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Abstract

In this article, we introduce and study the concept of µ-stepanov-like pseudo al-
most automorphic function using the measure theory. We present new results on
completeness and composition theorems for the space of such functions. To illus-
trate our main results, we provide some applications to a nonautonomous semilinear
evolution equation.
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1 Introduction

The concept of almost automorphy was first introduced in the literature by Bochner
in 1960’s, it is a natural generalizaton of almost periodicity [1, 2], for more details about
this topic we refer to [3-6]. G. M. N’Guérékata and Pankov introduced the concept of
Stepanov-like almost automorphy and applied this concept to study the existence and
uniqueness of an almost automorphic solution to the autonomous semilinear equation
in [6]. Moreover, J. Blot introduced the notion of weighted pseudo almost automorphic
functions with values in a Banach space in [7], and Gisèle M. Mophou studied the existence
and uniqueness of a weighted pseudo almost automorphic mild solution to a semilinear
fractional equation in [8]. Xia and Fan presented the notation of Stepanov-like weighted
pseudo almost automorphic function in [9]. Zhang, Chang and N’Guérékata investigated
some properties and new composition theorems of Stepanov-like weighted pseudo almost
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automorphic functions in [10, 11], and then used these results to study the existence of
weighted pseudo almost automorphic solutions for some differential equations in [12, 13]
and integral equations in [14].

Recently, J. Blot, P. Cieutat, K. Ezzinbi in [15] applied the measure theory to define
an ergodic function and they investigate many interesting properties of µ-pseudo almost
automorphic functions. To the best of our knowledge, there is no work reported in the
literature on Sp-weighted pseudo almost automorphic functions in the light of the mea-
sure theory. To close this gap, motivated by the above mentioned works, the purpose
of this work is to present the concept of µ-sp-pseudo almost automorphic functions and
establish completeness and composition theorems for the space of such functions. And
then, we apply our main results to investigate the existence of µ-pseudo almost auto-
morphic mild solutions with µ-sp-pseudo almost automorphic coefficients to the following
nonautonomous semilinear evolution equation:

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R, (1.1)

where {A(t)}t∈R satisfies the Acquistapace-Terreni condition in [16], and U(t, s) generated
by A(t), is exponentially stable, and f ∈ PAAp(R,X, µ)∩ C(R,X) for p > 1 will be
specified later.

The rest of this paper is organized as follows. In section 2, we present some basic
definitions, lemmas, and preliminary results which will be used throughout this paper.
In section 3, we establish some composition theorems of µ-sp-pseudo almost automorphic
functions. In section 4, we prove the existence of µ-pseudo almost automorphic mild
solutions to the nonautonomous semilinear evolution equation (1.1).

2 Preliminaries and µ-sp-pseudo almost automorphic func-

tions

In this section, we define new notion of the µ-ergodic functions and the µ-stepanov-like
pseudo almost automorphic functions, then we give some fundamental properties of these
functions that we use in differential equations. Recall that the notion of µ-stepanov-like
pseudo almost automorphy will be a generalization of the Stepanov-like weighted pseudo
almost automorphy.

Let (X, ‖·‖), (Y, ‖·‖Y), be two Banach spaces and BC(R,X) denotes the Banach space
of bounded continuous functions from R to X, equipped with the supremum norm ‖f‖∞ =
supt∈R ‖f(t)‖. Throughout this work, we denote by B the Lebesgue σ-field of R and by
M the set of all positive measures µ on B satisfying µ(R) = +∞ and µ([a, b]) < +∞, for
all a, b ∈ R(a < b).

Definition 2.1 [4] A continuous function f : R→ X is said to be almost automorphic if



µ-stepanov-like pseudo almost automorphic function 3

for every sequence of real numbers {s′n}n∈N there exists a subsequence {sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by AA(X).

Definition 2.2 [5] A continuous function f(t, s) : R × R → X is called bi-almost auto-
morphic if for every sequence of real numbers {s′n}n∈N, there exists a subsequence {sn}n∈N
such that

g(t, s) := lim
n→∞

f(t+ sn, s+ sn)

is well defined for each t, s ∈ R, and

lim
n→∞

g(t− sn, s− sn) = f(t, s)

for each t, s ∈ R. The collection of all such functions will be denoted by bAA(R× R,X).

Definition 2.3 [4, 17] A continuous function f : R × X → X is said to be almost auto-
morphic if f(t, x) is almost automorphic for each t ∈ R uniformly for all x ∈ B, where
B is any bounded subset of X. The collection of all such functions will be denoted by
AA(R× X,X).

Let U denote the set of all functions ρ : R→ (0,∞), which are locally integrable over
R such that ρ > 0 almost everywhere. For a given r > 0 and for each ρ ∈ U, we set
m(r, ρ) :=

∫ r
−r ρ(t)dt.

Thus the space of weights U∞ is defined by

U∞ := {ρ ∈ U : lim
r→∞

m(r, ρ) =∞}.

Now for ρ ∈ U∞, we define

PAA0(X, ρ) :=
{
f ∈ BC(R,X) : lim

r→∞

1
m(r, ρ)

∫ r

−r
‖f(t)‖ρ(t)dt = 0

}
;

PAA0(Y,X, ρ) := {f ∈ C(R× Y,X) : f(·, y) is bounded for each y ∈ Y

and lim
r→∞

1
m(r, ρ)

∫ r

−r
‖f(t, y)‖ρ(t)dt = 0 uniformly in y ∈ Y

}
.
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Remark 2.1 When ρ(t) = 1 for each t ∈ R, one retrieves the so-called ergodic space that
is, AA0(X) and AA0(X) = {f ∈ BC(R,X) : limr→∞

1
2r

∫ r
−r ‖f(t)‖dt = 0}. Note that the

spaces PAA0(X, ρ) are richer than AA0(X).

Definition 2.4 [7] Let ρ ∈ U∞. A function f ∈ BC(R,X) (respectively, f ∈ BC(R ×
Y,X)) is called weighted pseudo almost automorphic if it can be expressed as f = g +
φ, where g ∈ AA(X) (respectively, AA(R × Y,X)) and φ ∈ PAA0(X, ρ) (respectively,
PAA0(Y,X, ρ)). We denote by WPAA(X) (respectively, WPAA(R×Y,X)) the set of all
such functions.

Definition 2.5 [15] Let µ ∈ M. A bounded continuous function f : R → X is said to be
µ-ergodic if

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

‖f(t)‖dµ(t) = 0.

We denote the space of all such functions by ε(R,X, µ).

Definition 2.6 [15] Let µ ∈M. A continuous function f : R→ X is said to be µ-pseudo
almost automorphic if f is written in the form:

f = g + φ,

where g ∈ AA(R,X) and φ ∈ ε(R,X, µ). We denote the space of all such functions by
PAA(R,X, µ).

Thus, we have
AA(R,X) ⊂ PAA(R,X, µ) ⊂ BC(R,X).

Lemma 2.1 [15] Let µ ∈M. Then (ε(R,X, µ), ‖ · ‖∞) is a Banach space.

For µ ∈M and τ ∈ R, we denote µτ the positive measure on (R,B) defined by

µτ (A) = µ({a+ τ : a ∈ A}) for A ∈ B. (2.1)

From µ ∈M, we list the following hypothesis.
(H0)For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µτ (A) ≤ βµ(A),

when A ∈ B satisfies A ∩ I = ∅.

Lemma 2.2 [15] Let µ ∈M satisfy (H0). Then ε(R,X, µ) is translation invariant, there-
fore PAA(R,X, µ) is also translation invariant.
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Lemma 2.3 [15] Let µ ∈ M. Assume that PAA(R,X, µ) is translation invariant. Then
the decomposition of a µ-pseudo almost automorphic function in the form f = g+φ where
g ∈ AA(R,X) and φ ∈ ε(R,X, µ), is unique.

Lemma 2.4 [15] Let µ ∈ M. Assume that PAA(R,X, µ) is translation invariant. Then
(PAA(R,X, µ), ‖ · ‖∞) is a Banach space.

Definition 2.7 [6, 18] The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function
f : R→ X is defined by

f b(t, s) := f(t+ s).

Remark 2.2 [18] (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of
a certain function f , ϕ(t, s) = f b(t, s), if and only if ϕ(t + τ, s − τ) = ϕ(s, t) for all
t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

(ii) Note that if f = h+ ϕ, then f b = hb + ϕb. Moreover, (λf)b = λf b for each scalar
λ.

Definition 2.8 [18] The Bochner transform f b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of a func-
tion f : R× X→ X is defined by

f b(t, s, u) := f(t+ s, u) for each u ∈ X.

Definition 2.9 [6, 18] Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded func-
tions, with the exponent p, consists of all measurable functions f : R → X such that
f b ∈ L∞ (R, Lp(0, 1; X)). This is a Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t
‖f(τ)‖pdτ

) 1
p

.

Definition 2.10 [6, 19] The space ASp(X) of Stepanov-like almost automorphic (or Sp-
almost automorphic) functions consists of all f ∈ BSp(X) such that f b ∈ AA (Lp(0, 1; X)).
In other words, a function f ∈ Lploc(R,X) is said to be Sp-almost automorphic if its Bochner
transform f b : R→ Lp(0, 1; X) is almost automorphic in the sense that for every sequence
of real numbers {s′n}n∈N, there exist a subsequence {sn}n∈N and a function g ∈ Lploc(R,X)
such that

lim
n→∞

(∫ t+1

t
‖f(s+ sn)− g(s)‖pds

) 1
p

= 0 and lim
n→∞

(∫ t+1

t
‖g(s− sn)− f(s)‖pds

) 1
p

= 0.

pointwise on R.

Definition 2.11 [6, 19] A function f : R × Y → X, (t, u) → f(t, u) with f(·, u) ∈
Lploc(R,X) for each u ∈ Y, is said to be Sp-almost automorphic in t ∈ R uniformly in u ∈ Y
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if t→ f(t, u) is Sp-almost automorphic for each u ∈ Y. That means, for every sequence of
real numbers {s′n}n∈N, there exist a subsequence {sn}n∈N and a function g(·, u) ∈ Lploc(R,X)
such that

lim
n→∞

(∫ t+1

t
‖f(s+ sn, u)− g(s, u)‖pds

) 1
p

= 0,

and

lim
n→∞

(∫ t+1

t
‖g(s− sn, u)− f(s, u)‖pds

) 1
p

= 0,

pointwise on R and for each u ∈ Y. We denote by ASp(R × Y,X) the set of all such
functions.

