Finite groups with some generalized CAP-subgroups¹

Yangming Li²

(Dept. of Math., Guangdong University of Education, Guangzhou, 510310, China) (Email: liyangming@gdei.edu.cn)

Yujian Huang

(Guangdong Industry Technical College, Guangzhou, 510300, China)

Abstract A subgroup H of a finite group G is called to be a CAP*-subgroup of G if H either covers or avoids every non-Frattini chief factor of G. In this paper, we study the influence of the CAP*-subgroups of a finite group G on the structure of G and some recent results were extended.

MSC(2000): 20D10, 20D15. Keywords: CAP*-subgroup, supersolvable group, $\mathcal{U}\phi$ -hypercenter.

1 Introduction

All groups considered in this paper are finite. We use conventional notions and notation, as in Huppert[8]. G always denotes a finite group, |G| the order of G, $\pi(G)$ the set of all primes dividing |G|, G_p a Sylow *p*-subgroup of G for some $p \in \pi(G)$. For clearity, some times we denote the factor group G/N by $\frac{G}{N}$.

Let K and L be normal subgroups of a group G with $K \leq L$. Then K/L is called a normal factor of G. A subgroup H of G is said to cover K/L if HK = HL. On the other hand, if $H \cap K = H \cap L$, then H is said to avoid K/L. If K/L is a chief factor of G and $K/L \leq \Phi(G/L)$ (respectively $K/L \not\leq \Phi(G/L)$), then K/L is said to be a Frattini (respectively non-Frattini) chief factor of G.

Let \mathcal{F} be a class of groups. We call \mathcal{F} a formation provided that (i) if $G \in \mathcal{F}$ and $H \triangleleft G$, then $G/H \in \mathcal{F}$, and (ii) if G/M and G/N are in \mathcal{F} , then $G/(M \cap N)$ is in \mathcal{F} for normal subgroups M, N of G. A formation \mathcal{F} is said to be saturated if $G/\Phi(G) \in \mathcal{F}$ implies that $G \in \mathcal{F}$. In this paper, \mathcal{U} will denote the class of all supersolvable groups. Clearly, \mathcal{U} is saturated formations(ref. [8]).

¹Project supported in part by NSFC(11271085) and NSF of Guangdong Province (S2011010004447) and 2012 Subject Construction Project for Higher School of Guangdong Province (2012KJCK0081).

²Corresponding author.

The \mathcal{U} -hypercenter of G, denote by $Z_{\mathcal{U}}(G)$, is the product of all normal subgroups H of G such that all G-chief factors of H have prime order. Following [15], the product of all normal subgroups H of G such that all non-Frattini G-chief factors of H have prime order was denoted by $Z_{\mathcal{U}\phi}(G)$.

A subgroup H of a group G is said to have the cover-avoiding property in G if H covers or avoids every chief factor of G, in short, H is called to be a *CAP*-subgroup of G ([4]).

In the literature, many people studied the cover-avoidance property of subgroups of finite groups, for example, Gaschütz ([6]), Gillam ([7]), Tomkinson ([16]) and Petrillo ([14]), etc.. By an obvious consequence of the definition of supersolvable group every subgroup of supersolvable group is a CAP-subgroup. In 1993, Ezquerro has proved the converse result ([5, Theorem C and D]): Let G be a group with a normal subgroup H such that G/H is supersolvable. Then G is supersolvable if one of the following holds: (1) all maximal subgroups of the Sylow subgroups of H are CAP-subgroups of G; (2) H is solvable and all maximal subgroups of the Sylow subgroups of F(H) are CAP-subgroups of G. Li and Wang extended Ezquerro's result as follows ([12]): Let G be a group with a normal subgroup H such that G/H is supersolvable. Then G is supersolvable if all maximal subgroups of the Sylow subgroups of $F^*(H)$, the generalized Fitting subgroup of H, are CAP-subgroups of G.

Recently the following definition, as a generalization of the CAP-subgroup, was introduced.

Definition 1.1 ([10]) A subgroup H of a group G is said to be a CAP^* -subgroup of G if H either covers or avoids every non-Frattini chief factor of G.

