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Abstract

In this paper, we study the existence of asymptotic almost automorphic solution
of fractional neutral integro-differential equation. We prove the result by using fixed
point theorems. We show the result with Lipschitz condition and without Lipschitz
condition on the forcing term. Finally examples are given to illustrate the analytical
findings.
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1 Introduction

This work is mainly concerned with the existence of asymptotically almost automorphic
mild solutions to fractional order neutral integro-differential equation

Dα
t [x(t)− k1(t, x(t))] = A[x(t)− k1(t, x(t))] +Dα−1

t f(t, x(t),Kx(t)), (1.1)

Kx(t) =
∫ t

−∞
k(t− s)h(s, x(s))ds

x(0) = x0 t ∈ R, (1.2)

where 1 < α < 2 and A : D(A) ⊂ X → X is a linear densely defined operator of sectorial
type on a complex Banach space (X, ‖.‖), k satisfy |k(t)| ≤ cke

−bt for t ≥ 0 and ck, b

are positive constants, f : R × X × X → X, h : R × X → X and k1 : R × X → X

are asymptotically almost automorphic functions in t for each x, y ∈ X satisfying suitable
conditions. The fractional derivative Dα

t is to be understood in Riemann-Liouville sense.
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Neutral differential equations arise in many areas of applied mathematics and for this
reason, this type of equation has received much attention in recent years see [14, 15, 23,
24, 26, 31]. Due to their applications in several fields of science [5, 17, 18], fractional differ-
ential equations are attracting increasing interest, because of their numerical treatment.
Properties of the solutions have been studied in several contexts see [1–4, 7–10, 32] and
references therein.

The concept of asymptotically almost automorphy was introduced by N’Guérékata
[19]. Since then, these functions have generated lots of developments and applications, we
refer the reader to [6, 12, 13, 15, 16, 21, 28, 29, 34] and the references therein.

Recently Kavitha et al [27] studied weighted pseudo almost automorphic solution of
the following fractional integro-differential equation

Dα
t x(t) = Ax(t) +Dα−1

t f(t, x(t),Kx(t)) t ∈ R, where 1 < α < 2 and

Kx(t) =
∫ t

−∞
k(t− s)h(s, x(s))ds

where A is linear densely defined sectorial operator.
Motivated by the above work, in this paper we study the existence of asymptotically

almost automorphic solutions to (1.1)-(1.2). The organization of the paper is as follows.
In section-2, we give some basic definitions and results. In section-3, we establish the
existence of asymptotic almost automorphic solution of equations (1.1)-(1.2). In section
4, examples are given to support the theory.

2 Preliminaries and basic results

In this section, we introduce notations, definitions, lemmas and preliminary facts which
are used throughout this work.

Let (X, ‖ · ‖) and (Y, ‖ · ‖Y ) be two complex Banach spaces. The notation C(R,X),
(respectively C(R×X,X)) denote the collection of all continuous functions from R to X.
Let BC(R,X), (respectively BC(R×X,X)) denote the collection of all X-valued bounded
continuous functions (respectively, the class of jointly bounded continuous functions f :
R×X → X). The space BC(R,X) equipped with the sup norm defined by

‖f‖∞ = sup
t∈R
‖f(t)‖

is a Banach space. The notation L(X,Y ) stands for the space of bounded linear operators
from X into Y endowed with the uniform operator topology and we abbreviate it into
L(X) whenever X = Y .

Definition 2.1. [21, 22]. Let f : R → X be a bounded continuous function. We say
that f is almost automorphic if for every sequence of real numbers (sn)n∈N , there exists a
subsequence (τn)n∈N such that

g(t) = lim
n→∞

f(t+ τn)
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is well-defined for each t ∈ R and

lim
n→∞

g(t− τn) = f(t)

for each t ∈ R. Denote by AA(R,X) the set of all such functions.

Definition 2.2. [21, 22]. A continuous function f : R ×X → X is called almost auto-
morphic in t uniformly for x in compact subsets of X if for every compact subset K of X
and every real sequence (sn)n∈N there exists a subsequence (τn)n∈N such that

g(t, x) = lim
n→∞

f(t+ τn, x)

is well-defined for each t ∈ R, x ∈ K and

lim
n→∞

g(t− τn, x) = f(t, x)

for each t ∈ R, x ∈ K. Denote by AA(R×X,X) the set of all such functions.