Definition 2.12 [20] A function f ∈ BSp(X) is said to be Stepanov-like pseudo al-
most automorphic if it can be decomposed as f = g + ϕ where g ∈ ASp(X) and ϕb ∈
AA0(Lp(0, 1; X)). Denote by PAAp(X) the set of all such functions.

Definition 2.13 [20] A function F : R×Y→ X, (t, u)→ F (t, u) with F (·, u) ∈ Lploc(R,X)
for each u ∈ Y, is said to be Stepanov-like pseudo almost automorphic in t ∈ R, if it
can be decomposed as F (t, u) = G(t, u) + H(t, u) with G ∈ ASp(R × Y,X) and Hb ∈
AA0(Y, Lp(0, 1; X)). Denote by PAAp(R× Y,X) the set of all such functions.

Definition 2.14 [11] Let ρ ∈ U∞. A function f ∈ BSp(X) is said to be Stepanov-like
weighted pseudo almost automorphic (or Sp-weighted pseudo almost automorphic) if it
can be expressed as f = g + h, where g ∈ ASp(X) and hb ∈ PAA0 (Lp(0, 1; X), ρ). In
other words, a function f ∈ Lploc(R,X) is said to be Stepanov-like weighted pseudo almost
automorphic relatively to the weight ρ ∈ U∞, if its Bochner transform f b : R→ Lp(0, 1; X)
is weighted pseudo almost automorphic in the sense that there exist two functions g, h :
R→ X such that f = g+h, where g ∈ ASp(X) and hb ∈ PAA0 (Lp(0, 1; X), ρ). We denote
by WPAASp(X) the set of all such functions.

Definition 2.15 [11] Let ρ ∈ U∞. A function f : R × Y → X, (t, u) → f(t, u) with
f(·, u) ∈ Lploc(R,X) for each u ∈ Y, is said to be Stepanov-like weighted pseudo al-
most automorphic (or Sp-weighted pseudo almost automorphic) if it can be expressed as
f = g + h, where g ∈ ASp(R × Y,X) and hb ∈ PAA0 (Y, Lp(0, 1; X), ρ). We denote by
WPAASp(R× Y,X) the set of all such functions.

Definition 2.16 Let µ ∈M. A function f ∈ BSp(X) is said to be µ-stepanov-like pseudo
almost automorphic (or µ-sp-pseudo almost automorphic) if it can be expressed as f = g+
φ, where g ∈ ASp(X) and φb ∈ ε(Lp(0, 1; X), µ). In other words, a function f ∈ Lploc(R,X)
is said to be µ-stepanov-like pseudo almost automorphic relatively to the measure µ, if
its Bochner transform f b : R → Lp(0, 1; X) is µ-pseudo almost automorphic in the sense
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that there exist two functions g, φ : R → X such that f = g + φ, where g ∈ ASp(X) and
φb ∈ ε(Lp(0, 1; X), µ), that is φb ∈ BC(Lp(0, 1; X)) and

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖φ(s)‖pds

) 1
p

dµ(t) = 0.

We denote by PAAp(R,X, µ) the set of all such functions.

Definition 2.17 Let µ ∈ M. A function f : R × Y → X, (t, u) → f(t, u) with f(·, u) ∈
Lploc(R,X) for each u ∈ Y, is said to be µ-stepanov-like pseudo almost automorphic (or µ-
sp-pseudo almost automorphic) if it can be expressed as f = g+φ, where g ∈ ASp(R×Y,X)
and φb ∈ ε(Y, Lp(0, 1; X), µ). We denote by PAAp(R×Y,X, µ) the set of all such functions.

Remark 2.3 [15] One can observe that a Sp-weighted pseudo almost automorphic func-
tion is µ-sp-pseudo almost automorphic, where the measure µ is absolutely continuous
with respect to the Lebesgue measure and its Radon-Nikodym derivatve is ρ : dµ(t)

dt = ρ(t).
Moreover, a Sp-pseudo almost automorphic function is a µ-sp-pseudo almost automorphic
function in the particular case where the measure µ is the Lebesgue measure.

Remark 2.4 [15] From µ ∈ M and the fact that µ([−r, r]) = µ([−r, r] \ I) + µ(I) for r
sufficiently large, we deduce that limr→+∞ µ([−r, r] \ I) = +∞.

Theorem 2.1 Let µ ∈ M and I be a bounded interval (eventually I = ∅). Assume that
f(·) ∈ BSp(R,X). Then the following assertions are equivalent.

(i) f b(·) ∈ ε(Lp(0, 1; X), µ).

(ii)limr→+∞
1

µ([−r, r] \ I)
∫
[−r,r]\I

(∫ t+1
t ‖f(s)‖pds

) 1
p
dµ(t) = 0.

(iii)For any ε > 0, limr→+∞

µ

({
t ∈ [−r, r] \ I :

(∫ t+1
t ‖f(s)‖pds

) 1
p
> ε

})
µ([−r, r] \ I)

= 0.

Proof: To prove the theorem, we refer to [15, Theorem 2.14], first we prove (i)⇐⇒ (ii).

Denote by A = µ(I) and B =
∫
I

(∫ t+1
t ‖f(s)‖pds

) 1
p
dµ(t). Since the interval I is bounded

and the function f ∈ BSp(X), then A and B are finite. Let r > 0 be such that I ⊂ [−r, r]
and µ([−r, r] \ I) > 0. Then we have

1
µ([−r, r] \ I)

∫
[−r,r]\I

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t)

=
1

µ([−r, r])−A

(∫
[−r,r]

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t)−B

)

=
µ([−r, r])

µ([−r, r])−A

(
1

µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t)− B

µ([−r, r])

)
.(2.2)
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From the equality (2.2) and the fact that µ(R) = +∞, we deduce that (ii) is equivalent to

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t) = 0,

that is (i).
(iii)=⇒(ii) Denote by Aεr(f) and Bε

r(f) the following sets

Aεr(f) =

{
t ∈ [−r, r] \ I :

(∫ t+1

t
‖f(s)‖pds

) 1
p

> ε

}
and

Bε
r(f) =

{
t ∈ [−r, r] \ I :

(∫ t+1

t
‖f(s)‖pds

) 1
p

≤ ε

}
.

Assume that (iii) holds, that is

lim
r→+∞

µ(Aεr(f))
µ([−r, r] \ I)

= 0. (2.3)

From the following equality∫
[−r,r]\I

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t) =
∫
Aεr(f)

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t)

+
∫
Bεr(f)

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t),

we deduce for r large enough that

1
µ([−r, r]) \ I

∫
[−r,r]\I

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t)

≤ ‖f‖Sp
µ(Aεr(f))

µ([−r, r] \ I)
+ ε,

then for all ε > 0,

lim sup
r→+∞

1
µ([−r, r] \ I)

∫
[−r,r]\I

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t) ≤ ε,

so (ii) holds.
(ii)=⇒ (iii) Assume that (ii) holds. From the following inequality

1
µ([−r, r] \ I)

∫
[−r,r]\I

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t)
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≥ 1
µ([−r, r] \ I)

∫
Aεr(f)

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµ(t)

≥ ε
µ(Aεr(f))

µ([−r, r] \ I)
,

for r sufficiently large, we obtain (2.3), that is (iii). This completes the proof.

Definition 2.18 [15] Let µ1 and µ2 ∈ M. µ1 is said to be equivalent to µ2(µ1 ∼ µ2) if
there exist constants α and β > 0 and a bounded interval I(eventually I = ∅) such that

αµ1(A) ≤ µ2(A) ≤ βµ1(A),

for A ∈ B satisfying A ∩ I = ∅.

Theorem 2.2 Let µ1, µ2 ∈M. If µ1 and µ2 are equivalent, then

ε(Lp(0, 1; X), µ1) = ε(Lp(0, 1; X), µ2)

and
PAAp(R,X, µ1) = PAAp(R,X, µ2).

Proof: Let us show that ε(Lp(0, 1; X), µ1) = ε(Lp(0, 1; X), µ2). Since µ1 ∼ µ2 and B is
the Lebesgue σ-field, we obtain for r sufficiently large

α

β

µ1

({
t ∈ [−r, r] \ I :

(∫ t+1
t ‖f(s)‖pds

) 1
p
> ε

})
µ1([−r, r] \ I)

≤
µ2

({
t ∈ [−r, r] \ I :

(∫ t+1
t ‖f(s)‖pds

) 1
p
> ε

})
µ2([−r, r] \ I)

≤ β

α

µ1

({
t ∈ [−r, r] \ I :

(∫ t+1
t ‖f(s)‖pds

) 1
p
> ε

})
µ1([−r, r] \ I)

.

By using Theorem 2.1, we deduce that ε(Lp(0, 1; X), µ1) = ε(Lp(0, 1; X), µ2). From the def-
inition of a µ-sp-pseudo almost automorphic function, we deduce that PAAp(R,X, µ1) =
PAAp(R,X, µ2).

We give sufficient conditions for the translation invariance of the spaces of µ-sp-pseudo
almost automorphic functions.

Remark 2.5 [15] Hypothesis (H0) holds if and only if, for all τ ∈ R, there exist a constant
β > 0 and a bounded interval I such that

ρ(t+ τ) ≤ βρ(t) a.e. on R \ I.
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Lemma 2.5 [15] Let µ ∈M. Then µ satisfies (H0) if and only if the measures µ and µτ
are equivalent for all τ ∈ R.

Lemma 2.6 [15] Hypothesis (H0) implies for all σ > 0,

lim sup
r→+∞

µ([−r − σ, r + σ])
µ([−r, r])

< +∞.

Theorem 2.3 Let µ ∈ M satisfy (H0). Then ε(Lp(0, 1; X), µ) is translation invariant,
therefore PAAp(R,X, µ) is also translation invariant.