The authors in [10] and [11] have gotten many structural theorems of groups G under the assumption that some subgroups of G are CAP*-subgroups of G. In this paper, we continue the works in this line to study the influence of CAP*-subgroups on the structure of a groups, many recent results are extended.

2 Preliminaries

Lemma 2.1 ([11, Lemma 2.3]) Let N be a normal subgroup of a group G. If H is a CAP^* - subgroup of G, then:

(1) HN/N is a CAP^* -subgroup of G/N;

(2) $H \cap N$ is a CAP^* -subgroup of G.

Lemma 2.2 ([4, A, Theorem 9.11]) Let K and N be normal subgroups of a group G with $N \leq K$ and K nilpotent. If $K/N \leq \Phi(G/N)$, then $K \leq \Phi(G)N$.

Lemma 2.3 ([13, Lemma 2.6]) Let H be a normal subgroup of G. If $H \cap \Phi(G) = 1$, then the Fitting subgroup F(H) of H lies in Soc(G) and therefore F(H) is the direct product of minimal normal subgroups of G which are contained in F(H).

Lemma 2.4 ([17, Theorem 1.7.19]) Let H be a normal subgroup of G. Then $H \leq Z_{\mathcal{U}}(G)$ if and only if $H/\Phi(H) \leq Z_{\mathcal{U}}(G/\Phi(H))$.

Lemma 2.5 ([10, Proposition 1.4]) Every non-Frattini chief factor of G is avoided by every subgroup of $\Phi(G)$.

Lemma 2.6 ([10, Lemma 2.3]) Let p be a prime dividing the order of a group G, Ha normal subgroup of G such that $O_{p'}(G) = 1$, and let P be a Sylow p-subgroup of H. If every maximal subgroup of P is a CAP^* -subgroup of G and N is a minimal normal subgroup of G contained in H such that $N \cap \Phi(G) = 1$. Then the Sylow p-subgroups of Nare of order p. In particular,

(1) N is of order prime if N is solvable;

(2) N is a non-abelian simple group if N is non-solvable.

Lemma 2.7 ([10, Lemma 3.1]) Let H be a normal subgroup of a group G and p the smallest prime dividing the order of H, and let P be a Sylow p-subgroup of H. If every maximal subgroup of P is a CAP^* -subgroup of G, then H is p-nilpotent.

3 Main Results

The authors in [10] obtained the following result: Let H ba a normal subgroup of G. If every maximal subgroup of any Sylow subgroup of H is a CAP-subgroup of G, then $H \leq Z_{\mathcal{U}}(G)$ ([10, Theorem 1.6]). There exists examples to illustrates that the conclusion in this result is not true if we replace CAP-subgroup by CAP*-subgroup ([10]). But we have

Theorem 3.1 Let H ba a normal subgroup of G. If every maximal subgroup of any Sylow subgroup of H is a CAP*-subgroup of G, then $H \leq Z_{\mathcal{U}\phi}(G)$.

Proof. Suppose that p is the smallest prime dividing the order of H. By Lemma 2.7, we know that H is p-nilpotent. Hence H has the normal Hall p'-subgroup, K say. Obviously, K is normal in G. By induction we have $K \leq Z_{\mathcal{U}\phi}(G)$. By Lemma 2.1, we know that (G/K, H/K) satisfies the hypotheses of the theorem. If $K \neq 1$, then, by induction, we have $H/K \leq Z_{\mathcal{U}\phi}(G/K) = Z_{\mathcal{U}\phi}(G)/K$. Hence $H \leq Z_{\mathcal{U}\phi}(G)$, as desired. Hence we assume that K = 1, this means that H is a p-group. Thus we denote H = P.

Now we assume that the result is false and G is a counterexample such that |G| + |P| is the smallest number. We will conduct a contradiction in several steps.

(1) P is not a minimal normal subgroup of G.

Assume that P is a minimal normal subgroup of G. If $P \leq \Phi(G)$, then $P \leq Z_{\mathcal{U}\phi}(G)$, a contradiction. Hence $P \not\leq \Phi(G)$, i.e., P/1 is a non-Frattini G-chief factor of G. Pick a maximal subgroup P_1 of P. Then P_1 is a CAP^* -subgroup of G, i.e., P_1 either covers or avoids P/1. We only have $P_1 = P \cap P_1 = 1$. Therefore, P is of order p. So $P \leq Z_{\mathcal{U}\phi}(G)$, a contradiction.

