(M) = 0. Then Xs(M) 6= ∅ and for every
second submodule S of M , V s∗(S) = {S}. Hence Xs(M) is a T1-space. �
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Proposition 2.8. For every finitely cogenerated R-module M , the following are
equivalent.

(a) M is a semisimple module with S.dim(M) = 0.
(b) Xs(M) is a T1-space and M satisfies the (∗∗) condition.

Proof. (a)⇒ (b). By Corollary 2.3 and Theorem 2.7.
(b)⇒ (a). Since Xs(M) is a T1-space, S.dim(M) ≤ 0 by Theorem 2.7. As M is

finitely cogenerated, every second submodule of M is a minimal submodule of M .
Now the claim follows from Proposition 2.2 �

An R-module M is said to be a comultiplication module if for every submodule
N of M there exists an ideal I of R such that N = (0 :M I), equivalently, for each
submodule N of M , we have N = (0 :M AnnR(N)) [3]. Further M is said to be
a weak comultiplication module if M does not have any second submodule or for
every second submodule S of M , S = (0 :M I) for some I is an ideal of R [6]

Theorem 2.9. Let M be a finite length module over a commutative Noetherian
ring R such that Xs(M) is a T1-space. Then M is a comultiplication module.

Proof. By [6, 3.6], it is enough to show that M is a weak comultiplication R-module.
To see this, let S be a second submodule of M . Since S is finitely cogenerated and
S.dim(M) = 0 by Theorem 2.7, S is a minimal submodule of M . Thus AnnR(S) =
P is a maximal ideal of R. Since S ⊆ (0 :M P ) and (0 :M P ) is a second submodule
of M by [24, 1.4], S = (0 :M P ), as required. �

Theorem 2.10. Let M be an R-module. If either R is an Artinian ring or M is a
Noetherian module, then M has a minimal submodule if and only if M has a second
submodule. In addition if M has a second submodule, then every second submodule
of M is a semisimple submodule of M .

Proof. First assume that R is an Artinian ring. Then every prime ideal of R is
maximal. Let S be a second submodule of M . Then AnnR(S) is a maximal ideal of
R. Thus S is a semisimple R/AnnR(S)-module. Hence S has a minimal submodule
and so M has minimal submodule. Now let M be a Noetherian R-module and S
be a second submodule of M . Since S is finitely generated, one can see that S is
a semisimple R-module. Therefore, S has a minimal submodule and so M has a
minimal submodule, as required. �

Theorem 2.11. Let M be an R-module. If either R is an Artinian ring or M is a
Noetherian R-module, then Xs(M) is a T1-space if and only if either Xs(M) = ∅
or Xs(M) = Min(M), where Min(M) denotes the set of all minimal submodules
of M .

Proof. By Theorem 2.7, Xs(M) is a T1-space if and only if S.dim(M) ≤ 0. First
suppose that S.dim(M) ≤ 0. If S.dim(M) = −1, then Xs(M) = ∅. If S.dim(M) =
0, then Xs(M) 6= ∅. Let S be a second submodule of M . Then by Theorem 2.10,
S has a minimal submodule. Since S.dim(M) = 0, S is a minimal submodule of
M . Hence, Xs(M) ⊆ Min(M). The reverse inclusion is clear. Now suppose that
either Xs(M) = ∅ or Xs(M) = Min(M). In the first case, S.dim(M) = −1. In the
second case, S.dim(M) = 0 and hence Xs(M) is a T1-space by Theorem 2.7 �

The cofinite topology is a topology which can be defined on every set X. It has
precisely the empty set and all cofinite subsets of X as open sets. As a consequence,
in the cofinite topology, the only closed subsets are finite sets, or the whole of X.
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Theorem 2.12. Let M ba an R-module. Then the following are equivalent.
(a) Xs(M) is the cofinite topology.
(b) S.dim(M) ≤ 0 and for every submodule N of M either V s∗(N) = Xs(M)

or V s∗(N) is finite.

Proof. (a)⇒ (b). Assume that Xs(M) is the cofinite topology. Since every cofinite
topology satisfies the T1 axiom, S.dim(M) ≤ 0 by Theorem 2.7. Now assume that
there exists a submodule N of M such that |V s∗(N)| =∞ and V s∗(N) 6= Xs(M).
Then W s(N) = Xs(M) − V s∗(N) is open in Xs(M) with infinite complement, a
contradiction.