Proof: The proof of this theorem is similar to that of [15, Theorem 3.5]. First, it is clear
that ASp(X) is translation invariant, it remains to prove that if f ∈ ε(Lp(0, 1; X), µ) then
fτ ∈ ε(Lp(0, 1; X), µ) for all τ ∈ R. Let f ∈ ε(Lp(0, 1; X), µ) and τ ∈ R. Since µ(R) = +∞,
there exists r0 > 0 such that µ([−r − |τ |, r + |τ |]) > 0 for all r ≥ r0. In this proof, we
assume that r ≥ r0. Let us denote by

Kτ (r) =
1

µτ ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµτ (t) for r > 0 and τ ∈ R, (2.4)

where µτ is the positive measure defined by (2.1). By using Lemma 2.5, it follows
that µτ and µ are equivalent, then by using Theorem 2.2 we have ε(Lp(0, 1; X), µτ ) =
ε(Lp(0, 1; X), µ), therefore f ∈ ε(Lp(0, 1; X), µτ ), that is

lim
r→+∞

Kτ (r) = 0, for all τ ∈ R. (2.5)

For all A ∈ B, we denote by χA the characteristic function of A. By using definition of the
measure µτ , we obtain that

∫
[−r,r] χA(t)dµτ (t) =

∫
[−r+τ,r+τ ] χA(t − τ)dµ(t) for all A ∈ B

and since t 7→
(∫ t+1

t ‖f(s)‖pds
) 1
p is the pointwise limit of an increasing sequence of linear

combinations of characteristic functions [21, Theorem 1.17], we deduce that∫
[−r,r]

(∫ t+1

t
‖f(s)‖pds

) 1
p

dµτ (t) =
∫

[−r+τ,r+τ ]

(∫ t+1

t
‖f(s− τ)‖pds

) 1
p

dµ(t). (2.6)

From (2.1),(2.4) and (2.6), we obtain

Kτ (r) =
1

µ([−r + τ, r + τ ])

∫
[−r+τ,r+τ ]

(∫ t+1

t
‖f(s− τ)‖pds

) 1
p

dµ(t).

If we denote by τ+ := max(τ, 0) and τ− := max(−τ, 0), we have |τ | + τ = 2τ+ and
|τ | − τ = 2τ−; and then [−r + τ − |τ |, r + τ + |τ |] = [−r − 2τ−, r + 2τ+]. Therefore we
obtain

Kτ (r + |τ |)
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=
1

µ([−r − 2τ−, r + 2τ+])

∫
[−r−2τ−,r+2τ+]

(∫ t+1

t
‖f(s− τ)‖pds

) 1
p

dµ(t). (2.7)

From (2.7) and the following inequality

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s− τ)‖pds

) 1
p

dµ(t)

≤ 1
µ([−r, r])

∫
[−r−2τ−,r+2τ+]

(∫ t+1

t
‖f(s− τ)‖pds

) 1
p

dµ(t),

we get

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s− τ)‖pds

) 1
p

dµ(t) ≤ µ([−r − 2τ−, r + 2τ+])
µ([−r, r])

Kτ (r + |τ |),

which implies

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s− τ)‖pds

) 1
p

dµ(t) ≤ µ([−r − 2|τ |, r + 2|τ |])
µ([−r, r])

Kτ (r + |τ |). (2.8)

From (2.5) and (2.8) and by using Lemma 2.6, we deduce that

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s− τ)‖pds

) 1
p

dµ(t) = 0,

that is f−τ ∈ ε(Lp(0, 1; X), µ) for all τ ∈ R. Then ε(Lp(0, 1; X), µ) is translation invariant.
This ends the proof.

Theorem 2.4 Let µ ∈ M satisfy (H0). If f ∈ PAA(R,X, µ), then f ∈ PAAp(R,X, µ)
for each 1 ≤ p <∞. In other words, PAA(R,X, µ) ⊂ PAAp(R,X, µ).

Proof: In the proof of this theorem we follow the same reasoning as in the proof of [11,
Lemma 2.4]. Let f = g + h where g ∈ AA(X) and h ∈ ε(R,X, µ). From [6, Remark 2.4],
we know that the function g ∈ AA(X) ⊂ ASp(X).

Next, let us show that hb ∈ ε (Lp(0, 1; X), µ). For r > 0, we see that

1
µ([−r, r])

∫
[−r,r]

(∫ 1

0
‖h(t+ s)‖pds

) 1
p

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(∫ 1

0
sup
s∈[0,1]

‖h(t+ s)‖pds

) 1
p

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(
sup
s∈[0,1]

‖h(t+ s)‖p
) 1

p

dµ(t).
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Let s0 ∈ [0, 1] such that sups∈[0,1] ‖h(t+ s)‖ = ‖h(t+ s0)‖. Then, we deduce

1
µ([−r, r])

∫
[−r,r]

(∫ 1

0
‖h(t+ s)‖pds

) 1
p

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(
sup
s∈[0,1]

‖h(t+ s)‖p
) 1

p

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(‖h(t+ s0)‖p)
1
p dµ(t)

=
1

µ([−r, r])

∫
[−r,r]

‖h(t+ s0)‖dµ(t).

By using the fact that ε(R,X, µ) is translation invariant, it follows that limr→∞
1

µ([−r,r])
∫
[−r,r] ‖h(t+

s0)‖dµ(t) = 0. Hence, hb ∈ ε (Lp(0, 1; X), µ). The proof is then completed.

Theorem 2.5 Let µ ∈ M and f ∈ PAAp(R,X, µ) be such that f = g + h, where g ∈
ASp(X) and hb ∈ ε(Lp(0, 1; X), µ). If PAAp(R,X, µ) is translation invariant, then

{g(t) : t ∈ R} ⊂ {f(t) : t ∈ R}, (the closure of range f).

Proof: The proof is an adaptation of [15, Theorem 4.1]. Suppose that the above claim
is not true, then there exist constants t0 ∈ R such that g(t0) /∈ {f(t) : t ∈ R}. Since the
space ASp(X) and ε(Lp(0, 1; X), µ) are translation invariant, we can assume that t0 = 0,
then there exists a constant ε > 0 such that

‖g(0)− f(t)‖p > 2ε, for all t ∈ R,

where ‖ · ‖p denotes the norm in Lp(0, 1; X). Since gb ∈ AA (Lp(0, 1; X)), for ε > 0, let

Cε = {t ∈ R : ‖g(t)− g(0)‖p < ε} .

By [8, Lemma 2.12], there exist constants s1, · · · , sm ∈ R such that
⋃m
i=1(si + Cε) = R.

From the fact that f = g + h and the Minkowski inequality, for all t ∈ Cε, we have

‖h(t)‖p = ‖f(t)− g(t)‖p ≥ ‖g(0)− f(t)‖p − ‖g(t)− g(0)‖p > ε.

Then it follows that

‖h(t− si)‖p > ε for all i = 1, · · · ,m and t ∈ si + Cε.

Let H(t) :=
∑m

i=1 ‖h(t− si)‖p. From the previous inequalities, we have the fact that

H(t) > ε, for all t ∈ R. (2.9)

In view of ε(Lp(0, 1; X), µ) is translation invariant, then [t 7−→ h(t−si)] ∈ ε(Lp(0, 1; X), µ)
for all i ∈ {1, · · · ,m}. Hence H ∈ ε(Lp(0, 1; X), µ), which contradicts the relation (2.9).
This finishes the proof.
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Theorem 2.6 Let µ ∈ M. Assume that PAAp(R,X, µ) is translation invariant. Then
(PAAp(R,X, µ), ‖ · ‖Sp) is a Banach space.

Proof: Let (fn)n∈N ⊂ PAAp(R,X, µ) be a Cauchy sequence for the norm ‖·‖Sp . By defini-
tion, we can write fn = gn+hn, where (gn)n∈N ⊂ ASp(X) and (hbn)n∈N ⊂ ε(Lp(0, 1; X), µ).
From Theorem 2.5, we obtain that

{gn(t) : t ∈ R} ⊂ {fn(t) : t ∈ R}.

Hence, we easily deduce that (gn)n∈N is also a Cauchy sequence for the norm ‖ · ‖Sp . Thus
there exists a function g ∈ ASp(X) such that ‖gn−g‖Sp → 0 as n→∞. Using the previous
fact, it follows that hn = fn − gn is a Cauchy sequence with respect to the norm ‖ · ‖Sp .
So there exists a function h ∈ BSp(X) such that ‖hn − h‖Sp → 0 as n→∞.

Now for r > 0,

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖h(s)‖pds

) 1
p

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖hn(s)− h(s)‖pds

) 1
p

dµ(t)

+
1

µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖hn(s)‖pds

) 1
p

dµ(t)

≤ ‖hn − h‖Sp +
1

µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖hn(s)‖pds

) 1
p

dµ(t).

It follows that

lim sup
r→∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖h(s)‖pds

) 1
p

dµ(t) ≤ ‖hn − h‖Sp for all n ∈ N.

Since limn→∞ ‖hn − h‖Sp = 0, we deduce that

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖h(s)‖pds

) 1
p

dµ(t) = 0,

that is, f = g + h ∈ PAAp(R,X, µ). So PAAp(R,X, µ, ‖ · ‖Sp) is a Banach space.
From Theorem 2.5 and the proofs of [15, Theorem 4.7], we have the following result.

Theorem 2.7 Let µ ∈ M. Assume that PAAp(R,X, µ) is translation invariant. Then
the decomposition of a µ-sp-pseudo almost automorphic function in the form f = g + h,
where g ∈ ASp(X) and hb ∈ ε(Lp(0, 1; X), µ) is unique.

Lemma 2.7 [11] Assume that f ∈ ASp (R× X,X) and f(t, x) is uniformly continuous on
each bounded subset K ′ ⊂ X uniformly for t ∈ R. If u ∈ ASp(X) and K = {u(t) : t ∈ R}
is compact. Then f (·, u(·)) ∈ ASp(X).
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(H1) There exists a constant L > 0 such that for all u, v ∈ X and t ∈ R,

‖f(t, u)− f(t, v)‖ ≤ L‖u− v‖.

Lemma 2.8 [22] Suppose that f ∈ ASp (R× X,X) and the following condition holds.
(H2)There exists a constant L > 0 such that for all u, v ∈ X and t ∈ R,(∫ t+1

t
‖f(t, u)− f(t, v)‖pds

) 1
p

≤ L‖u− v‖.

If u ∈ ASp(X) and K1 = {u(t) : t ∈ R} is compact. Then f(·, u(·)) ∈ ASp(X).

Lemma 2.9 [22] Suppose that f = g + h ∈ PAAp (R× X,X) with g ∈ ASp(X), hb ∈
AA0(Lp(0, 1; X) and f satisfies condition (H1), then the function g satisfies condition
(H2).

Now, we recall a useful compactness criterion.
Let h : R→ R be a continuous function such that h(t) ≥ 1 for all t ∈ R and h(t)→∞

as |t| → ∞. We consider the space

Ch(X) =
{
u ∈ C(R,X) : lim

|t|→∞

u(t)
h(t)

= 0
}
.

Endowed with the norm ‖u‖h = supt∈R
‖u(t)‖
h(t) , it is a Banach space (see [25]).