(2) Suppose that N is a minimal normal subgroup of G contained in P. Then $P/N \leq Z_{\mathcal{U}\phi}(G/N)$.

Let M/N be a maximal subgroup of PN/N. It is easy to see $M = P_1N$ for some maximal subgroup P_1 of P. By the hypotheses, P_1 is a CAP*-subgroup of G. Hence $M/N = P_1N/N$ is a CAP*-subgroup of G/N by Lemma 2.1. Therefore G/N satisfies the hypotheses of the theorem. Hence (2) holds.

(3) $P \cap \Phi(G) = 1.$

Otherwise, we can pick a minimal normal subgroup N of G contained in $P \cap \Phi(G) \neq 1$. Then, by (2), $P/N \leq Z_{\mathcal{U}\phi}(G/N) = Z_{\mathcal{U}\phi}(G)/N$. Hence $P \leq Z_{\mathcal{U}\phi}(G)$, a contradiction.

(4) The final contradiction.

By Lemma 2.3, we can denote $P = R_1 \times \cdots \times R_s$, where all $R_j (j = 1, 2, \cdots, s)$ are minimal normal subgroups of G. Pick a maximal subgroup R_1^* of R_1 . Set $P^* = R_1^*R_2 \cdots R_s$. Then P^* is a maximal subgroup of P. By hypotheses, P^* is a CAP^{*}subgroup of G. Hence $R_1^* = R_1 \cap P^*$ is a CAP^{*}-subgroup of G by Lemma 2.1. Obviously $R_1/1$ is a non-Frattini factor of G. Then R_1^* either covers or avoids $R_1/1$. This implies that $R_1^* = R_1^* \cap R_1 = 1$. So R_1 is of order p. Similarly, we can prove that all R_i are of prime order. Hence $P \leq Z_{\mathcal{U}}(G) \leq Z_{\mathcal{U}\phi}(G)$, the final contradiction.

This completes the proof of the theorem.

From our Theorem 3.1, we can extend Ezuquerro's results ([5, Theorem C and D]) as follows.

Corollary 3.2 Let \mathcal{F} be a saturated formation containing \mathcal{U} and G a group with a normal subgroup H such that $G/H \in \mathcal{F}$. Then:

(1) If all maximal subgroups of the Sylow subgroups of H are CAP^* -subgroups of G, then $G \in \mathcal{F}$;

(2) If H is solvable and all maximal subgroups of the Sylow subgroups of F(H) are CAP^* -subgroups of G, then $G \in \mathcal{F}$ ([10, Theorem 4.4]).

Proof. (1) By Theorem 3.1 we know that $H \leq Z_{\mathcal{U}\phi}(G)$. Pick a minimal normal subgroup N of G contained in H. Then $N \leq \Phi(G)$ or N is of prime order. In particular, N is a p-group for some prime $p \in \pi(H)$. By Lemma 2.1, we know that (G/N, H/N) satisfies the hypotheses of the corollary. Hence $G/N \in \mathcal{F}$ by induction.

If $N \leq \Phi(G)$, then $G \in \mathcal{F}$ as \mathcal{F} is saturated. If N is of prime order, then $G \in \mathcal{F}$ as \mathcal{F} contains \mathcal{U} .

Hence (1) holds.

(2) Denote $H_1 = H \cap \Phi(G)$. Then $H_1 = F(H) \cap \Phi(G)$. By Theorem 3.1, we have that $F(H) \leq Z_{\mathcal{U}\phi}(G)$.

Pick an arbitrary G-chief factor R/S over $F(H) \cap \Phi(G)$ and below F(H).