(b) ⇒ (a). Suppose that S.dim(M) ≤ 0 and for every submodule N of M ,
V s∗(N) = Xs(M) or |V s∗(N)| < ∞. Then the complement of every open set in
Xs(M) is of the form ∩i∈I(∪n

j=1V
s∗(Nij)) which is a finite set or Xs(M) obviously.

�

Corollary 2.13. Let M be an R-module such that Xs(M) is finite. Then the
following statements are equivalent.

(a) Xs(M) is a Hausdorff space.
(b) Xs(M) is a T1-space.
(c) Xs(M) is the cofinite topology.
(d) Xs(M) is discrete.
(e) S.dim(M) ≤ 0.

Lemma 2.14. Let M be a finite length weak comultiplication module. Then
Xs(M) is a cofinite topology.

Proof. The result follows from Corollary 2.13 (e) ⇒ (c) because M has a finite
number of second submodules and every second submodule of M is minimal by [6,
3.4]. �

Corollary 2.15. Let R be a Noetherian ring and M be a finitely generated cocyclic
R-module. Then M is Artinian and Xs(M) is a cofinite topology.

Proof. By [22], M is Artinian. Also, M is a comultiplication R-module [9, 2.5].
Now the result follows from the above Lemma. �

The following example shows that the converse of the above corollary is not true
in general.

Example 2.16. Consider M = Z6 as a Z-module. Then M is an Artinian Z-
module and Xs(M) is a cofinite topology but M is not a cocyclic Z-module.

Theorem 2.17. Let M be an R-module with |Xs(M)| ≥ 2. If Xs(M) is a Haus-
dorff space, then S.dim(M) = 0 and there exist submodules N1, N2, ..., Nn of M
such that V s∗(Ni) 6= Xs(M), for all i, and Xs(M) = ∪n

i=1V
s∗(Ni).

Proof. The proof is similar to that of [12, 2.26]. �

Maximal second submodules are defined in a natural way. By Zorn’s Lemma one
can easily see that each second submodule of a module M is contained in a maximal
second submodule of M [5]. In [5] and [6], it is shown that Artinian modules and
Noetherian modules contain only finitely many maximal second submodules.

Corollary 2.18. Let M be an Artinian R-module. Then the following statements
are equivalent.
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(a) Xs(M) is a Hausdorff space.
(b) Xs(M) is a T1-space.
(c) Xs(M) is the cofinite topology.
(d) Xs(M) is discrete.
(e) Xs(M) = Min(M).

Proof. First we note that since M is Artinian, Xs(M) is not empty.
(a)⇒ (b). This is clear.
(b)⇒ (c). By Theorem 2.7, S.dim(M) ≤ 0. Thus every second submodule of M

is a maximal second submodule of M . As M is Artinian, it contains only finitely
many maximal second submodules by [5, 2.6]. Therefore, Xs(M) is finite. Hence,
Xs(M) is a cofinite topology by Corollary 2.13.

(c) ⇒ (d). By Theorem 2.12, S.dim(M) ≤ 0 so that, as we saw in the proof of
(b)⇒ (c), Xs(M) is finite. Now the result follows from the corollary 2.13.

(d) ⇒ (e). Since Xs(M) is a T1-space, by Theorem 2.7, S.dim(M) = 0. Since
M is Artinian, every second submodule of M contains a minimal submodule of M .
Therefore, every second submodule of M is minimal so that Xs(M) ⊆ Min(M).
The reverse inclusion follows from the fact that every minimal submodule of M is
second by [24, 1.6].

(e) ⇒ (a). Since M is Artinian, M contains only a finite number of maximal
second submodule by [5, 2.6]. As Xs(M) = Min(M), every maximal second sub-
module of M is minimal. Therefore, S.dim(M) ≤ 0 and Xs(M) is finite. Now the
result follows from Corollary 2.13. �

Theorem 2.19. Let M be a Noetherian R-module. Then the following statements
are equivalent.

(a) Xs(M) is a Hausdorff space.
(b) Xs(M) is a T1-space.
(c) Xs(M) is the cofinite topology.
(d) Xs(M) is discrete.
(e) Either Xs(M) = ∅ or Xs(M) = Min(M).