Lemma 2.10 [25] A subset R ⊆ Ch(X) is a relatively compact set if it verifies the follow-
ing conditions:
(c-1) The set R(t) = {u(t) : u ∈ R} is relatively compact in X for each t ∈ R.
(c-2) The set R is equicontinuous.
(c-3) For each ε > 0 there exists L > 0 such that ‖u(t)‖ ≤ εh(t) for all u ∈ R and all
|t| > L.

Lemma 2.11 [26] (Leray-Schauder Alternative Theorem) Let D be a closed convex subset
of a Banach space X such that 0 ∈ D. Let F : D → D be a completely continuous map.
Then the set {x ∈ D : x = λF (x), 0 < λ < 1} is unbounded or the map F has a fixed point
in D.

3 Composition theorems of µ-sp-pseudo almost automorphic

functions

In this section, we prove some composition theorems for µ-stepanov-like pseudo almost
automorphic functions under suitable conditions.
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Theorem 3.1 Let µ ∈ M. Suppose that f = g + h ∈ PAAp(R × X,X, µ) with g ∈
ASp(R×X,X), hb ∈ ε (X, Lp(0, 1; X), µ) and (H1) holds. If ϕ = α+β ∈ PAAp(R,X, µ) with
α ∈ ASp(X), βb ∈ ε (Lp(0, 1; X), µ) and K1 = {α(t); t ∈ R} is compact. Then f(·, ϕ(·)) ∈
PAAp(R,X, µ).

Proof: Let f(t, u) = g(t, u)+h(t, u), where g ∈ ASp(R×X,X), and hb ∈ ε (X, Lp(0, 1; X), µ) .
Moreover, let ϕ(t) = α(t)+β(t), where α ∈ ASp(X), and βb ∈ ε (Lp(0, 1; X), µ) . It is easily
verified that

f (t, ϕ(t)) = g (t, α(t)) + f (t, ϕ(t))− g (t, α(t))

= g (t, α(t)) + f (t, ϕ(t))− f (t, α(t)) + h (t, α(t)) .

Define

G(t) = g (t, α(t)) , F (t) = f (t, ϕ(t))− f (t, α(t)) , H(t) = h (t, α(t)) .

Firstly, we show that G(t) ∈ ASp(X). In fact, by the same reason of Lemma 2.9, we have
that the function g satisfies condition (H2). Note that g ∈ ASp(R × X,X), α ∈ ASp(X)
and K1 = {α(t) : t ∈ R} is compact. Thus, by Lemma 2.8, we obtain G(t) ∈ ASp(X).

Secondly, we claim that F b(t) ∈ ε (Lp(0, 1; X), µ) . Actually, by (H1), we have(∫ t+1

t
‖F (s)‖pds

) 1
p

=
(∫ t+1

t
‖f (s, ϕ(s))− f (s, α(s)) ‖pds

) 1
p

≤ L

(∫ t+1

t
‖ϕ(s)− α(s)‖pds

) 1
p

≤ L

(∫ t+1

t
‖β(s)‖pds

) 1
p

,

thus, for r > 0,

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖F (s)‖pds

) 1
p

dµ(t) ≤ L

µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖β(s)‖pds

) 1
p

dµ(t).

Note that βb ∈ ε (Lp(0, 1; X), µ) , we have

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖F (s)‖pds

) 1
p

dµ(t) = 0,

which implies F b(·) ∈ ε (Lp(0, 1; X), µ) .
Finally, we also claim that Hb(·) ∈ ε (Lp(0, 1; X), µ) . In fact, let ε > 0. Since g satisfies

condition (H2), there is a δ > 0 such that(∫ t+1

t
‖g(s, u)− g(s, v)‖pds

) 1
p

≤ ε
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for all t ∈ R, u, v ∈ X with ‖u− v‖ ≤ δ. Put δ0 = min{ε, δ}. Then(∫ t+1

t
‖h(s, u)− h(s, v)‖pds

) 1
p

≤
(∫ t+1

t
‖f(s, u)− f(s, v)‖pds

) 1
p

+
(∫ t+1

t
‖g(s, u)− g(s, v)‖pds

) 1
p

≤ (L+ 1)ε (3.1)

for all t ∈ R, u, v ∈ X with ‖u− v‖ ≤ δ0.
Since K1 = {α(t) : t ∈ R} is compact, there are finite open balls Uk(k = 1, 2, · · · ,m)

with center xk ∈ K1 and radius δ0(small enough) such that

{α(t) : t ∈ R} ⊂
m⋃
k=1

Uk.

Define and choose Dk such that

Dk = {s ∈ R : α(s) ∈ Uk}, R =
m⋃
k=1

Dk,

and let

J1 = D1, Jk = Dk \
k−1⋃
j=1

Dj (2 ≤ k ≤ m).

Then
Ji ∩ Jj = ∅, when i 6= j, 1 ≤ i, j ≤ m.

Define the step function x : R→ X by x(s) = xk, s ∈ Jk, k = 1, 2 · · · ,m. It is easy to see
that ‖α(s)− x(s)‖ ≤ δ0 for all s ∈ R. It follows from (3.1) that

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖H(s)‖pds

) 1
p

dµ(t)

=
1

µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖h(s, α(s))‖pds

) 1
p

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

[(∫ t+1

t
‖h(s, α(s))− h(s, x(s))‖pds

) 1
p

+
(∫ t+1

t
‖h(s, x(s))‖pds

) 1
p

]
dµ(t)

≤ (L+ 1)ε+
1

µ([−r, r])

∫
[−r,r]

(
m∑
k=1

∫
[t,t+1]∩Jk

‖h(s, xk)‖pds

) 1
p

dµ(t)

≤ (L+ 1)ε+
m∑
k=1

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖h(s, xk)‖pds

) 1
p

dµ(t).
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Using the arbitrariness of ε and hb ∈ ε (X, Lp(0, 1; X), µ) , we obtain that

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖H(s)‖pds

) 1
p

dµ(t) = 0.

That is, Hb(·) ∈ ε (Lp(0, 1; X), µ) . This completes the proof.

Lemma 3.1 Let µ ∈ M. Assume that x(t) ∈ ASp(X), K2 = {x(t) : t ∈ R} is a compact
subset of X, and f b ∈ ε (X, Lp(0, 1; X), µ) satisfying that ∀ε > 0, ∃ δ > 0 and L(·) ∈
BSp(R) with p > 1 such that(∫ t+1

t
‖f(s, x)− f(s, y)‖pds

) 1
p

< L(t)ε, (3.2)

for all x, y ∈ K2 with ‖x− y‖ < δ. Then

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s, x(s))‖pds

) 1
p

dµ(t) = 0.

Proof: for ∀ε > 0, let δ and L(t) be as in the assumptions let δ0 = min{ε, δ} since K2 is
compact, there are finite open balls Ok(k = 1, 2, · · · ,m) with center xk and radius δ0 such
that

{x(t) : t ∈ R} ⊂
m⋃
k=1

Ok.

Define and choose Bk, such that

Bk = {t ∈ R : ‖x(t)− xk‖ < δ0}, k = 1, 2, · · · ,m.

Then R =
⋃m
k=1Bk, and let E1 = B1, Ek = Bk \ (∪k−1

i=1Bi) (2 ≤ k ≤ m). Then R =
∪mk=1Ek and Ei

⋂
Ej = ∅, i 6= j, 1 ≤ i, j ≤ m. Define the step function x : R → X, by

x(t) = xk for t ∈ Ek, k = 1, 2, · · · ,m. It is easy to see that ‖x(t)−x(t)‖ < δ0, for all t ∈ R.
By the definition of ε (Lp(0, 1; X), µ), for the above ε > 0, there is constant r0 > 0 such
that for all r > r0 and 1 ≤ k ≤ m,

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s, xk)‖pds

) 1
p

dµ(t) <
ε

m
, (3.3)

Then, by (3.2) we have(∫ t+1

t
‖f(s, x(s))‖pds

) 1
p

≤
(∫ t+1

t
‖f(s, x(s))− f(s, x(s))‖pds

) 1
p

+
(∫ t+1

t
‖f(s, x(s))‖pds

) 1
p
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≤ L(t)ε+

(
m∑
k=1

∫
Ek
⋂

[t,t+1]
‖f(s, xk)‖pds

) 1
p

Now combining (3.3) and the above inequality, we get

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s, x(s))‖pds

) 1
p

dµ(t)

≤ ε

µ([−r, r])

∫
[−r,r]

L(t)dµ(t) +
1

µ([−r, r])

∫
[−r,r]

m∑
k=1

(∫
Ek
⋂

[t,t+1]
‖f(s, xk)‖pds

) 1
p

dµ(t)

≤ ‖L‖Spε+
m∑
k=1

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s, xk)‖pds

) 1
p

dµ(t)

≤ ‖L‖Spε+
m∑
k=1

ε

m

≤ ‖L‖Spε+ ε

≤ (‖L‖Sp + 1)ε.

For all r > r0, which means that

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖f(s, x(s))‖pds

) 1
p

dµ(t) = 0.

Theorem 3.2 Let µ ∈M and let f = g+h ∈ PAAp (R× X,X, µ) with g ∈ ASp (R× X,X),
hb ∈ ε (X, Lp(0, 1; X), µ). Assume that the following conditions are satisfied:
(i) there exists a nonnegative function L(·) ∈ BSp(R) with p > 1 such that for all u, v ∈ X
and t ∈ R, (∫ t+1

t
‖f(s, u)− f(s, v)‖pds

) 1
p

< L(t)‖u− v‖.

(ii) g(t, x) is uniformly continuous in any bounded subset K
′ ⊂ X uniformly for t ∈ R.

If u = u1 + u2 ∈ PAAp(R,X, µ),with u1 ∈ ASp(X), ub2 ∈ ε (Lp(0, 1; X), µ) and K2 =
{u1(t) : t ∈ R} is compact, then f (·, u(·)) belongs to PAAp(R,X, µ).

Proof: Since f ∈ PAAp (R× X,X, µ) and u(t) ∈ PAAp(R,X, µ), we have by definition
that f = g + h and u = u1 + u2 where g ∈ ASp (R× X,X), hb ∈ ε (X, Lp(0, 1; X), µ),
u1 ∈ ASp(X) and ub2 ∈ ε (Lp(0, 1; X), µ). Now, the function f can be decomposed as

f (t, u(t)) = g (t, u1(t)) + f (t, u(t))− g (t, u1(t))

= g (t, u1(t)) + f (t, u(t))− f (t, u1(t)) + h (t, u1(t)) .
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Define

G(t) = g (t, u1(t)) , F (t) = f (t, u(t))− f (t, u1(t)) , H(t) = h (t, u1(t)) .