If R/S is Frattini, i.e., $R/S \leq \Phi(G/S)$, then $R \leq \Phi(G)S$ by Lemma 2.2. Then

$$R \le \Phi(G)S \cap F(H) = S(\Phi(G) \cap F(H)) = S,$$

a contradiction. Hence R/S is non-Frattini, then R/S is of order prime as R/S is a G-chief factor below $Z_{\mathcal{U}\phi}(G)$. Therefore,

$$\frac{F(H)}{F(H) \cap \Phi(G)} = \frac{F(H)}{H_1} \le Z_{\mathcal{U}}(G/H_1).$$

Then

$$\frac{G/H_1}{C_{G/H_1}(F(H)/H_1)}$$

is supersolvable by [4, IV, Theorem 6.10]. Since $G/H \in \mathcal{F}$, we have

$$\frac{G/H_1}{H/H_1} \in \mathcal{F}.$$

Therefore,

$$= \frac{\frac{G/H_1}{C_{H/H_1}(F(H/H_1))}}{\frac{G/H_1}{(H/H_1) \cap C_{G/H_1}(F(H/H_1))}} \in \mathcal{F}.$$

Since H is solvable,

$$C_{H/H_1}(F(H/H_1)) \le F(H/H_1).$$

So

$$\frac{G/H_1}{F(H/H_1)} \in \mathcal{F}.$$

Since

$$F(H/H_1) = F(H)/H_1 \le Z_{\mathcal{U}}(G/H_1),$$

we conclude that

$$G/H_1 \in \mathcal{F}$$

Since \mathcal{F} is saturated, we have $G \in \mathcal{F}$.

This completes the proof of this corollary.

Remark 3.1 The following example indicates that we can not delete the hypothesis that H is solvable and replace F(H) by $F^*(H)$, the generalized Fitting subgroup of H (ref. [9, X, 13]), in Corollary 3.2(2).

Example 3.1 Suppose that G is a non-split extension $(Z_2)^3 L_3(2)$ of an elementary abelian subgroup $(Z_2)^3$ of order 2^3 by $L_3(2)$. G is a maximal subgroup of $G_2(3)$ (ref. [3, page 61]). Then $F^*(G) = F(G) = \Phi(G) = (Z_2)^3$. It is easy to see that every maximal subgroup of the Sylow subgroup of $F^*(G)$ is a CAP*-subgroup of G by Lemma 2.5. But G is not solvable.

The following result is a uniform generalization of [10, Theorem 4.1 and 4.2].

Theorem 3.3 Let p be a prime dividing the order of G and P a Sylow p-subgroup of G. Then the following statements are equivalent:

- (1) Every maximal subgroup of P is a CAP^* -subgroup of G.
- (2) |P| = p or G is p-supersolvable.

Proof. Since $(2) \Rightarrow (1)$ is obvious, we consider $(1) \Rightarrow (2)$.

Assume that the result is false and G is a counterexample with minimal order. We will conduct a contradiction in several steps.

Step 1. $O_{p'}(G) = 1.$

It follows from Lemma 2.1, $G/O_{p'}(G)$ satisfies the hypotheses of the theorem. The minimal choice implies that $O_{p'}(G) = 1$.

Step 2. Let N be a minimal normal subgroup. Then either G/N is p-supersolvable or G/N is a non-p-solvable group whose Sylow p-subgroups are of order p.

Consider G/N. Let M/N be a maximal subgroup of PN/N. It is easy to see $M = P_1N$ for some maximal subgroup P_1 of P. By the hypotheses, P_1 is a CAP*-subgroup of G. Hence $M/N = P_1N/N$ is a CAP*-subgroup of G/N by Lemma 2.1. Therefore G/Nsatisfies the hypotheses of the theorem. The choice of G yields that either G/N is psupersolvable or G/N is a non-p-solvable group whose Sylow p-subgroups are of order p.

Step 3. Let N be a minimal normal subgroup of G. Then $1 \neq N_p = N \cap P < P$. By Step 1, the prime p divides the order of N and then $N_p = N \cap P \neq 1$.

Notice that if $P \cap N = P$, then $P \leq N$. If $N \leq \Phi(G)$, then $P \leq \Phi(G)$. This is impossible. Hence $N \not\leq \Phi(G)$. By Lemma 2.6, we have $|N|_p = p$, i.e., |P| = p, a contradiction.

Step 4. The minimal normal subgroup of G is unique, N say.