The space of all continuous functions m : R+ → X such that limt→∞m(t) = 0 is
denoted by C0(R+, X). Moreover, we denote C0(R+ ×X,X), the space of all continuous
functions from R+ ×X to X satisfying limt→∞m(t, x) = 0 in t and uniformly in x ∈ X.

Definition 2.3. A continuous function f : R+ → X is called asymptotically almost
automorphic iff it can be written as f = g + φ, where g ∈ AA(R,X) and φ ∈ C0(R+, X).
This kind of functions is denoted by AAA(R+, X).

Definition 2.4. A continuous function f : R+ ×X → X is called asymptotically almost
automorphic iff it can be written as f = g + φ, where g ∈ AA(R × X,X) and φ ∈
C0(R+ ×X,X). This kind of functions is denoted by AAA(R+ ×X,X).

We state a Lemma by Liang et.al.[28] about the composition result.

Lemma 2.1. Let f(t, x) = g(t, x) +φ(t, x) is an asymptotically almost automorphic func-
tion with g(t, x) ∈ AA(R ×X,X) and φ(t, x) ∈ C0(R+ ×X,X) and f(t, x) is uniformly
continuous on any bounded subset Ω ⊂ X uniformly in t. Then for x(·) ∈ AAA(R+, X),
the function f(·, x(·)) ∈ AAA(R+ ×X,X).

Definition 2.5. [8]. A closed linear operator (A,D(A)) with dense domain D(A) in
a Banach space X is said to be sectorial of type ω and angle θ if there are constants
ω ∈ R, θ ∈ (0, π2 ), M > 0 such that its resolvent exists outside the sector

ω + Σθ := {λ+ ω : λ ∈ C, | arg(−λ)| < θ}, (2.1)

‖(λ−A)−1‖ ≤ M

|λ− ω|
, λ /∈ ω + Σθ. (2.2)
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Definition 2.6. Let 1 < α < 2. Let A be a closed and linear operator with domain D(A)
defined on a Banach space X. We say that A is the generator of a solution operator
if there exist ω ∈ R and a strongly continuous functions Sα : R+ → L(X) such that
{λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =
∫ ∞

0
e−λtSα(t)xdt, Reλ > ω, x ∈ X.

In [8], Cuesta proves that if A is sectorial of type ω ∈ R with 0 ≤ θ < π(1−α/2), then
A is a generator of a solution operator given by

Sα(t) =
1

2πi

∫
G
eλtλα−1(λα −A)−1dλ, t ≥ 0

with G a suitable path lying outside the sector ω + Σ0. Furthermore he shows that the
following Lemma holds.

Lemma 2.2. [8][Theorem 1]. Let A : D(A) ⊂ X → X be a sectorial operator in a
complex Banach space X, satisfying hypothesis (2.1) and (2.2), for some M > 0, ω < 0
and 0 ≤ θ < π(1− α/2). Then there exists C(θ, α) > 0 depending solely on θ and α, such
that

‖Sα(t)‖L(X) ≤
C(θ, α)M
1 + |ω|tα

, t ≥ 0. (2.3)

Now, we recall a useful compactness criterion.

Let h : R+ → [1,∞) be a continuous function such that h(t) → ∞ as t → ∞. We
consider the space

Ch(X) =
{
u ∈ C(R+, X) : lim

t→∞

u(t)
h(t)

= 0
}
.

The space Ch(X) is a Banach space equipped with the norm

‖u‖h = supt∈R+
‖u(t)‖
h(t) . (see[11]).

Lemma 2.3. [11]. A subset K
′ ⊂ Ch(X) is a relatively compact set if it verifies the

following conditions:

(c-1) The set K
′
b = {u[0,b] : u ∈ K ′} is relatively compact in C([0, b], X) for all b ≥ 0.

(c-2) limt→∞
‖u(t)‖
h(t) = 0 uniformly for all u ∈ K ′.