Then f (t, u(t)) = G(t) + F (t) + H(t). Since the function g satisfies condition (ii) and
K2 = {u1(t) : t ∈ R} is compact, it follows from Lemma 2.7 that the function g (·, u1(·)) ∈
ASp(X). To show that f (·, u(·)) ∈ PAAp(R,X, µ), it is sufficient to show that F b +
Hb ∈ ε (Lp(0, 1; X), µ). First we prove that F b ∈ ε (Lp(0, 1; X), µ). It is easy to see that
F (·) ∈ BSp(X). Assume that ‖F (t)‖Sp ≤ M for t ∈ R. For any ε > 0, by (i) and I = ∅,
we have

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖F (s)‖pds

) 1
p

dµ(t)

=
1

µ([−r, r])

∫
Aεr(u2)

(∫ t+1

t
‖F (s)‖pds

) 1
p

dµ(t)

+
1

µ([−r, r])

∫
Bεr(u2)

(∫ t+1

t
‖f (s, u(s))− f (s, u1(s)) ‖pds

) 1
p

dµ(t)

≤ M
µ(Aεr(u2))
µ([−r, r])

+
1

µ([−r, r])

∫
Bεr(u2)

L(t)
(∫ t+1

t
‖u2(s)‖pds

) 1
p

dµ(t)

≤ M
µ(Aεr(u2))
µ([−r, r])

+
ε

µ([−r, r])

∫
[−r,r]

L(t)dµ(t)

≤ M
µ(Aεr(u2))
µ([−r, r])

+ ε‖L‖Sp ,

where I, Aεr(u2), Bε
r(u2) are given in Theorem 2.1.

On the other hand, it follows from Theorem 2.1 that

lim
r→∞

µ(Aεr(u2))
µ([−r, r])

= 0.

So we get

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖F (s)‖pds

) 1
p

dµ(t) = 0.

Therefore, F b ∈ ε (Lp(0, 1; X), µ) . Next we prove that Hb ∈ ε (Lp(0, 1; X), µ). K2 =
{u1(t) : t ∈ R} is compact in X, g(t, x) is uniformly continuous in any bounded subset
K
′ ⊂ X uniformly for t ∈ R. Thus for any ε > 0, there is a constant δ ∈ (0, ε) such that

(∫ t+1

t
‖g(s, u)− g(s, v)‖pds

) 1
p

< ε,

t ∈ R, u, v ∈ K2 with ‖u− v‖ ≤ δ. By (i) we have(∫ t+1

t
‖h(s, u)− h(s, v)‖pds

) 1
p
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≤
(∫ t+1

t
‖f(s, u)− f(s, v)‖pds

) 1
p

+
(∫ t+1

t
‖g(s, u)− g(s, v)‖pds

) 1
p

≤ (L(t) + 1)ε.

For all t ∈ R and u, v ∈ K2 with ‖u− v‖ ≤ δ. Noting that (L(t) + 1) ∈ BSp(R), we know
from Lemma 3.1 that

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖h (s, u1(s)) ‖pds

) 1
p

dµ(t) = 0,

which means that Hb ∈ ε (Lp(0, 1; X), µ). This completes the proof.

Theorem 3.3 Let µ ∈M and let f := g+φ ∈ PAAp (R× X,X, µ) with g ∈ ASp (R× X,X),
and φb ∈ ε (X, Lp(0, 1; X), µ). Assume that the following conditions satisfied:
(1) f(t, x) is uniformly continuous in any bounded subset K

′ ⊂ X uniformly for t ∈ R,
(2) g(t, x) is uniformly continuous in any bounded subset K

′ ⊂ X uniformly for t ∈ R,
(3) For every bounded subset K

′ ⊂ X,{f(·, x) : x ∈ K ′} is bounded in PAAp(R×X,X, µ).
If x = α + β ∈ PAAp(R,X, µ) ∩ B(R,X), with α ∈ ASp(X), βb ∈ ε (Lp(0, 1; X), µ)
and Q = {x(t) : t ∈ R}, Q1 = {α(t) : t ∈ R} are compact, then f (·, x(·)) belongs to
PAAp(R,X, µ).

Proof: Since f ∈ PAAp(R× X,X, µ) and x ∈ PAAp(R,X, µ), we have by definition that
f = g + φ where g ∈ ASp (R× X,X) and φb ∈ ε (X, Lp(0, 1; X), µ). So, the function f can
be written in the form

f (t, x(t)) = g (t, α(t)) + f (t, x(t))− g (t, α(t))

= g (t, α(t)) + f (t, x(t))− f (t, α(t)) + φ (t, α(t)) .

Define

G(t) = g (t, α(t)) , H(t) = f (t, x(t))− f (t, α(t)) , Λ(t) = φ (t, α(t)) .

Then f (t, x(t)) = G(t) + H(t) + Λ(t). Since the function g satisfies condition (2) and
Q1 = {α(t) : t ∈ R} is compact, it follows from Lemma 2.7 that the function g (·, α(·)) ∈
ASp(X). To show that f (·, x(·)) ∈ PAAp(R,X, µ), it is enough to show that Hb + Λb ∈
ε (Lp(0, 1; X), µ).

First we prove that Hb ∈ ε (Lp(0, 1; X), µ). Since x(·) and α(·) are bounded, we can
choose a bounded subset K

′ ⊆ X, such that x(R), α(R) ⊆ K ′ . Under assumption (3) that
H(·) ∈ BSp(X), from (1) we can see f is uniformly continuous on the bounded subset
K
′ ⊆ X uniformly for t ∈ R. So given ε > 0, there exists δ > 0, such that u, v ∈ K ′ and
‖u− v‖ ≤ δ imply that ‖f(t, u)− f(t, v)‖ ≤ ε for all t ∈ R. Then we have(∫ t+1

t
‖f(s, u)− f(s, v)‖pds

) 1
p

≤ ε.
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Hence, for each t ∈ R, ‖β(s)‖Sp < δ, s ∈ [t, t+ 1] implies that for all t ∈ R,(∫ t+1

t
‖H(s)‖pds

) 1
p

=
(∫ t+1

t
‖f (s, x(s))− f (s, α(s)) ‖pds

) 1
p

≤ ε.

Therefore the following inequality holds

µ

{
t ∈ [−r, r] :

(∫ t+1
t ‖f(s, x(s))− f(s, α(s))‖pds

) 1
p
> ε

}
µ([−r, r])

≤
µ

{
t ∈ [−r, r] :

(∫ t+1
t ‖β(s)‖pds

) 1
p
> δ

}
µ([−r, r])

.

Since βb is µ-ergodic, Theorem 2.1 yields that for the above-mentioned δ we have

lim
r→+∞

µ

{
t ∈ [−r, r] :

(∫ t+1
t ‖β(s)‖pds

) 1
p
> δ

}
µ([−r, r])

= 0,

and then we obtain

lim
r→+∞

µ

{
t ∈ [−r, r] :

(∫ t+1
t ‖f(s, x(s))− f(s, α(s))‖pds

) 1
p
> ε

}
µ([−r, r])

= 0. (3.4)

With the help of Theorem 2.1, (3.4) shows that t→ Hb is µ-ergodic.
Now to complete the proof, it is enough to prove that Λb is µ-ergodic. Since f, g satisfy

conditions (1) and (2), then for any ε > 0, exists δ > 0, such that u, v ∈ Q1 imply that(∫ t+1

t
‖f(s, u)− f(s, v)‖pds

) 1
p

<
ε

16
t ∈ R,

and (∫ t+1

t
‖g(s, u)− g(s, v)‖pds

) 1
p

<
ε

16
t ∈ R.

Now, we put δ0 = min(ε, δ), then(∫ t+1

t
‖φ(s, u)− φ(s, v)‖pds

) 1
p

≤
(∫ t+1

t
‖f(s, u)− f(s, v)‖pds

) 1
p

+
(∫ t+1

t
‖g(s, u)− g(s, v)‖pds

) 1
p

≤ ε

8



22 Y. -K. Chang, G. M. N’Guérékata, and R. Zhang

for all t ∈ R, and u, v ∈ Q1 with ‖u− v‖ ≤ δ0.
Since Q1 = {α(t) : t ∈ R} is compact, we find finite open balls Ok(k = 1, 2, · · · ,m) with

center uk ∈ Q1 and radius δ0 given above, such that {α(t) : t ∈ R} ⊂ ∪mk=1Ok. Define and
choose Bk such that Bk = {t ∈ R : ‖α(t)− uk‖ < δ0}, k = 1, 2, · · · ,m, R = ∪mk=1Bk, and
set E1 = B1, Ek = Bk \ (∪k−1

j=1Bj) (2 ≤ k ≤ m). Then R = ∪mk=1Ek and Ei
⋂

Ej = ∅, i 6=
j, 1 ≤ i, j ≤ m. Define a function u : R→ X by u(t) = uk for t ∈ Ek, k = 1, 2, · · ·m.
Then ‖α(t)− u(t)‖ < δ0 for all t ∈ R, it is easy to get from(

m∑
k=1

∫
Ek
⋂

[t,t+1]
‖φ (s, α(s))− φ(s, uk)‖pds

) 1
p

=
(∫ t+1

t
‖φ (s, α(s))− φ (s, u(s)) ‖pds

) 1
p

<
ε

8
.

Since φb ∈ ε (X, Lp(0, 1; X), µ), there exists a constant r0 > 0, such that

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖φ(s, uk)‖pds

) 1
p

dµ(t) <
ε

8m2

for all r > r0 and 1 ≤ k ≤ m.
Now combing these estimates, we deduce that for all r > r0

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖Λ(s)‖pds

) 1
p

dµ(t)

=
1

µ([−r, r])

∫
[−r,r]

(
m∑
k=1

(∫
Ek
⋂

[t,t+1]
‖φ (s, α(s))− φ(s, uk) + φ(s, uk)‖pds

)) 1
p

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

[
2p

m∑
k=1

(∫
Ek
⋂

[t,t+1]
‖φ (s, α(s))− φ(s, uk)‖pds

+
∫

Ek
⋂

[t,t+1]
‖φ(s, uk)‖pds

)] 1
p

dµ(t)

≤ 21+ 1
p

µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖φ (s, α(s))− φ (s, u(s))‖p ds

) 1
p

dµ(t)

+
21+ 1

p

µ([−r, r])

∫
[−r,r]

(
m∑
k=1

∫
Ek
⋂

[t,t+1]
‖φ(s, uk)‖pds

) 1
p

dµ(t)

<
4

µ([−r, r])

∫
[−r,r]

ε

8
dµ(t) +

m∑
k=1

4m
1
p

µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖φ(s, uk)‖pds

) 1
p

dµ(t)
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<
ε

2
+m

1
p
ε

2m
< ε,

which implies that Λb ∈ ε (Lp(0, 1; X), µ). This completes the proof.

