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Abstract A subgroup H of a finite group G is called to be a
CAP∗-subgroup of G if H either covers or avoids every non-Frattini
chief factor of G. In this paper, we study the influence of the
CAP∗-subgroups of a finite group G on the structure of G and
some recent results were extended.
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1 Introduction

All groups considered in this paper are finite. We use conventional notions and nota-
tion, as in Huppert[8]. G always denotes a finite group, |G| the order of G, π(G) the set
of all primes dividing |G|, Gp a Sylow p-subgroup of G for some p ∈ π(G). For clearity,
some times we denote the factor group G/N by G

N
.

Let K and L be normal subgroups of a group G with K ≤ L. Then K/L is called
a normal factor of G. A subgroup H of G is said to cover K/L if HK = HL. On the
other hand, if H ∩K = H ∩ L, then H is said to avoid K/L. If K/L is a chief factor of
G and K/L ≤ Φ(G/L) (respectively K/L 6≤ Φ(G/L)), then K/L is said to be a Frattini
(respectively non-Frattini) chief factor of G.

Let F be a class of groups. We call F a formation provided that (i) if G ∈ F and
H / G, then G/H ∈ F , and (ii) if G/M and G/N are in F , then G/(M ∩ N) is in F
for normal subgroups M,N of G. A formation F is said to be saturated if G/Φ(G) ∈ F
implies that G ∈ F . In this paper, U will denote the class of all supersolvable groups.
Clearly, U is saturated formations(ref. [8]).
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The U -hypercenter of G, denote by ZU(G), is the the product of all normal subgroups
H of G such that all G-chief factors of H have prime order. Following [15], the product of
all normal subgroups H of G such that all non-Frattini G-chief factors of H have prime
order was denoted by ZUφ(G).

A subgroup H of a group G is said to have the cover-avoiding property in G if H covers
or avoids every chief factor of G, in short, H is called to be a CAP-subgroup of G ([4]).

In the literature, many people studied the cover-avoidance property of subgroups of
finite groups, for example, Gaschütz ([6]), Gillam ([7]), Tomkinson ([16]) and Petrillo
([14]), etc.. By an obvious consequence of the definition of supersolvable group every
subgroup of supersolvable group is a CAP-subgroup. In 1993, Ezquerro has proved the
converse result ([5, Theorem C and D]): Let G be a group with a normal subgroup H
such that G/H is supersolvable. Then G is supersolvable if one of the following holds: (1)
all maximal subgroups of the Sylow subgroups of H are CAP-subgroups of G; (2) H is
solvable and all maximal subgroups of the Sylow subgroups of F (H) are CAP-subgroups
of G. Li and Wang extended Ezquerro’s result as follows ([12]): Let G be a group with
a normal subgroup H such that G/H is supersolvable. Then G is supersolvable if all
maximal subgroups of the Sylow subgroups of F ∗(H), the generalized Fitting subgroup
of H, are CAP-subgroups of G.

Recently the following definition, as a generalization of the CAP-subgroup, was intro-
duced.

Definition 1.1 ([10]) A subgroup H of a group G is said to be a CAP∗-subgroup of G if
H either covers or avoids every non-Frattini chief factor of G.

The authors in [10] and [11] have gotten many structural theorems of groups G under
the assumption that some subgroups of G are CAP∗-subgroups of G. In this paper, we
continue the works in this line to study the influence of CAP∗-subgroups on the structure
of a groups, many recent results are extended.

2 Preliminaries

Lemma 2.1 ([11, Lemma 2.3]) Let N be a normal subgroup of a group G. If H is a
CAP∗- subgroup of G, then:

(1) HN/N is a CAP∗-subgroup of G/N ;
(2) H ∩N is a CAP∗-subgroup of G.

Lemma 2.2 ([4, A, Theorem 9.11]) Let K and N be normal subgroups of a group G
with N ≤ K and K nilpotent. If K/N ≤ Φ(G/N), then K ≤ Φ(G)N .
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Lemma 2.3 ( [13, Lemma 2.6]) Let H be a normal subgroup of G. If H∩Φ(G) = 1, then
the Fitting subgroup F (H) of H lies in Soc(G) and therefore F (H) is the direct product
of minimal normal subgroups of G which are contained in F (H).