3 Asymptotically almost automorphic mild solutions

Before starting our main results in this section, we recall the definition of the mild
solution to (1.1)-(1.2).
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Definition 3.1. [3]. A continuous function x : R+ → X satisfying the integral equation

x(t) = Sα(t)[x0 − k1(0, x0)] + k1(t, x(t)) +
∫ t

0
Sα(t− s)f

(
s, x(s),Kx(s)

)
ds,

is called the mild solution of the problem (1.1)-(1.2).

We only need integrability of function f so that the right hand expression is well
defined and therefore it is called mild solution. If we put the condition f ∈ Cµ, 1 < µ < 2,
where Cµ is the space of all functions such that tµf is continuous, then the solution is
called classical solution.

We make the following assumptions:

(H1) A is a sectorial operator of type ω < 0.

(H2) k1 ∈ AAA(R+ × X,X) and f ∈ AAA(R+ × X × X,X) and there exist positive
constants L1, L2, L3 such that

(i) ‖k1(t, x)− k1(t, y)‖ ≤ L1‖x− y‖, x, y ∈ X

(ii) ‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ L2‖x1 − x2‖+ L3‖y1 − y2‖,

where xi, yi ∈ X, i = 1, 2 and t ∈ R+.

(H3) The function h : R+×X → X is an asymptotically almost automorphic in t uniformly
in x ∈ X and satisfies

‖h(t, x)− h(t, y)‖ ≤ L4‖x− y‖ for each x, y ∈ X.

The following lemmas are from [16].

Lemma 3.1. Let f = g+φ ∈ AAA(R+×X,X) with g ∈ AA(R×X,X), φ ∈ C0(R+×X,X)
satisfying the Hypothesis (H2)(ii). If x(t) ∈ AAA(R+, X) then f(·, x(·)) ∈ AAA(R+ ×
X,X).

Lemma 3.2. Let f = g + φ ∈ AAA(R+ × X × X → X) with g ∈ AA(R,X), φ ∈
C0(R+, X). Then Q(t) :=

∫ t
0 Sα(t− s)f(s)ds ∈ AAA(R+, X).

Proof. We observe that

Q(t) =
∫ t

0
Sα(t− s)g(s)ds+

∫ t

0
Sα(t− s)φ(s)ds

=
∫ t

−∞
Sα(t− s)g(s)ds−

∫ 0

−∞
Sα(t− s)g(s)ds+

∫ t

0
Sα(t− s)φ(s)ds

Let Q(t) = R(t) + S(t), where

R(t) :=
∫ t

−∞
Sα(t− s)g(s)ds
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S(t) :=
∫ t

0
Sα(t− s)φ(s)ds−

∫ 0

−∞
Sα(t− s)g(s)ds.

Now, let (s
′
n) be an arbitrary sequence of real numbers. Since g ∈ AA(R,X) there exists

a subsequence sn of (s
′
n) such that

lim
n→∞

g(t+ sn) = g(t), for all t ∈ R

and

lim
n→∞

g(t− sn) = g(t), for all t ∈ R.

We define R(t) :=
∫ t
−∞ Sα(t− s)g(s)ds.

Now, consider

R(t+ sn) =
∫ t+sn

−∞
Sα(t+ sn − s)g(s)ds

=
∫ t

−∞
Sα(t− σ)g(σ + sn)dσ

=
∫ t

−∞
Sα(t− σ)gn(σ)dσ

where gn(σ) = g(σ + sn), n = 1, 2, · · ·

R(t+ sn) =
∫ ∞

0
Sα(σ)gn(t− σ)dσ

Now, by inequality (2.3)

‖R(t+ sn)‖ ≤
∫ ∞

0

C(θ, α)M
1 + |ω|σα

‖gn(t− σ)‖dσ

≤ C(θ, α)M
|w|−1/απ

α sin(π/α)
‖g‖∞

and by continuity of Sα(·)x we have Sα(t− σ)gn(σ) → Sα(t− σ)g(σ) as n → ∞ for each
σ ∈ R fixed and any t ≥ σ. Then by the Lebesgue dominated convergence theorem,

R(t+ sn)→ R(t) as n→∞ for all t ∈ R.

In similar way we can show that

R(t− sn)→ R(t) as n→∞ for all t ∈ R.