Proof. (a)⇒ (b). This is clear.
(b) ⇒ (c). Let Xs(M) be a T1-space. By Theorem 2.11, either Xs(M) = ∅

or Xs(M) = Min(M). Let Xs(M) 6= ∅. Then by using [5, 2.2], every second
submodule of M is a maximal second submodule of M . Since M is Noetherian,
it has a finite number of maximal second submodules by [6, 2.4]. Thus, Xs(M) is
finite and so by Corollary 2.13, Xs(M) is the cofinite topology.

(c)⇒ (d). Assume that Xs(M) is the cofinite topology. Then by Theorem 2.12,
S.dim(M) ≤ 0. Now as we see in the proof of (b)⇒ (c), Xs(M) is finite. Therefore,
Xs(M) is discrete by Corollary 2.13.

(d)⇒ (e). This follows from Theorem 2.11
(e) ⇒ (a). If Xs(M) = Min(M), then by using [5, 2.2], every second submod-

ule of M is a maximal second submodule of M . As M is Noetherian, M has a
finite number of maximal second submodules. Therefore, Xs(M) is finite. Now by
Corollary 2.13, Xs(M) is a Hausdorff space. �

Lemma 2.20. Let M be a second module. Then Xs(M) is T1-space if and only if
M is the only second submodule of M .

Proof. This follows from Theorem 2.7. �
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Lemma 2.21. Let f : Ḿ → M be an R-module monomorphism, and let N be a
submodule of M such that N ⊆ f(Ḿ). Then V s∗(N) → V s∗(f−1(N)), given by
S → f−1(S) is a bijection. If V s∗(N) = ∅, then so is V s∗(f−1(N)).

Proof. It is straightforward. �

Theorem 2.22. Let f : Ḿ → M be an R-module homomorphism. Define ϕ :
Ωs(M)→ Ωs(Ḿ) by ϕ(∩i∈I(∪ni

j=1V
s∗(Nij))) = ∩i∈I(∪ni

j=1V
s∗(f−1(Nij))), where I

is an index set, ni ∈ N and Nij ≤M . Then ϕ is a well-defined map.

Proof. Suppose that ∩i∈I(∪ni
j=1V

s∗(Nij)) = ∩t∈T (∪nt
j=1V

s∗(Ktj)), whereNij ,Ktj ≤
M and I, T are index sets. We show that

∩i∈I(∪ni
j=1V

s∗(f−1(Nij))) = ∩t∈T (∪nt
j=1V

s∗(f−1(Ktj))) (1)

Let S ∈ ∩i∈I(∪ni
j=1V

s∗(f−1(Nij))). Then for each i ∈ I, there exists ji (1 ≤ ji ≤ ni)
such that S ∈ V s∗(f−1(Niji)). If S ⊆ Ker(f), then for each t ∈ T , and each j
(1 ≤ j ≤ nt) we have S ⊆ f−1(Ktj). It follows that S ∈ ∩t∈T (∪nt

j=1V
s∗(f−1(Ktj))).

Now let S 6⊆ Ker(f). Then f(S) is a second submodule of M . Hence for each
i ∈ I, f(S) ∈ V s∗(Nij). Thus f(S) ∈ ∩i∈I(∪ni

j=1V
s∗(Nij)). Therefore, f(S) ∈

∩t∈T (∪nt
j=1V

s∗(Ktj)), and hence for each t ∈ T , there exists jt (1 ≤ jt ≤ nt)
such that f(S) ∈ V s∗(Ktjt). It follows that for each t ∈ T , S ⊆ f−1(Ktjt) so
that S ∈ V s∗(f−1(Ktjt

)). Consequently, we have S ∈ ∩i∈T (∪nt
j=1V

s∗(f−1(Ktj))).
Therefore,

∩i∈I(∪ni
j=1V

s∗(f−1(Nij))) ⊆ ∩i∈T (∪nt
j=1V

s∗(f−1(Ktj))).

By a similar argument we see that

∩i∈T (∪nt
j=1V

s∗(f−1(Ktj))) ⊆ ∩i∈I(∪ni
j=1V

s∗(f−1(Nij))).