4 Existence of µ-pseudo almost automorphic solutions

In this section, we consider the existence of µ-pseudo almost automorphic mild solu-
tions for the problem (1.1) under some suitable conditions.

Definition 4.1 A continuous function u is called a µ-pseudo almost automorphic mild
solution of Eq. (1.1) on R if u ∈ PAA(R,X, µ) and u(t) satisfies

u(t) = U(t, a)u(a) +
∫ t

a
U(t, s)f(s, u(s))ds

for t ≥ a.

First, we list the following basic assumptions:
In this paper we assume that {A(t)}t∈R satisfies the Acquistapace-Terreni conditions

introduced in [16, 23], that is,
(A1) There exist constants λ0 ≥ 0, θ ∈ (π2 , π), L, K ≥ 0, and α, β ∈ (0, 1] with α+ β > 1
such that

Σθ ∪ {0} ⊂ ρ(A(t)− λ0), ‖R(λ,A(t)− λ0)‖ ≤ K
1 + |λ|

and
‖(A(t)− λ0)R(λ,A(t)− λ0)[R(λ0, A(t))−R(λ0, A(s))]‖ ≤ L|t− s|α|λ|−β

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C \ {0} : |argλ| ≤ θ}.

Remark 4.1 [16, 24] If the condition (A1) holds, then there exists a unique evolution fam-
ily {U(t, s)}−∞<s≤t<∞ on X, which satisfies the homogeneous equation u

′
(t) = A(t)u(t), t ∈

R.

We further suppose that
(A2) The evolution family U(t, s) generated by A(t) is exponentially stable, that is, there
are constants K,ω > 0 such that ‖U(t, s)‖ ≤ Ke−ω(t−s) for all t ≥ s. And the function
R× R 7→ X, (t, s) 7→ U(t, s)x ∈ bAA(R× R,X) uniformly for all x in any bounded subset
of X.
(A3) There exists a constant Lf > 0, such that

‖f(t, x)− f(t, y)‖ ≤ Lf‖x− y‖

for all t ∈ R and each x, y ∈ X.
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(A4) There exists a nonnegative function Lf (·) ∈ BSp(R), with p > 1 such that

‖f(t, x)− f(t, y)‖ ≤ Lf (t)‖x− y‖

for all t ∈ R and each x, y ∈ X.
(A5) The function f : R× X→ X satisfies the following conditions:

(I)There exists L̃ > 0 such that

Mf = sup
t∈R,‖u‖≤L̃

(∫ t+1

t
‖f(s, u(s))‖pds

) 1
p

≤ L̃

∆(K, q, ω)
,

where ∆(K, q, ω) = K q

√
eqω−1
qω Σ∞n=1e

−ωn.

(II)Let {xn} ⊂ PAA(R,X, µ) be uniformly bounded in R and uniformly convergent in
each compact subsut of R. Then {f(·, xn(·))} is relatively compact in BSp(X).
(A6) The function f = g+h ∈ PAAp (R× X,X, µ) where g ∈ ASp (R× X,X) is uniformly
continuous in any bounded subset M ⊂ X uniformly in t ∈ R and hb ∈ ε (X, Lp(0, 1; X), µ).
(A7) f ∈ PAAp (R× X,X, µ) and f(t, x) is uniformly continuous in any bounded subset
M ⊂ X uniformly for t ∈ R and for every bounded subset M ⊂ X, {f(·, x) : x ∈ M} is
bounded in PAAp (R× X,X, µ).

Consider the following abstract differential equation in the Banach space (X, ‖ · ‖)

u
′
(t) = A(t)u(t) + f(t), t ∈ R, (4.1)

where {A(t)}t∈R satisfies the condition (A1) and f ∈ PAAp(R,X, µ) ∩ C(R,X) for p > 1.
Throughout this paper we set 1

q = 1− 1
p . Note that q 6= 0, as p 6= 1.

Lemma 4.1 Let µ ∈M. Assume that (A1)-(A2) hold. Then the Eq.(4.1) admits a unique
µ-pseudo almost automorphic mild solution given by

u(t) =
∫ t

−∞
U(t, σ)f(σ)dσ. (4.2)

Proof: The proof of uniqueness has been given in [13]. Now let us investigate the existence.
Since f ∈ PAAp(R,X, µ), there exist g ∈ ASp(X) and hb ∈ ε (Lp(0, 1; X), µ) such that
f = g + h. So

u(t) =
∫ t

−∞
U(t, σ)f(σ)dσ

=
∫ t

−∞
U(t, σ)g(σ)dσ +

∫ t

−∞
U(t, σ)h(σ)dσ

= Φ(t) + Ψ(t),

where Φ(t) =
∫ t
−∞ U(t, σ)g(σ)dσ, and Ψ(t) =

∫ t
−∞ U(t, σ)h(σ)dσ. We just need to verify

Φ(t) ∈ AA(X) and Ψ(t) ∈ ε (R,X, µ). First we prove that Φ(t) ∈ AA(X). It follows from
[5, Lemma 11.2] that Φ(t) is almost automorphic. Next, we prove that Ψ(t) ∈ ε (R,X, µ).
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For this, we consider

Ψn(t) =
∫ t−n+1

t−n
U(t, σ)h(σ)dσ,

for each t ∈ R and n = 1, 2, 3 · · · . From assumption (A2) and Holder’s inequality, it follows
that

‖Ψn(t)‖ ≤ K

∫ t−n+1

t−n
e−ω(t−σ)‖h(σ)‖dσ

≤ K

(∫ t−n+1

t−n
e−qω(t−σ)dσ

) 1
q
(∫ t−n+1

t−n
‖h(σ)‖pdσ

) 1
p

≤ K

(∫ n

n−1
e−qωσdσ

) 1
q
(∫ t−n+1

t−n
‖h(σ)‖pdσ

) 1
p

≤ K
q
√
qω

(
e−qω(n−1) − e−qωn

) 1
q

(∫ t−n+1

t−n
‖h(σ)‖pdσ

) 1
p

≤ Ke−ωn

q
√
qω

(eqω − 1)
1
q

(∫ t−n+1

t−n
‖h(σ)‖pdσ

) 1
p

≤ Ke−ωn

q
√
qω

(eqω + 1)
1
q

(∫ t−n+1

t−n
‖h(σ)‖pdσ

) 1
p

.

Then for r > 0 we see that.

1
µ([−r, r])

∫
[−r,r]

‖Ψn(t)‖dµ(t)

≤ Ke−ωn

q
√
qω

(eqω + 1)
1
q

1
µ([−r, r])

∫
[−r,r]

(∫ t−n+1

t−n
‖h(σ)‖pdσ

) 1
p

dµ(t).

Since hb ∈ ε (Lp(0, 1; X), µ), the above inequality leads to Ψn ∈ ε (R,X, µ). The above
inequality leads also to

‖Ψn(t)‖ ≤ Ke−ωn

q
√
qω

(eqω + 1)
1
q ‖h‖Sp .

Since the series
K
q
√
qω

(eqω + 1)
1
q ×

∞∑
n=1

e−ωn

is convergent, then we deduce from the Weierstrass test that the series
∑∞

n=1 Ψn(t) is
uniformly convergent on R and Ψ(t) =

∫ t
−∞ U(t, σ)h(σ)dσ =

∑∞
n=1 Ψn(t). Applying Ψn ∈

ε (R,X, µ) and the inequality

1
µ([−r, r])

∫
[−r,r]

‖Ψ(t)‖dµ(t) ≤ 1
µ([−r, r])

∫
[−r,r]

‖Ψ(t)−
n∑
k=1

Ψk(t)‖dµ(t)
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+
n∑
k=1

1
µ([−r, r])

∫
[−r,r]

‖Ψk(t)‖dµ(t),

we deduce that the uniformly limit Ψ(t) =
∑∞

n=1 Ψn(t) ∈ ε (R,X, µ). Therefore u(t) =
Φ(t) + Ψ(t) is µ-pseudo almost automorphic.

Finally, let us prove that u(t) is a mild solution of the Eq. (4.1). Indeed, if we let

u(s) =
∫ s

−∞
U(s, σ)f(σ)dσ. (4.3)

and multiply both sides of (4.3) by U(t, s), then

U(t, s)u(s) =
∫ s

−∞
U(t, σ)f(σ)dσ.

If t ≥ s, then∫ t

s
U(t, σ)f(σ)dσ =

∫ t

−∞
U(t, σ)f(σ)dσ −

∫ s

−∞
U(t, σ)f(σ)dσ.

= u(t)− U(t, s)u(s)

It follows that

u(t) = U(t, s)u(s) +
∫ t

s
U(t, σ)f(σ)dσ.

This completes the proof of the theorem.

Theorem 4.1 Let µ ∈ M. Assume the condition (H0), (A1)-(A3) are satisfied and
the function f = g + h ∈ PAAp(R × X,X, µ) with g ∈ ASp (R× X,X), and hb ∈
ε (X, Lp(0, 1; X), µ). Then Eq.(1.1) has a unique µ-pseudo almost automorphic mild solu-
tion on R provided that KLf

ω < 1.

Proof:. Let Γ : PAA(R,X, µ)→ PAA(R,X, µ) be the nonlinear operator defined by

(Γu)(t) =
∫ t

−∞
U(t, s)f (s, u(s)) ds, t ∈ R.

First, let us prove that Γ (PAA(R,X, µ)) ⊂ PAA(R,X, µ). For each u ∈ PAA(R,X, µ),
by using the fact that the range of an almost automorphic function is relatively compact
combined with the above Theorem 2.4, Theorem 3.1, one can easily see that f (·, u(·)) ∈
PAAp(R,X, µ). Hence, from the proof of Lemma 4.1, we know that (Γu)(·) ∈ PAA(R,X, µ).
That is, Γ maps PAA(R,X, µ) into PAA(R,X, µ).
Now, let us prove that Γ has a unique fixed-point. To this end, for each t ∈ R, u, v ∈
PAA(R,X, µ), we have

‖(Γu)(t)− (Γv)(t)‖ ≤
∫ t

−∞
‖U(t, s)[f (s, u(s))− f (s, v(s))]‖ds
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≤ K

∫ t

−∞
e−ω(t−s)‖f (s, u(s))− f (s, v(s)) ‖ds

≤ KLf
∫ t

−∞
e−ω(t−s)‖u(s)− v(s)‖ds

≤ KLf
∫ t

−∞
e−ω(t−s)ds‖u− v‖∞

≤
KLf
ω
‖u− v‖∞.