This shows that R(t) ∈ AA(R,X).
Now let us show that S(t) ∈ C0(R+, X). Since φ ∈ C0(R+, X), for each ε > 0 there

exists a constant T > 0 such that ‖φ(s)‖ ≤ ε for all s ≥ T . Then for all t ≥ T , we deduce,

‖S(t)‖ ≤ C(θ, α)M‖φ‖∞
∫ t/2

0

1
1 + |ω|(t− s)α

ds+ εC(θ, α)M
∫ t

t/2

1
1 + |ω|(t− s)α

ds
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+ C(θ, α)M‖g‖∞
∫ 0

−∞

1
1 + |ω|(t− s)α

ds

≤ C(θ, α)M [‖φ‖∞ + ‖g‖∞]
∫ ∞
t

1
1 + |ω|sα

ds

+ εC(θ, α)M‖g‖∞
∫ ∞

0

1
1 + |ω|sα

ds

≤ C(θ, α)M [‖φ‖∞ + ‖g‖∞]
∫ ∞
t

1
1 + |ω|sα

ds+
εC(θ, α)M |ω|−1/απ

α sin(π/α)
.

Therefore, limt→∞ S(t) = 0, that is, S(t) ∈ C0(R+, X). This completes the proof.

The first existence and uniqueness result is based on Banach’s contraction principle.

Theorem 3.1. Let f = g + φ ∈ AAA(R+ ×X ×X,X) with g ∈ AA(R×X ×X,X) and
φ ∈ C0(R+ × X × X,X). Assume that (H1)-(H3) hold. Then (1.1)-(1.2) has a unique
asymptotically almost automorphic mild solution provided

L1 +
(
L2 + L3L4

ck
b

)
C(θ, α)M

|w|−1/απ

α sin(π/α)
< 1. (3.1)

Proof. Consider the operator Γ : AAA(R+, X)→ AAA(R+, X) such that

(Γx)(t) = Sα(t)[x0 − k1(0, x0)] + k1(t, x(t)) +
∫ t

0
Sα(t− s)f(s, x(s),Kx(s))ds.

Applying Lemma 3.1, we infer that k1(·, x(·)) and f(·, x(·)) belong to AAA(R+, X). By
Lemma 3.2, we obtain that Γ is AAA(R+, X)-valued. Furthermore, we have the estimate

‖(Γx)(t)− (Γy)(t)‖ =
∥∥∥[k1(t, x(t))− k1(t, y(t))]

+
∫ t

0
Sα(t− s)

[
f(s, x(s),Kx(s))− f(s, y(s),Ky(s))

]
ds
∥∥∥

≤ ‖k1(t, x(t))− k1(t, y(t))‖

+
∫ t

0
‖Sα(t− s)‖L(X)

∥∥f(s, x(s),Kx(s))− f(s, y(s),Ky(s))
∥∥ds

≤ L1‖x(t)− y(t)‖+
∫ t

0

C(θ, α)M
1 + |ω|(t− s)α

[
L2‖x(s)− y(s)‖

+ L3‖Kx(s)−Ky(s)‖
]
ds. (3.2)

Consider

‖Kx(s)−Ky(s)‖ ≤
∫ t

0
|k(t− s)|‖h(s, x(s))− h(s, y(s))‖ds

≤
∫ t

0
|k(t− s)|L4‖x(s)− y(s)‖ds

≤ sup
t∈R+

‖x(t)− y(t)‖L4

(∫ t

0
|k(t− s)|ds

)
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≤ sup
t∈R+

‖x(t)− y(t)‖L4

∫ t

0
|k(s)|ds

≤ sup
t∈R+

‖x(t)− y(t)‖L4

∫ t

0
cke
−bsds

≤ ck
(1− e−bt)

b
L4 sup

t∈R+

‖x(t)− y(t)‖.

Using the above estimate, inequality (3.2) becomes,

‖(Γx)(t)− (Γy)(t)‖

≤ L1 sup
t∈R+

‖x(t)− y(t)‖+
[
L2 + L3L4ck

(1− e−bt

b

)]
sup
t∈R+

‖x(t)− y(t)‖
∫ t

0

C(θ, α)M
1 + |ω|sα

ds

≤
[
L1 +

[
L2 + L3L4ck

(1− e−bt

b

)]
C(θ, α)M

|w|−1/απ

α sin(π/α)

]
‖x− y‖∞.