Thus (1) holds. �

Proposition 2.23. Let f : Ḿ → M be a monomorphism such that Ḿ is not
secondless. Define ν : Xs(Ḿ) → Xs(M) by ν(S) = f(S) ∈ Xs(M) for each
S ∈ Xs(Ḿ). Then ν is a continuous map.

Proof. Clearly, ν is well-defined. Let V = ∩i∈I(∪ni
j=1V

∗s(Nij)) be a closed set in
Xs(M). We show that ν−1(V ) = ∩i∈I(∪ni

j=1V
∗s(f−1(Nij)). Let S ∈ ν−1(V ). Then

ν(S) ∈ V , so f(S) ∈ ∩i∈I(∪ni
j=1V

∗s(Nij)). Therefore, for each i ∈ I, there exists ji
such that f(S) ∈ V ∗s(Niji). But φ : V s∗(Niji ∩ Im(f)) → V s∗(f−1(Niji)), given
by Ś → f−1(Ś), is a bijective map by Lemma 2.21. Hence we have φ(f(S)) =
f−1f(S) = S + Ker(f) = S ∈ V s∗(f−1(Niji

)) by Lemma 2.21. It follows that
ν−1(V ) ⊆ ∩i∈I(∪ni

j=1V
s∗(f−1(Nij)). The reverse inclusion is proved similarly and

the proof is completed. �

Remark 2.24. Clearly, for an R-module M , Xs(M) = Xs(soc(M)). This fact
shows that the study of Zariski topology on the second spectrum of M can be
easily reduced to that of socle modules.

Lemma 2.25. Let M be an R-module and S ∈ Xs(M). Let V s∗(S) be endowed
with the induced topology of Xs(M). Then V s∗(S) = Xs(S), where S is a second
submodule of M .

Proof. Straightforward �
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Proposition 2.26. Let M be an R-module, IM := AnnR(SocR(M)) and R =
R/IM . Then the natural map ψM : Xs(M) → Spec(R/IM ) given by S →
AnnR(S) = AnnR(S)/IM is a continuous for the Zariski topology on Xs(M) (see
[7, 3.1] and [7, 3.4]) and Zariski topology in rings. Moreover, ψM = ψsoc(M).

Proof. Let A be a closed subset of Spec(R). Then A = V (I) for some ideal I
of R. We claim that ψ−1

M (V (I)) = V s∗((0 :M I)). So let S ∈ ψ−1
M (V (I)). Then

ψ(S) ∈ V (I). Hence I ⊆ AnnR(S)) and so I ⊆ AnnR(S). Thus S ⊆ (0 :M I)
so that S ∈ V s∗(0 :M I). To see the reverse inclusion, let S ∈ V s∗((0 :M I)).
Then S ⊆ (0 :M I). Hence I ⊆ AnnR(S). Therefore, I ⊆ AnnR(S). Hence
AnnR(S) ∈ V (I). This implies that ψ(S) ∈ V (I) and so S ∈ ψ−1(V (I)). Therefore,
ψ−1

M (V (I)) = V s∗((0 :M I)) and hence ψM is continuous. The second assertion
follows from the Remark 2.24 . �

3. Modules whose second classical Zariski topologies are spectral
spaces

Let Z be a subset of a topological space W . Then the notation cl(Z) will denote
the closure of Z in W .

A topological space X is called irreducible if X 6= ∅ and every finite intersection
of non-empty open subset of X is non-empty. A non-empty subset Y of a topology
X is called irreducible set if the subspace Y of X is irreducible, equivalently if Y1

and Y2 are closed subset of X and satisfy Y ⊆ Y1 ∪ Y2, then Y ⊆ Y1 or Y ⊆ Y2.
Let Y be a closed subset of a topological space. An element y ∈ Y is called a

generic point of Y if Y = cl({y}). A generic point of an irreducible closed subset
of a topological space is unique if the topological space is a T0 space.

A spectral space is a topological space homeomorphic to the prime spectrum
of a commutative ring equipped with the Zariski topology. This concept plays an
important role in studying of algebraic properties of an R-moduleM when we have a
related topology. For an example, when Xs(M) is homeomorphic to Spec(S), where
S is a commutative ring, we can transfer some of known topological properties of
Spec(S) to Xs(M) and then by using these properties explore some of algebraic
properties of M .