So ‖Γu−Γv‖∞ ≤
KLf
ω ‖u−v‖∞. Hence by the Banach contraction principle with KLf

ω < 1,
Γ has a unique fixed-point u in PAA(R,X, µ) which is the µ-pseudo almost automorphic
solution to Eq. (1.1).

A different Lipschitz condition is considered in the following result.

Theorem 4.2 Let µ ∈M. Assume that (H0), (A1), (A2), (A4) and (A6) hold, then Eq.
(1.1) admits a unique µ-pseudo almost automorphic mild solution whenever ‖Lf‖Sp <
1−e−ω
K

(
ωq

1−e−ωq

) 1
q .

Proof:. Consider the nonlinear operator Γ given by

(Γu)(t) =
∫ t

−∞
U(t, s)f (s, u(s)) ds, t ∈ R.

Let u ∈ PAA(R,X, µ), with Theorem 2.4, Theorem 3.2, it follows that the function
s → f(s, u(s)) is in PAAp(R,X, µ). Moreover, from Lemma 4.1, we infer that Γu ∈
PAA(R,X, µ), that is, Γ maps PAA(R,X, µ) into itself. Next, we prove that the operator
Γ has a unique fixed point in PAA(R,X, µ). Indeed, for each t ∈ R, u, v ∈ PAA(R,X, µ)
We have

‖Γu(t)− Γv(t)‖ ≤
∥∥∥∥∫ t

−∞
U(t, s)[f (s, u(s))− f (s, v(s))]ds

∥∥∥∥
≤ K

∫ t

−∞
e−ω(t−s)‖f(s, u(s))− f(s, v(s))‖ds

≤ K

∫ t

−∞
e−ω(t−s)Lf (s)ds‖u− v‖∞

=
∞∑
n=1

∫ t−n+1

t−n
Ke−ω(t−s)Lf (s)ds‖u− v‖∞

≤
∞∑
n=1

(∫ t−n+1

t−n
Kqe−ωq(t−s)ds

) 1
q

‖Lf‖Sp‖u− v‖∞

≤ K

1− e−ω

(
1− e−qω

ωq

) 1
q

‖Lf‖Sp‖u− v‖∞,
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which gives

‖(Γu)(t)− (Γv)(t)‖∞ ≤ K

1− e−ω

(
1− e−qω

ωq

) 1
q

‖Lf‖Sp‖u− v‖∞.

Since ‖Lf‖Sp < 1−e−ω
K

(
ωq

1−e−ωq

) 1
q , Γ has a unique fixed point u ∈ PAA(R,X, µ).

We next study the existence of µ-pseudo almost automorphic mild solutions of Eq.
(1.1) when the perturbation f is not Lipschitz continuous.

Theorem 4.3 Let µ ∈ M. Assume the conditions (H0),(A1)-(A2) and (A5)-(A7) are
satisfied, moreover, U(t, s) is compact for t > s. Then the problem (1.1) has at least one
µ-pseudo almost automorphic mild solution on R.

Proof: Consider the nonlinear operator Γ given by

(Γx)(t) =
∫ t

−∞
U(t, s)f (s, x(s)) ds, t ∈ R.

First, we show that the nonlinear operator Γ is well defined and continuous. From Theorem
2.4, Theorem 3.3 we can see that f(s, x(s)) ∈ PAAp(R,X, µ). Hence from Lemma 4.1 that
(Γx)(·) ∈ PAA(R,X, µ), that is, Γ maps PAA(R,X, µ) into PAA(R,X, µ).

Now, let us to show that Γ is continuous on PAA(R,X, µ). Let {xn} ⊂ PAA(R,X, µ)
be a sequence which converges to some x ∈ PAA(R,X, µ), that is ‖xn−x‖ → 0 as n→∞.
We may find a bounded subset M ⊂ X such that xn(t), x(t) ∈ M for t ∈ R, n = 1, 2, · · · .
By (A7), for any ε > 0, there exists ω > 0 such that u, v ∈M and ‖u− v‖ < ω imply that

‖f(t, u)− f(t, v)‖ < ωε

K
for each t ∈ R,

where ω,K are given in (A2). For the above ω > 0, there exists N > 0 such that
‖xn(t)− x(t)‖ < ω for all n > N and all t ∈ R. Therefore,

‖f(t, xn(t))− f(t, x(t))‖ < ωε

K
for each t ∈ R,

for all n > N and all t ∈ R. Then by the dominated convergence theorem, we have

‖(Γxn)(t)− (Γx)(t)‖ =
∥∥∥∥∫ t

−∞
U(t, s)[f(s, xn(s))− f(s, x(s))]ds

∥∥∥∥
≤ K

∫ t

−∞
e−ω(t−s)‖f(s, xn(s))− f(s, x(s))‖ds

< K

∫ t

−∞
e−ω(t−s)ωε

K
ds ≤ ε

for all n > N and all t ∈ R. This implies that Γ is continuous.
For the sake of convenience, we divide the remain proof into several steps.
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Step 1: Let B = {x ∈ PAA(R,X, µ) : ‖x‖∞ ≤ L̃}. Then B is a closed convex subset
of PAA(R,X, µ). We claim that ΓB ⊂ B. In fact, for x ∈ B and t ∈ R, we get

‖(Γx)(t)‖ =
∥∥∥∥∫ t

−∞
U(t, s)f(s, x(s))ds

∥∥∥∥
≤

∞∑
n=1

∥∥∥∥∫ t−n+1

t−n
U(t, s)f(s, x(s))ds

∥∥∥∥
≤

∞∑
n=1

K

∫ t−n+1

t−n
e−ω(t−s)‖f(s, x(s))‖ds

≤
∞∑
n=1

K

(∫ t−n+1

t−n
e−ωq(t−s)ds

) 1
q
(∫ t−n+1

t−n
‖f(s, x(s))‖pds

) 1
p

≤
∞∑
n=1

K q

√
eqω − 1
qω

e−ωnMf ≤ L̃,

which implies that ‖Γx‖∞ ≤ L̃. Thus ΓB ⊂ B.
Step 2: We prove that the operator Γ is completely continuous on B. It is sufficient

to prove that the following statements are true.
(B1) V (t) = {(Γx)(t) : x ∈ B} is relatively compact in X for each t ∈ R.
(B2) {Γx : x ∈ B ⊂ PAA(R,X, µ)} is a family of equicontinuous functions.
First we show that (B1) holds. Let 0 < ε < 1 be given. For each t ∈ R and x ∈ B, we

define

(Γεx)(t) =
∫ t−ε

−∞
U(t, s)f(s, x(s))ds

= U(t, t− ε)
∫ t−ε

−∞
U(t− ε, s)f(s, x(s))ds

= U(t, t− ε)[(Γx)(t− ε)].

Since U(t, s)(t > s) is compact, then the set Vε(t) : {(Γεx)(t) : x ∈ B} is relatively compact
in X for each t ∈ R. Moreover, for each x ∈ B, we get

‖(Γx)(t)− (Γεx)(t)‖ =
∥∥∥∥∫ t

t−ε
U(t, s)f(s, x(s))ds

∥∥∥∥
≤ K

∫ t

t−ε
e−ω(t−s)‖f(s, x(s))‖ds

≤ K

(∫ t

t−ε
e−qω(t−s)ds

) 1
q
(∫ t

t−ε
‖f(s, x(s))‖pds

) 1
p

≤ KMf

(∫ t

t−ε
e−qω(t−s)ds

) 1
q

.
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Letting ε → 0, it follows that there are relatively compact set Vε(t) arbitrarily close to
V (t) and hence V (t) is also relatively compact in X for each t ∈ R.

Next we prove that (B2) holds. Let ε > 0 be small enough and −∞ < t1 < t2 < ∞.
Since {U(t, s)} is exponentially stable and compact for t > s, there exists δ = δ(ε) < ε̃

such that t2 − t1 < δ implies that∥∥∥∥U(t1, t1 − t

2

)
− U

(
t2, t1 −

t

2

)∥∥∥∥ < ε

γ
for all t > 0,

where ε̃ = ( ε
6KMf

)q ≤ 1 and γ = 3KMf
q

√
2(e

qω
2 −1)
qω

∑∞
n=1 e

−ω(ε̃+n)
2 .

Indeed, for x ∈ B and t2 − t1 < δ, we have

‖(Γx)(t2)− (Γx)(t1)‖

≤

∥∥∥∥∥
∫ t1−ε̃

−∞
[U(t2, s)− U(t1, s)]f(s, x(s))ds

∥∥∥∥∥
+
∥∥∥∥∫ t1

t1−ε̃
[U(t2, s)− U(t1, s)]f(s, x(s))ds

∥∥∥∥
+
∥∥∥∥∫ t2

t1

U(t2, s)f(s, x(s))ds
∥∥∥∥

≤
∥∥∥∥∫ ∞

ε̃
[U(t2, t1 − s)− U(t1, t1 − s)]f(t1 − s, x(t1 − s))ds

∥∥∥∥
+K

∫ t1

t1−ε̃
[e−ω(t2−s) + e−ω(t1−s)]‖f(s, x(s))‖ds

+K
∫ t2

t1

e−ω(t2−s)‖f(s, x(s))‖ds

≤
∥∥∥∥∫ ∞

ε̃

[
U
(
t2, t1 −

s

2

)
− U

(
t1, t1 −

s

2

)]
U
(
t1 −

s

2
, t1 − s

)
f(t1 − s, x(t1 − s))ds

∥∥∥∥
+K

(∫ t1

t1−ε̃
[e−ω(t2−s) + e−ω(t1−s)]qds

) 1
q
(∫ t1

t1−ε̃
‖f(s, x(s))‖pds

) 1
p

+K
(∫ t2

t1

e−qω(t2−s)ds

) 1
q
(∫ t2

t1

‖f(s, x(s))‖pds
) 1
p

≤ ε

γ
K

∫ ∞
ε̃

e−
ωs
2 ‖f(t1 − s, x(t1 − s))‖ds+ 2Kε̃

1
qMf +Kδ

1
qMf

≤ ε

γ
K
∞∑
n=1

∫ ε̃+n

ε̃+n−1
e−

ωs
2 ‖f(t1 − s, x(t1 − s))‖ds+ 2K

[(
ε

6KMf

)q] 1
q

Mf +Kε̃
1
qMf

≤ ε

γ
K

∞∑
n=1

(∫ ε̃+n

ε̃+n−1
e−

qωs
2 ds

) 1
q
(∫ ε̃+n

ε̃+n−1
‖f(t1 − s, x(t1 − s))‖pds

) 1
p

+
ε

3
+
ε

6
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≤ ε

γ
KMf

q

√
2(e

qω
2 − 1)
qω

∞∑
n=1

e−
ω(ε̃+n)

2 +
ε

3
+
ε

6

≤ ε

3
+
ε

3
+
ε

6
< ε.