This implies

‖Γx− Γy‖∞ ≤
[
L1 +

[
L2 + L3L4ck

(1− e−bt

b

)]
C(θ, α)M

|w|−1/απ

α sin(π/α)

]
‖x− y‖∞.

which proves that Γ is a contraction we conclude that Γ has a unique fixed point in
AAA(R+, X). This completes the proof.

We next study the existence of asymptotically almost automorphic mild solutions of
(1.1)-(1.2) when the perturbation f is not necessarily Lipschitz continuous. For that, we
require the following assumptions:

(H4) There exists a continuous nondecreasing function W : [0,∞)→ (0,∞) such that

‖f(t, x, y)‖ ≤W (‖x‖+ ‖y‖) for all t ≥ 0 and x ∈ X.

(H5) The functions f : R+ ×X ×X → X, h : R+ ×X → X and k1 : R+ ×X → X are
asymptotically almost automorphic in t and uniformly for x in compact subsets of
X and uniformly continuous on bounded sets of X uniformly in t ≥ 0.

Theorem 3.2. Assume that the conditions (H1) and (H4)-(H5) hold. Let inequality (2.3)
be satisfied. In addition, suppose the following properties hold:

(i) For each C ≥ 0

lim
t→∞

1
h(t)

∫ t

0

W
(
(1 +K)Ch(s)

)
1 + |ω|(t− s)α

ds = 0,

where h is the function given in Lemma 2.3.

We set

β(C) :=
1
h(t)

(
‖Sα(t)(x0 − k1(0, x0)‖+ ‖k1(t, x(t))‖

+ C(θ, α)M
∫ t

0

W
(
(1 +K)Ch(s)

)
1 + |ω|(t− s)α

ds
)
,

where C(θ, α) and M are constants given in (2.3).
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(ii) There is a constant L1 > 0 such that ‖k1(t, h(t)x)−k1(t, h(t)y)‖ ≤ L1‖x− y‖ for all
t ≥ 0 and x, y ∈ X. We set

Ω(C) :=
C(θ, α)M
h(t)

∫ t

0

W
(
(1 +K)Ch(s)

)
1 + |ω|(t− s)α

ds,

where C(θ, α) and M are the constants given in (2.3) and h is given in Lemma 2.3.

(iii) For each ε > 0 there is δ > 0 such that for every u, v ∈ Ch(X), ‖u− v‖h ≤ δ implies
that

C(θ, α)M
∫ t

0

‖f(s, u(s),Ku(s))− f(s, v(s),Kv(s))‖
1 + |ω|(t− s)α

ds ≤ ε,

for all t ∈ R.

(iv) L1 + lim infr →∞
Ω(r)
r

< 1.

(v) lim inf
ξ→∞

ξ

β(ξ)
> 1.

(vi) For all a, b ∈ R, a < b and r > 0, the set {f(s, h(s)x,K(h(s)x)) : a ≤ s ≤ b, x ∈
Ch(X), ‖x‖h ≤ r} is relatively compact in X.

Then equation (1.1)-(1.2) has an asymptotically almost automorphic mild solution.

Proof. We define the operator Γ : Ch(X)→ Ch(X) by

(Γx)(t) = Sα(t)[x0 − k1(0, x0)] + k1(t, x(t)) +
∫ t

0
Sα(t− s)f(s, x(s),Kx(s))ds, t ≥ 0.

Now, we decompose Γ as Γ = Γ1 + Γ2, where

(Γ1x)(t) = Sα(t)[x0 − k1(0, x0)] + k1(t, x(t))

(Γ2x)(t) =
∫ t

0
Sα(t− s)f(s, x(s),Kx(s))ds.

Now, we will show that the operator Γ1 is contraction and Γ2 is completely continuous.
For better readability, we break the proof into sequence of steps.
Step 1: We show that Γ1 is contraction on Ch(X).