Spectral spaces have been characterized by Hochster [16, p.52, Prop.4] as the
topological spaces W which satisfy the following conditions:

(a) W is a T0-space;
(b) W is quasi-compact;
(c) the quasi-compact open subsets of W are closed under finite intersection

and form an open base;
(d) each irreducible closed subset of W has a generic point.

Let M be an R-module and N be a submodule of M . In [12], among other nice
results, Proposition 3.1 states that if Y is a nonempty subset of SpecR(M), then
cl(Y ) = ∪P∈Y V (P ), where V (N) = {P ∈ SpecR(M) | P ⊇ N}. Unfortunately,
this result is not true in general because if we take M = Z, where Z is the ring
of integers, and Y = Max(Z), then we have cl(Y ) = Max(Z), while cl(Y ) =
V (∩P∈Y P ) = V (0) = Z by [19, 5.1]. However, this theorem is true when Y is a
finite set which has been used by the authors during their results in [12] and [13].

Let M be an R-module and Y a subset of Xs(M). We will denote
∑

S∈Y S by
T (Y ).
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Proposition 3.1. Let M be an R-module.
(a) If Y is a finite subset of Xs(M), then cl(Y ) = ∪S∈Y V

s∗(S).
(b) if Y is a closed subset of Xs(M), we have Y = ∪S∈Y V

s∗(S).
(c) If M is a cotop R-module and if Y is a subset of Xs(M), then cl(Y ) =

V s∗(T (Y )) = V s∗(
∑

S∈Y S).

Proof. (a) Clearly, Y ⊆ ∪S∈Y V
s∗(S). Let K be a closed subset of Xs(M) contain-

ing Y . Thus K = ∩i∈I(∪ni
j=1V

s∗(Nij)), for some Nij ⊆ M , i ∈ I, and ni ∈ N. Let
S1 ∈ ∪S∈Y V

s∗(S). Then there exists S ∈ Y such that S1 ∈ V s∗(S) so that S1 ⊆ S.
But S ∈ Y implies that for each i ∈ I, there exists j, 1 ≤ j ≤ ni, such that S ⊆ Nij .
Thus we have S1 ⊆ S ⊆ Nij . Therefore S1 ∈ K so that ∪S∈Y V

s∗(S) ⊆ K. In
other words, ∪S∈Y V

s∗(S) is the smallest closed subset of Xs(M) containing Y , i.e.,
cl(Y ) = ∪S∈Y V

s∗(S).
(b) It is enough to show ∪S∈Y V

s∗(S) ⊆ Y because the other side is clear. To
see this, we note that for every element S of Y , V s∗(S) = cl({S}) ⊆ cl(Y ) = Y by
part (a). Hence ∪S∈Y V

s∗(S) ⊆ Y , as required.
(c) First we note that since M ia a cotop module, each closed set is of the form

of V s∗(N) for some N ≤ M . Clearly Y ⊆ V s∗(T (Y )). Now let V s∗(N) be any
closed subset of Xs(M) containing Y . Then for each S ∈ Y , we have S ⊆ N so
that T (Y ) ⊆ N . So if S ∈ V s∗(T (Y )), then S ⊆ T (Y ) ⊆ N . Hence S ∈ V s∗(N),
i.e., V s∗(T (Y )) ⊆ V s∗(N). This shows that cl(Y ) = V s∗(T (Y )). This completes
the proof. �

Corollary 3.2. Let M be an R-module. Then we have the following.
(a) cl({S}) = V s∗(S), for all S ∈ Specs(M).
(b) S1 ∈ cl({S})⇔ S1 ⊆ S ⇔ V s∗(S1) ⊆ V s∗(S).
(c) The set {S} is closed in Xs(M) if and only if S is a minimal second sub-

module of M .

Proof. Use Proposition 3.1(a). �

Lemma 3.3. Let M be an R-module. Then for each S ∈ Xs(M), V s∗(S) is
irreducible. In particular, Xs(M) is irreducible.

Proof. The proof is straightforward. �

We need the following evident Lemma.

Lemma 3.4. Let S be a submodule of an R-module M . Then the following are
equivalent.

(a) S is a second submodule of M .
(b) For each r ∈ R and submodule K of M , rS ⊆ K implies that rS = 0 or

S ⊆ K.