This implies that the set {Γx : x ∈ B} is equicontinuous.
Now we denote the closed convex hull of ΓB by coΓB. Since ΓB ⊂ B and B is closed

convex, coΓB ⊂ B. Thus, Γ(coΓB) ⊂ ΓB ⊂ coΓB. This implies that Γ is a continuous
mapping from coΓB to coΓB. It is easy to verify that coΓB has the properties (B1) and
(B2). More explicitly, {x(t) : x ∈ coΓB} is relatively compact in X for each t ∈ R,
and coΓB ⊂ BC(R,X) is uniformly bounded and equicontinuous. By the Ascoli-Arzelà
theorem, the restriction of coΓB to every compact subset K3 of R, namely {x(t) : x ∈
coΓB}x∈K3 is relatively compact in C(K3,X). Thus, by the conditions (A5)(II) and Γ is
well defined and continuous, we deduce that Γ : coΓB → coΓB is a compact operator.
Noting the continuity of Γ, it follows from Schauder’s fixed point theorem, we conclude
that there is a fixed point x(·) for Γ in coΓB. That is Eq. (1.1) has at least one µ-pseudo
almost automorphic mild solution x ∈ B. this completes the proof.

The following existence result is based upon nonlinear Leray-Schauder alternative the-
orem. For that, we require the following assumption:

(A8) There exists a continuous nondecreasing function W : [0,∞)→ (0,∞) such that

‖f(t, x)‖ ≤W (‖x‖) for all t ∈ R and x ∈ X.

Theorem 4.4 Let µ ∈ M. Assume the conditions (H0),(A1)-(A2) are satisfied. Let
f : R × X → X be a function that satisfies assumptions (A6)-(A8), and the following
additional conditions:
(i) For each z ≥ 0, the function t→

∫ t
−∞ e

−ω(t−s)W (zh(s)) ds belongs to BC(R). We set

β(z) = K

∥∥∥∥∫ t

−∞
e−ω(t−s)W (zh(s)) ds

∥∥∥∥
h

.

(ii) For each ε > 0 there is δ > 0 such that for every u, v ∈ Ch(X), ‖u − v‖h ≤ δ implies
that ∫ t

−∞
e−ω(t−s)‖f(s, u(s))− f(s, v(s))‖ds ≤ ε,

for all t ∈ R.
(iii) lim infξ→∞

ξ
β(ξ) > 1.

(iv) For all a, b ∈ R, a < b, and z > 0, the set {f(s, h(s)x) : a ≤ s ≤ b, x ∈ Ch(X), ‖x‖h ≤
z} is relatively compact in X.

Then Eq.(1.1) has a µ-pseudo almost automorphic mild solution.
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Proof: We define the nonlinear operator Γ : Ch(X)→ Ch(X) by

(Γu)(t) :=
∫ t

−∞
U(t, s)f(s, u(s))ds, t ∈ R.

We will show that Γ has a fixed point in PAA(R,X, µ). For the sake of convenience, we
divide the proof into several steps.

(I) For u ∈ Ch(X), we have that

‖(Γu)(t)‖ ≤ K
∫ t

−∞
e−ω(t−s)W (‖u(s)‖)ds ≤ K

∫ t

−∞
e−ω(t−s)W (‖u‖hh(s)) ds.

It follows from condition (i) that Γ is well defined.
(II) The operator Γ is continuous. In fact, for any ε > 0, we take δ > 0 involved in

condition(ii). If u, v ∈ Ch(X) and ‖u− v‖h ≤ δ, then

‖(Γu)(t)− (Γv)(t)‖ ≤ K
∫ t

−∞
e−ω(t−s)‖f(s, u(s))− f(s, v(s))‖ds ≤ ε,

which shows the assertion.
(III) We will show that Γ is completely continuous. We set Bz(X) for the closed ball

with center at 0 and radius z in the space X. Let V = Γ(Bz(Ch(X))) and v = Γ(u) for
u ∈ Bz(Ch(X)). First, we will prove that V (t) is a relatively compact subset of X for each
t ∈ R. It follows from condition (i) that the function s→ Ke−ωsW (zh(t−s)) is integrable
on [0,∞). Hence, for ε > 0, we can choose a ≥ 0 such that K

∫∞
a e−ωsW (zh(t− s))ds ≤ ε.

Since

v(t) =
∫ a

0
U(t, t− s)f(t− s, u(t− s))ds+

∫ ∞
a

U(t, t− s)f(t− s, u(t− s))ds

and ∥∥∥∥∫ ∞
a

U(t, t− s)f(t− s, u(t− s))ds
∥∥∥∥ ≤ K ∫ ∞

a
e−ωsW (zh(t− s))ds ≤ ε,

we get v(t) ∈ ac0(N) + Bε(X), where c0(N) denotes the convex hull of N and N =
{U(t, t − s)f(ξ, h(ξ)x) : 0 ≤ s ≤ a, t − a ≤ ξ ≤ t, ‖x‖h ≤ z}. Using the strong continuity
of U(t, s) and property (iv) of f , we infer that N is a relatively compact set, and V (t) ⊆
ac0(N) +Bε(X), which establishes our assertion.

Second, we show that the set V is equicontinuous. In fact, we can decompose

v(t+ s)− v(t) =
∫ s

0
U(t, t− σ)f(t+ s− σ, u(t+ s− σ))dσ

+
∫ a

0
[U(t, t− σ − s)− U(t, t− σ)]f(t− σ, u(t− σ))dσ

+
∫ ∞
a

[U(t, t− σ − s)− U(t, t− σ)]f(t− σ, u(t− σ))dσ.
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For each ε > 0, we can choose a > 0 and δ1 > 0 such that∥∥∥∥∫ s

0
U(t, t− σ)f(t+ s− σ, u(t+ s− σ))dσ

+
∫ ∞
a

[U(t, t− σ − s)− U(t, t− σ)]f(t− σ, u(t− σ))dσ
∥∥∥∥

≤ K

∫ s

0
e−ωσW (zh(t+ s− σ))dσ +K

∫ ∞
a

[e−ω(σ+s) + e−ωσ]W (zh(t− σ))dσ

≤ ε

2

for s ≤ δ1. Moreover, since {f(t− σ, u(t− σ)) : 0 ≤ σ ≤ a, u ∈ Bz(Ch(X))} is a rela-
tively compact set and U(t, s) is strongly continuous, we can choose δ2 > 0 such that
‖[U(t, t− σ − s)− U(t, t− σ)]f(t− σ, u(t− σ))‖ ≤ ε

2a for s ≤ δ2. Combining these esti-
mates, we get ‖v(t+ s)− v(t)‖ ≤ ε for s small enough and independent of u ∈ Bz(Ch(X)).

Finally, applying condition (i), we can see that

‖v(t)‖
h(t)

≤ K

h(t)

∫ t

−∞
e−ω(t−s)W (zh(s))ds→ 0, |t| → ∞,

and this convergence is independent of u ∈ Bz(Ch(X)). Hence, by Lemma 2.10, V is a
relatively compact set in (Ch(X)).

(IV) Let us show assume that uλ(·) is a solution of equation uλ = λΓ(uλ) for some
0 < λ < 1. We can estimate∥∥∥uλ(t)

∥∥∥ = λ

∥∥∥∥∫ t

−∞
U(t, s)f(s, uλ(s))ds

∥∥∥∥
≤ K

∫ t

−∞
e−ω(t−s)W (‖uλ‖hh(s))ds

≤ β(‖uλ‖h)h(t).

Hence, we get

‖uλ‖h
β(‖uλ‖h)

≤ 1

and combining with condition (iii), we conclude that the set
{
uλ : uλ = λΓ(uλ), λ ∈ (0, 1)

}
is bounded.

(V) It follows from Theorem 2.4, (A6)-(A7) and Theorem 3.3, that the function t →
f(t, u(t)) belongs to PAAp(R,X, µ), whenever u ∈ PAA(R,X, µ). Moreover, from Lemma
4.1 we infer that Γ(PAA(R,X, µ)) ⊂ PAA(R,X, µ) and noting that PAA(R,X, µ) is a
closed subspace of Ch(X), consequently, we can consider Γ : PAA(R,X, µ)→ PAA(R,X, µ).
Using properties (I)-(III), we deduce that this map is completely continuous. Applying
Lemma 2.11, we infer that Γ has a fixed point u ∈ PAA(R,X, µ), which completes the
proof.
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Corollary 4.1 Let µ ∈M. Assume that (H0), (A1)-(A2) are satisfied. Let f : R×X→
X be a function that satisfies assumptions (A6)-(A7) and the Hölder type condition:

‖f(t, u)− f(t, v)‖ ≤ %‖u− v‖α, 0 < α < 1,

for all t ∈ R and u, v ∈ X, where % > 0 is a constant. Moreover, assume the following
conditions:
(a) f(t, 0) = q.
(b) supt∈RK

∫ t
−∞ e

−ω(t−s)h(s)αds = %2 <∞.
(c) For all a, b ∈ R, a < b, and z > 0, the set {f(s, h(s)x) : a ≤ s ≤ b, x ∈ Ch(X), ‖x‖h ≤ z}
is relatively compact in X.

Then Eq.(1.1) has a µ pseudo almost automorphic mild solution.

Proof: Let %0 = ‖q‖, %1 = %. We take W (ξ) = %0 +%1ξ
α. Then condition (A8) is satisfied.

It follows from (b), we can see that function f satisfies (i) in Theorem 4.4. Note that for
each ε > 0 there is 0 < δα < ε

%1%2
such that for every u, v ∈ Ch(X), ‖u − v‖h ≤ δ implies

that K
∫ t
−∞ e

−ω(t−s)‖f(s, u(s)− f(s, v(s))‖ds ≤ ε for all t ∈ R. The hypothesis (iii) in the
statement of Theorem 4.4 can be easily verified using the definition of W. So by Theorem
4.4 we can proof Eq.(1.1) has a µ-pseudo almost automorphic mild solution.
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