Let x ∈ Ch(X), we have that,

‖(Γ1x)(t)‖
h(t)

≤ 1
h(t)

[
‖Sα(t)‖[‖x0‖+ ‖k1(0, x0)‖] + ‖k1(t, x(t))− k1(t, 0)‖+ ‖k1(t, 0)‖

]
≤ 1
h(t)

[
C(θ, α)M [‖x0‖+ ‖k1(0, x0)‖] + L1‖x‖h + ‖k1(·, 0)‖∞

]
.

Hence, Γ1 is Ch(X)-valued. On the other hand, Γ1 is an L1-contraction.
Next we show that, Γ2 is completely continuous.

Step 2: The operator Γ2 is continuous.
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In fact, for any ε > 0, we take δ > 0 involved in condition (iii). If x, y ∈ Ch(X) and
‖x− y‖h ≤ δ then

‖(Γ2x)(t)− (Γ2y)(t)‖ ≤ C(θ, α)M
∫ t

0

‖f(s, x(s),Kx(s))− f(s, y(s),Ky(s))‖
1 + |ω|(t− s)α

ds

≤ ε,

which shows the assertion.
Step 3: We next show that Γ2 is completely continuous.

Let V
′
(t) = Γ2(Br(Ch(X))) and v

′
= Γ2(x) for x ∈ Br(Ch(X)). Initially, we can infer

that V
′
b (t) is a relatively compact subset of X for each t ∈ [0, b]. Infact, using condition (vi)

we get that N = {Sα(s)f(ξ, h(ξ)x,K(h(ξ)x)) : 0 ≤ s ≤ t, 0 ≤ ξ ≤ t, ‖x‖ ≤ r} is relatively
compact. It is each to see that V

′
b (t) ⊂ Sα(t)[x0 − k1(0, x0)] + k1(t, x(t)) + tC(N), which

establishes our assertion.
From the decomposition of

v
′
(t+ s)− v′(t) = [Sα(t+ s)− Sα(t)][x0 − k1(0, x0)] + k1(t+ s, x(t+ s))− k1(t, x(t))

+
∫ t+s

t
Sα(t+ s− ξ)f(ξ, x(ξ),Kx(ξ))dξ

+
∫ t

0
[Sα(ξ + s)− Sα(ξ)]f(t− ξ, x(t− ξ),Kx(t− ξ))dξ,

it follows that the set V
′
b is equicontinuous.

From the condition (i), we have,

‖v′(t)‖
h(t)

≤ 1
h(t)

[
Sα(t)[x0 − k1(0, x0)] + k1(t, x(t))

]
+
C(θ, α)M
h(t)

∫ t

0

W ((1 + ‖K‖)rh(s)
1 + |ω|(t− s)α

ds

→ 0 as t→∞.

From Lemma 2.3, we deduce that, V
′

is relatively compact set in Ch(X).
Let us denote xλ(·) be a solution of equation xλ = λΓ(xλ) for some λ ∈ (0, 1). Now

using the estimate,

‖xλ‖h ≤ ‖Sα(t)[x0 − k1(0, x0)‖+ ‖k1(t, ‖xλ(t)‖h)‖

+ C(θ, α)M
∫ t

0

W ((1 + ‖K‖)r‖xλ‖hh(s)
1 + |ω|(t− s)α

ds

≤ β(‖xλ‖h),

we get, ‖xλ‖h
β(‖xλ‖h)

≤ 1. Using the condition (v) of Theorem 3.2, we have {xλ : xλ =
λΓ(xλ)}, λ ∈ (0, 1) is bounded. From Lemmas 3.1 and 3.2, we have that

Γi(AAA(R+ ×X,X)) ⊂ AAA((R+ ×X,X)), i = 1, 2.

Hence, Γ(AAA(R+ × X,X)) ⊂ AAA((R+ × X,X)) and Γ2 : (AAA(R+ × X,X)) →
AAA((R+ ×X,X)) is completely continuous.
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Putting Br := Br(AAA(R+ ×X,X)), we claim that there is r > 0 such that Γ(Br) ⊂
Br. In fact, if we assume that this assertion is false, then for all r > 0 we can choose
xr ∈ Br and tr ≥ 0 such that ‖Γxr(tr)‖/h(tr) > r. We observe that

‖Γxr(tr)‖ ≤ C(θ, α)M(‖x0‖+ ‖k1(0, x0)‖) + L1r + ‖k1(·, 0)‖∞

+ C(θ, α)M
∫ tr

0

W ((1 + ‖K‖)rh(s)
1 + |ω|(tr − s)α

ds.