Lemma 2.4 ([17, Theorem 1.7.19]) Let H be a normal subgroup of G. Then H ≤ ZU(G)
if and only if H/Φ(H) ≤ ZU(G/Φ(H)).

Lemma 2.5 ([10, Proposition 1.4]) Every non-Frattini chief factor of G is avoided by
every subgroup of Φ(G).

Lemma 2.6 ([10, Lemma 2.3]) Let p be a prime dividing the order of a group G, H
a normal subgroup of G such that Op′(G) = 1, and let P be a Sylow p-subgroup of H.
If every maximal subgroup of P is a CAP∗-subgroup of G and N is a minimal normal
subgroup of G contained in H such that N ∩Φ(G) = 1. Then the Sylow p-subgroups of N
are of order p. In particular,

(1) N is of order prime if N is solvable;
(2) N is a non-abelian simple group if N is non-solvable.

Lemma 2.7 ([10, Lemma 3.1]) Let H be a normal subgroup of a group G and p the
smallest prime dividing the order of H, and let P be a Sylow p-subgroup of H. If every
maximal subgroup of P is a CAP∗-subgroup of G, then H is p-nilpotent.

3 Main Results

The authors in [10] obtained the following result: Let H ba a normal subgroup of G.
If every maximal subgroup of any Sylow subgroup of H is a CAP-subgroup of G, then
H ≤ ZU(G) ([10, Theorem 1.6]). There exists examples to illustrates that the conclusion
in this result is not true if we replace CAP-subgroup by CAP∗-subgroup ([10]). But we
have

Theorem 3.1 Let H ba a normal subgroup of G. If every maximal subgroup of any Sylow
subgroup of H is a CAP∗-subgroup of G, then H ≤ ZUφ(G).

Proof. Suppose that p is the smallest prime dividing the order of H. By Lemma 2.7, we
know that H is p-nilpotent. Hence H has the normal Hall p′-subgroup, K say. Obviously,
K is normal in G. By induction we have K ≤ ZUφ(G). By Lemma 2.1, we know that
(G/K,H/K) satisfies the hypotheses of the theorem. If K 6= 1, then, by induction, we
have H/K ≤ ZUφ(G/K) = ZUφ(G)/K. Hence H ≤ ZUφ(G), as desired. Hence we assume
that K = 1, this means that H is a p-group. Thus we denote H = P .
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Now we assume that the result is false and G is a counterexample such that |G|+ |P |
is the smallest number. We will conduct a contradiction in several steps.

(1) P is not a minimal normal subgroup of G.
Assume that P is a minimal normal subgroup of G. If P ≤ Φ(G), then P ≤ ZUφ(G),

a contradiction. Hence P 6≤ Φ(G), i.e., P/1 is a non-Frattini G-chief factor of G. Pick a
maximal subgroup P1 of P . Then P1 is a CAP ∗-subgroup of G, i.e., P1 either covers or
avoids P/1. We only have P1 = P ∩ P1 = 1. Therefore, P is of order p. So P ≤ ZUφ(G),
a contradiction.

(2) Suppose that N is a minimal normal subgroup of G contained in P . Then P/N ≤
ZUφ(G/N).

Let M/N be a maximal subgroup of PN/N . It is easy to see M = P1N for some
maximal subgroup P1 of P . By the hypotheses, P1 is a CAP∗-subgroup of G. Hence
M/N = P1N/N is a CAP∗-subgroup of G/N by Lemma 2.1. Therefore G/N satisfies the
hypotheses of the theorem. Hence (2) holds.

(3) P ∩ Φ(G) = 1.
Otherwise, we can pick a minimal normal subgroup N of G contained in P ∩Φ(G) 6= 1.

Then, by (2), P/N ≤ ZUφ(G/N) = ZUφ(G)/N . Hence P ≤ ZUφ(G), a contradiction.