Proof. The proof is straightforward. �

Theorem 3.5. Let M be an R-module and Y ⊆ Xs(M).
(a) If Y is irreducible, then T (Y ) is a second submodule.
(b) If T (Y ) is a second submodule and T (Y ) ∈ cl(Y ), then Y is irreducible.

Proof. (a) Assume that Y is an irreducible subset of Xs(M). Then obviously T (Y )
is a nonzero submodule of M and Y ⊆ V s∗(T (Y )). Now let rT (Y ) ⊆ K, whence
r ∈ R and K is a submodule of M . It is easy to see that Y ⊆ V s∗((K :M r)) ⊆



10 H. ANSARI-TOROGHY, S. KEYVANI AND F. FARSHADIFAR

V s∗(K) ∪ V s∗((0 :M r)). Since Y is irreducible, we have Y ⊆ V s∗((0 :M r)) or
Y ⊆ V s∗(K). If Y ⊆ V s∗((0 :M r)), then rS = 0 for all S ∈ Y . Thus rT (Y ) = 0.
If Y ⊆ V s∗(K), then S ⊆ K for each S ∈ Y , so T (Y ) ⊆ K. Hence by Lemma 3.4,
T (Y ) is a second submodule of M .

(b) Assume that S := T (Y ) is a second submodule of M and S ∈ cl(Y ). It is
easy to see that cl(Y ) = V s∗(S). Now let Y ⊆ Y1∪Y2, where Y1, Y2 are closed sets.
Then we have V s∗(S) = cl(Y ) ⊆ Y1 ∪ Y2. Since V s∗(S) is irreducible, V s∗(S) ⊆ Y1

or V s∗(S) ⊆ Y2. Hence Y ⊆ Y1 or Y ⊆ Y2. So Y is irreducible. �

Corollary 3.6. Let M be an R-module and let N be a submodule of M . Then
V s∗(N) of Specs(M) is irreducible if and only if soc(N) is a second submodule of
M . Consequently, Specs(M) is irreducible if and only if soc(M) is a second module.

Proof. (⇒). Let Y := V s∗(N) be an irreducible subset of Xs(M). Then we have
T (Y ) = soc(N) so that soc(N) is a second submodule of M by Theorem 3.5(a).

(⇐). Suppose soc(N) is a second submodule of M . Then by Theorem 3.1(b),
Y := V s∗(N) = ∪S∈Y V

s∗(S) so that soc(N) ∈ cl(Y ). Hence V s∗(N) is irreducible
by Theorem 3.5(b). �

We remark that any closed subset of a spectral space is spectral for the induced
topology, and we note that a generic point of an irreducible closed subset Y of a
topological space is unique if the topological space is a T0-space. The following
proposition shows that for any R-module M , Xs(M) is always a T0-space.

Lemma 3.7. Let M be an R-module. Then the following hold.
(a) Xs(M) is a T0-space.
(b) Let S ∈ Xs(M). Then S is a generic point of the irreducible closed subset

V s∗(S).

Proof. (a) This follows from Corollary 3.2 and the fact that a topological space is
a T0-space if and only if the closures of distinct points are distinct.

(b) By Corollary 3.2.
�

By [7, 3.3], if M is a comultiplication R-module M , then the second classical
Zariski topology of M and the Zariski topology of M considered in [7] coincide
(note that every comultiplication module is a cotop module).

Proposition 3.8. Let R be a commutative Noetherian ring and let M be a cotop
R-module with finite length. Then M is a comultiplication R-module.

Proof. This follows from [7, 2.6 (e)] and [7, 2.11]. �

Proposition 3.9. Let M be a comultiplication R-module with finite length. Then
Xs(M) is a spectral space (with the second classical Zariski topology).