Suppose that there exist two distinct minimal normal subgroups M and N of G. By Step 3, we know that both G/N and G/M satisfy the hypotheses of the theorem. If G/N and G/M are p-supersolvable, the G is p-supersolvable, a contradiction. Suppose that G/N is a non-p-solvable group whose Sylow p-subgroups are of order p and G/M is p-supersolvable. Since NM/M is a minimal normal subgroup of G/M, we know, by Step 1, that NM/M is of order p. Hence |N| = p and P is of order p^2 . On the other hand, MN/N is a minimal normal subgroup of G/N and p divides the order of M. We have Mis a non-abelian simple group. As a maximal subgroup of P, the Sylow p-subgroup M_p of M is a CAP*-subgroup of G by the hypotheses. Hence M_p covers the G-chief factor M/1. So $M = M_p$ is solvable, a contradiction. Finally, we assume that both G/N and G/M are non-p-solvable groups whose Sylow p-subgroups are of order p. With the same arguments as above, we have $|P| = p^2$ and M is a non-abelian simple group whose Sylow p-subgroups are of order p, and M_p is a CAP*-subgroup of G. Again, this implies that M_p covers the G-chief factor M/1 and $M = M_p$ is solvable, a contradiction.

This completes the proof of this step.

Step 5. $N \not\leq \Phi(P)$.

Suppose that $N \leq \Phi(P)$. Then, by [4, A, 9.2.d], we have $N \leq \Phi(G)$.

If G/N is *p*-supersolvable, then G is *p*-supersolvable as the class of all *p*-supersolvable groups is a saturated formation, a contradiction. Hence G/N is a non-*p*-solvable group whose Sylow *p*-subgroups are of order *p* by Step 2. Since $N \leq \Phi(P)$, we have *P* is a cyclic group. Therefore *N* is a cyclic group of order *p* and $|P| = p^2$. By [2, Theorem 7], this is impossible.

Step 6. $O_p(G) = 1$.

Suppose that $O_p(G) \neq 1$. Then $N \leq O_p(G)$ by Step 4.

If $N \not\leq \Phi(G)$, then N is of order p by Lemma 2.7. Applying Step 2, we have G/N is a non-p-solvable group whose Sylow p-subgroups are of order p. So $|P| = p^2$. By [2, Theorem 7], this is impossible. So we have $N \leq \Phi(G)$. Again, applying Step 2, we have G/N is a non-p-solvable group whose Sylow p-subgroups are of order p. In this case, $O^{p'}(G/N)$ is a non-abelain simple group by [1, Lemma 3.1]. Denote $K/N = O^{p'}(G/N)$. Then K/N is a non-Frattini G-chief factor.

By Step 5, we can pick a maximal subgroup P_1 of P such that $P = NP_1$. By the hypotheses, P_1 is a CAP*-subgroup of G. Hence P_1 covers or avoids K/N. Since K/N is a non-abelain simple group, we have P_1 avoids K/N. Therefore, $P_1 \cap K = P_1 \cap N$. Noticing $P \leq K$, we have $P_1 = P_1 \cap N$. So $P = NP_1 = N$, a contradiction. Hence $O_p(G) = 1$.

Step 7. The final contradiction.

By Lemma 2.6, we have N is a non-abelain simple group. Now we can pick a maximal subgroup P_1 of P such that $N_p \leq P_1$ by Step 3. Since P_1 is a CAP*-subgroup of G and N/1 is a non-Frattini G-chief factor, P_1 covers or avoids N/1. If P_1 avoids N/1, then $N_p = P_1 \cap N = P_1 \cap 1 = 1$, contrary to Step 3. If P_1 covers N/1, then $N \leq P_1$ and N is solvable, a contradiction.

This completes the proof of this theorem.

Corollary 3.4 ([10, Theorem 4.2]) Let p be a prime dividing the order of a group G and P a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent if every maximal subgroup of P is a CAP^* -subgroup of G.