Thus, 1 ≤ L1 + lim infr→∞
Ω(r)
r , which is contrary to assumption (iv). We have that Γ1

is a contraction on Br and Γ2(Br) is a compact set. It follows from [30] [Corollary 4.3.2]
that Γ has a fixed point x ∈ AAA(R+×X,X). More precisely, x ∈ AAA(R+×X,X) and
this finishes the proof.

4 Example

Example 1. Consider the following example for the Theorem 3.1.

∂αt [w(t, x)− k1(t, w(t, x))] = ∂2
x[w(t, x)− k1(t, w(t, x))]− µw(t, x)

+ ∂α−1
t

[
βw(t, x)(cos t+ cos

√
2t) + βe−t sin(w(t, x))

+ sin
(∫ t

0
et−sh(s, w(t, s))ds

)]
, t ≥ 0, x ∈ [0, π],

w(t, 0) = w(t, π) = 0, t ≥ 0, µ > 0,

where 1 < α < 2 and w0 ∈ L2[0, π]. Define the linear operator A on X = (L2([0, π]), | · |2)
by Aw = w′′ − µw with the domain

D(A) = {w ∈ X : w′′ ∈ X,w(0) = w(π) = 0}.

It is known that ∆w = w′′ is the infinitesimal generator of analytic semigroup on L2[0, π]
and thus A is sectorial of type w = −µ < 0. Denote w(t)x = w(t, x) and

f(t, w,Kw)(x) = βw(x)(cos t+ cos
√

2t) + βe−|t| sin(w(x)) + sin(Kw(x))

for each w ∈ X. One can easily see that the function f(t, x,Kx) is asymptotically almost
automorphic in t for each x ∈ X. Now under the condition

β + 1 <
α sin(π/α)

3C(θ, α)Mµ−1/απ
− L1,

there exists an unique asymptotically almost automorphic mild solution.

Example 2. One can also consider the following fractional order delay relaxation oscil-
lation equation for α ∈ (1, 2),

∂α

∂tα
(u(t, x)− k1(t, u(t, x))) =

∂2

∂x2
((u(t, x)− k1(t, u(t, x))))− pu(t, x)
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+
∂α−1

∂tα−1
(f(t, u(t, x), u(t− τ, x))), τ > 0,

t ∈ R, x ∈ (0, π)

u(t, 0) = u(t, π) = 0, t ∈ R,

u(t, x) = φ(t, x) t ∈ [−τ, 0], (4.1)

where p > 0 and f is a asymptotic almost automorphic function in t. Also assume that
f satisfies Lipschitz condition in both variable with Lipschitz constants L2, L3. Note that∫ t

−∞
k(t − s)h(s, u(s))ds =

∫ t

−∞
k(−s)h(s, ut(s))ds = J(ut), which can be thought like

function of ut and hence can be considered as functional differential equations. Using the
transformation u(t)x = u(t, x) and define Au = ∂2u

∂x2 − pu, u ∈ D(A), where

D(A) =
{
u ∈ L2((0, π), R), u

′ ∈ L2((0, π), R), u
′′ ∈ L2((0, π), R), u(0) = u(π) = 0

}
,

the above equation can be transform into

dα

dtα
(u(t)− k1(t, u(t))) = A(u(t)− k1(t, u(t))) +

dα−1

dtα−1
g(t, u(t), ut(−τ)), (4.2)

t ∈ R and u(t) = φ(t) t ∈ [−τ, 0]. It is to note that A generates an analytic semigroup
{T (t) : t ≥ 0 on X, where X = L2((0, π), R). Hence pI−A is sectorial of type ω = −p < 0.
Further A has discrete spectrum with eigenvalues of the form −k2; k ∈ N, and correspond-
ing normalized eigenfunctions given by zk(x) = ( 2

π )
1
2 sin(kx). As A is analytic. Thus under

all the required assumption on f, the existence of asymptotic almost automorphic solutions
is ensured accordingly.
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