Proof. This follows from Lemma 3.7, [7, 3.10], and [7, 6.2] and the fact that since
M is a cotop module, its assigned topology coincide with the the second classi-
cal topology. In this case, every closed set can be written as V s∗(N) for some
submodule N of M . �

Theorem 3.10. Let M be an R-module with finite second spectrum. Then Xs(M)
is a spectral space (with the second Zariski topology). Consequently, for each finite
module M , Specs(M) is a spectral space.
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Proof. Since Xs(M) is a nonempty finite set, every subset of Xs(M) is quasi-
compact. So the quasi-compact open sets of Xs(M) are closed under finite intersec-
tion. Further β = {W s(N1)∩W s(N2)∩, ...∩W s(Nn), Ni ≤M,n ∈ N} is a basis for
Xs(M) with the property that each basis element, in particular W s(M) = Xs(M),
is quasi-compact. Also if Y = {y1, y2, ..., yn} is an irreducible subset of Xs(M),
then we have cl(Y ) = ∪n

i=1cl({yi}. Since Y is irreducible, cl(Y ) = cl({yi}) for some
1 ≤ i ≤ n. Moreover, Xs(M) is a T0-space by Lemma 3.7. Therefore Xs(M) is a
spectral space by Hochster’s characterization. �

Definition 3.11. Let M be an R-module and let H(M) be the family of all subsets
of Xs(M) of the form V s∗(N) ∩W s(K), where N,K ≤ M . H(M) contains both
Xs(M) and ∅ because Xs(M) = V s∗(M)∩W s(0) and ∅ = V s∗(M)∩W s(M). Let
Z(M) be the collection of all unions of finite intersections of elements of H(M).
Then Z(M) is a topology on Xs(M) and called the finer patch topology or con-
structible topology. In fact, H(M) is a sub-basis for the finer patch topology of
M .

Theorem 3.12. Let M be an R-module such that M satisfies descending chain
condition of socle submodules. Then Xs(M) with the finer patch topology is a
compact space.

Proof. Let A be a family of finer patch-open sets covering Xs(M), and suppose that
no finite subfamily of A covers Xs(M). Since V s∗(soc(M)) = V s∗(M) = Xs(M),
we may use the dcc on socle submodules to choose a submodule N minimal with
respect to the property that no finite subfamily of A covers V s∗(N) (note that
we may assume N = soc(N) because V s∗(N) = V s∗(soc(N)). We claim that
N is a second submodule of M , for if not, then there exist a submodule L of
M and r ∈ R such that rN ⊆ L, rN 6= 0, and N 6⊆ L. Thus N ∩ L ⊂ N and
Soc(N ∩(0 :M r)) ⊆ N ∩(0 :M r) ⊂ N . Hence without loss of generality, there must
be a finite subfamily Á of A that covers both V s∗(N ∩ (0 :M r)) and V s∗(N ∩ L).
Let S ∈ V s∗(N). Since rN ⊆ L, we have rS ⊆ L. Since S is second, S ⊆ L or
rS = 0. Thus either S ∈ V s∗(N ∩ L) or S ∈ V s∗(N ∩ (0 :M r)). Therefore,

V s∗(N) ⊆ V s∗(N ∩ (0 :M r)) ∪ V s∗(N ∩ L).

Thus V s∗(N) is covered with the finite subfamily Á, a contradiction. Hence N is a
second submodule of M . Now choose U ∈ A such that N ∈ U . Thus N must have
a patch-neighborhood ∩n

i=1(W s(Ki)∩V s∗(Ni)), for some Ki, Ni ≤M , n ∈ N, such
that

∩n
i=1[W s(Ki) ∩ V s∗(Ni)] ⊆ U.

We claim that for each i (1 ≤ i ≤ n),

N ∈W s(Ki ∩N) ∩ V s∗(N) ⊆W s(Ki) ∩ V s∗(Ni).

To see this, assume that S ∈W s(Ki∩N)∩V s∗(N) so that S 6⊆ Ki∩N and S ⊆ N .
Thus S 6⊆ Ki, i.e., S ∈ W s(Ki). On the other hand, N ∈ V s∗(Ni) and S ⊆ N .
Thus S ∈ V s∗(Ni). Hence we have

N ∈ ∩n
i=1[W s(Ki ∩N) ∩ V s∗(N)] ⊆ ∩n

i=1[W s(Ki) ∩ V s∗(Ni)] ⊆ U.