Proof. By Theorem 3.5 we know that G is p-supersolvable. Since the p-length of p-supersolvable groups is at most 1, we have $PO_{p'}(G)$ is normal in G. Set $\overline{G} = G/O_{p'}(G)$. Then $\overline{G} = N_{\overline{G}}(\overline{P}) = N_G(P)O_{p'}(G)/O_{p'}(G)$ is p-nilpotent by hypotheses. Hence G is p-nilpotent, as desired.

Corollary 3.5 ([10, Theorem 4.1]) Let p be a prime dividing the order of G and P a Sylow p-subgroup of G. Then the following statements are equivalent:

- (1) G is p-supersolvable.
- (2) P and every maximal subgroup of P is a CAP^* -subgroup of G.

Proof. We only need to consider $(2) \Rightarrow (1)$.

By Theorem 3.5 we know that P is of order p or G is p-supersolvable from the hypothesis that every maximal subgroup of P is a CAP*-subgroup of G. Now suppose that P is of order p. By [1, Lemma 3.1], we know that $O^{p'}(G/O_{p'}(G))$ is a simple group. Denote $O^{p'}(G/O_{p'}(G)) = K/O_{p'}(G)$, then $P \leq K$ and $K/O_{p'}(G)$ is a non-Frattini G-chief factor. Since P is a CAP*-subgroup of G by hypotheses, we have P covers $K/O_{p'}(G)$. This implies that $K = PO_{p'}(G)$. Hence G is p-supersolvable, as desired.

It is easy to see that [10, Lemma 3.1], i.e., Lemma 2.7, is a corollary of Theorem 3.3, we do not repeat this here.

References

 A. Ballester-Bolinches, L. M. Ezquerro and A. N. Skiba, Local embeddings of some families of subgroups of finite group, *Acta Math. Sinica, Eng. Ser.*, 25(2009), 869-882.

- [2] A. Ballester-Bolinches, L. M. Ezquerro and A. N. Skiba, On second maximal subgroups of Sylow subgroups of finite groups, J. Pure Appl. Algebra, 215(2011), 705-714.
- [3] J. H. Conway, R. T. Curtis, S.P. Norton, R. A. Parker and R.A.Wilson, ATLAS of Finite Groups, Clarendon Press, Oxford, 1985.
- [4] K. Doerk and T. Hawkes, *Finite Soluble Groups*, Berlin-New York: Walter de Gruyter, 1992.
- [5] L. M. Ezquerro, A contribution to the theory of finite supersolvable groups, *Rend. Sen. Mat. Univ. Padova*, 89 (1993), 161-170.
- [6] W. Gaschütz, Praefrattini gruppen, Arch. Math., 13(1962), 418-426.
- [7] J. D. Gillam, Cover-avoid subgroup in finite solvable groups, J. Algebra, 29(1974), 324-329.
- [8] B. Huppert, Endliche Gruppen I, Berlin-Heidelberg-New York: Springer-Verlag, 1967.
- [9] B. Huppert and N. Blackburn, *Finite Groups III*, Berlin-New York: Springer-Verlag, 1982.
- [10] S. Li J. Liu, X. Guo, A generalization of cover-avoiding properties in finite groups, *Comm. Algebra*, **39**(2011), 1455-1464.
- [11] J. Liu, X. Guo and S. Li, The influence of CAP*-subgroup on the solvability of finite groups, Bull. Malay. Math. Sci. Soc., 35 (2012), 227-237
- [12] Y. Li and G. Wang, A note on the CAP-maximal subgroups of finite group, Alg., Groups Geom., 23(4)(2006), 285-290.
- [13] Y. Li, Y. Wang and H. Wei, The influence of π -quasinormality of some subgroups of a finite group, Arch Math., 81(2003), 245-252.
- [14] J. A. Petrillo, The cover-avoidance property in finite groups, PhD thesis, State University of New York at Binghamton, 2003.
- [15] L. Shemetkov and A. Skiba, On the $\chi\phi$ -hypercenter of finite groups, J. Algebra, **322**(2009), 2106-2117.
- [16] M. J. Tomkinson, Cover-avoidance properties in finite solvable groups, Canad. Math. Bull., 19(2)(1976), 213-216.
- [17] M. Weinstein(editor), Between nilpotent and solvable, Polygonal Publishing House, Passaic, 1982.