Thus [∩n
i=1W

s(Ḱi)] ∩ V s∗(N), where Ḱi := Ki ∩ N ⊂ N is a neighborhood of N
with [∩n

i=1[W s(Ḱi)] ∩ V s∗(N) ⊆ U . Since for each i (1 ≤ i ≤ n), Ḱi ⊂ N , V s∗(Ḱi)
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can be covered by some finite subfamily Ái of A. But

Ns∗(N)−[∪n
i=1V

s∗(Ḱi)] = V s∗(N)−[∩n
i=1W

s(Ḱi)]c = [∩n
i=1[W s(Ḱi)]∩V s∗(N) ⊆ U.

Hence V s∗(N) can be covered by Á1 ∪ Á2 ∪ ... ∪ Án ∪ {U}, contrary to our choice
of N . Thus there exists a finite subfamily of A which covers Xs(M). Therefore,
Xs(M) is compact in the finer patch topology of M . �

Proposition 3.13. Let M be R-module such that M has dcc on socle submod-
ules. Then every irreducible closed subset of Xs(M) (with second classical Zariski
topology) has a generic point.

Proof. Let Y be an irreducible closed subset of Xs(M). First we note that if N
is a submodule of M , then V s∗(N) and W s(N) are both open and closed in finer
patch topology. Hence V s∗(S), where S ∈ Y , and Y are also an open and a closed
set in finer patch topology respectively. Since Xs(M) is a compact space in finer
patch topology by Theorem 3.12 and Y is closed in Xs(M), we have Y is a compact
space in finer patch topology. Now Y = ∪S∈Y V

s∗(S) by Proposition 3.1(b) and
each V s∗(N) is open in finer patch topology. Hence there exists a finite set Y1 ⊆ Y
such that Y = ∪S∈Y1V

s∗(S). Since Y is irreducible, Y = V s∗(S) = cl({S}) for
some S ∈ Y . Hence S is a generic point for Y , as desired. �

Lemma 3.14. Assume ζ1 and ζ2 are two topologies on Xs(M) such that ζ1 ≤ ζ2.
If Xs(M) is quasi-compact (i.e., every open cover of it has a finite subcover) in ζ2,
then Xs(M) is also quasi-compact in ζ1.

Theorem 3.15. Let M be an R-module such that M has dcc on socle submodules.
Then for each n ∈ N, and submodules Ni (1 ≤ i ≤ n) of M , W s(N1)∩W s(N2)∩, ...∩
W s(Nn), is a quasi compact subset of Xs(M) with the second classical Zariski
topology.

Proof. Clearly, for each n ∈ N and each submodule Ni (1 ≤ i ≤ n) of M , W s(N1)∩
W s(N2)∩, ...∩W s(Nn) is a closed set in Xs(M) with finer patch topology so that it
compact in Xs(M) with finer patch topology. Hence it is quasi-compact in Xs(M)
with the second classical Zariski topology by Lemma 3.14, as desired. �

Corollary 3.16. Let M be an R-module such that M has dcc on socle submodules.
Then quasi-compact open sets of Xs(M) are closed under finite intersections.

Proof. It suffices to show that the intersection U = U1 ∩ U2 of two quasi-compact
open sets U1 and U2 of Xs(M) is a quasi-compact set. Each Ui, i = 1, 2, is a finite
union of members of the open base β = {W s(N1) ∩W s(N2)∩, ... ∩W s(Nn), Ni ≤
M,n ∈ N}, hence so is U = ∪m

i=1(∩ni
j=1W

s(Nj). Let Ω be any open cover of U .
Then Ω also covers each ∩ni

j=1W
s(Nj) which is quasi-compact by Theorem 3.15.

Hence each ∩ni
j=1W

s(Nj) has a finite subcover of Ω and so does U . �

Theorem 3.17. Let M be an R-module R-module such that M has dcc on socle
submodules. Then Xs(M) with the second classical Zariski topology is a spectral
space.

Proof. We have Xs(M) is a T0 space by Lemma 3.7. Further β = {W s(N1) ∩
W s(N2)∩, ... ∩W s(Nn), Ni ≤ M,n ∈ N} is a basis for Xs(M) with the property
that each basis element, in particular W s(M) = Xs(M), is quasi-compact by The-
orem 3.15. Moreover, by Corollary 3.16, the quasi-compact open sets are closed
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under any finite intersections. Finally, every irreducible closed set has a generic
point by Proposition 3.13. Therefore, Xs(M) is a spectral space by Hochster’s
characterization. �
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