(4) The final contradiction.
By Lemma 2.3, we can denote P = R1 × · · · × Rs, where all Rj(j = 1, 2, · · · , s)

are minimal normal subgroups of G. Pick a maximal subgroup R∗1 of R1. Set P ∗ =
R∗1R2 · · ·Rs. Then P ∗ is a maximal subgroup of P . By hypotheses, P ∗ is a CAP∗-
subgroup of G. Hence R∗1 = R1 ∩ P ∗ is a CAP∗-subgroup of G by Lemma 2.1. Obviously
R1/1 is a non-Frattini factor of G. Then R∗1 either covers or avoids R1/1. This implies
that R∗1 = R∗1 ∩ R1 = 1. So R1 is of order p. Similarly, we can prove that all Ri are of
prime order. Hence P ≤ ZU(G) ≤ ZUφ(G), the final contradiction.

This completes the proof of the theorem. �

From our Theorem 3.1, we can extend Ezuquerro’s results ([5, Theorem C and D]) as
follows.

Corollary 3.2 Let F be a saturated formation containing U and G a group with a normal
subgroup H such that G/H ∈ F . Then:

(1) If all maximal subgroups of the Sylow subgroups of H are CAP∗-subgroups of G,
then G ∈ F ;

(2) If H is solvable and all maximal subgroups of the Sylow subgroups of F (H) are
CAP∗-subgroups of G, then G ∈ F ([10, Theorem 4.4]).
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Proof. (1) By Theorem 3.1 we know that H ≤ ZUφ(G). Pick a minimal normal
subgroup N of G contained in H. Then N ≤ Φ(G) or N is of prime order. In particular,
N is a p-group for some prime p ∈ π(H). By Lemma 2.1, we know that (G/N,H/N)
satisfies the hypotheses of the corollary. Hence G/N ∈ F by induction.

If N ≤ Φ(G), then G ∈ F as F is saturated. If N is of prime order, then G ∈ F as F
contains U .

Hence (1) holds.

(2) Denote H1 = H ∩Φ(G). Then H1 = F (H)∩Φ(G). By Theorem 3.1, we have that
F (H) ≤ ZUφ(G).

Pick an arbitrary G-chief factor R/S over F (H) ∩ Φ(G) and below F (H).
If R/S is Frattini, i.e., R/S ≤ Φ(G/S), then R ≤ Φ(G)S by Lemma 2.2. Then

R ≤ Φ(G)S ∩ F (H) = S(Φ(G) ∩ F (H)) = S,

a contradiction. Hence R/S is non-Frattini, then R/S is of order prime as R/S is a
G-chief factor below ZUφ(G). Therefore,

F (H)

F (H) ∩ Φ(G)
=
F (H)

H1

≤ ZU(G/H1).

Then
G/H1

CG/H1(F (H)/H1)

is supersolvable by [4, IV, Theorem 6.10]. Since G/H ∈ F , we have

G/H1

H/H1

∈ F .

Therefore,
G/H1

CH/H1(F (H/H1))

=
G/H1

(H/H1) ∩ CG/H1(F (H/H1))
∈ F .

Since H is solvable,
CH/H1(F (H/H1)) ≤ F (H/H1).

So
G/H1

F (H/H1)
∈ F .

Since
F (H/H1) = F (H)/H1 ≤ ZU(G/H1),
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we conclude that
G/H1 ∈ F .

Since F is saturated, we have G ∈ F .
This completes the proof of this corollary. �

Remark 3.1 The following example indicates that we can not delete the hypothesis that
H is solvable and replace F (H) by F ∗(H), the generalized Fitting subgroup of H (ref. [9,
X, 13]), in Corollary 3.2(2).

Example 3.1 Suppose that G is a non-split extension (Z2)
3L3(2) of an elementary abelian

subgroup (Z2)
3 of order 23 by L3(2). G is a maximal subgroup of G2(3) (ref. [3, page 61]).

Then F ∗(G) = F (G) = Φ(G) = (Z2)
3. It is easy to see that every maximal subgroup

of the Sylow subgroup of F ∗(G) is a CAP∗-subgroup of G by Lemma 2.5. But G is not
solvable.

The following result is a uniform generalization of [10, Theorem 4.1 and 4.2].

Theorem 3.3 Let p be a prime dividing the order of G and P a Sylow p-subgroup of G.
Then the following statements are equivalent:

(1) Every maximal subgroup of P is a CAP∗-subgroup of G.
(2) |P | = p or G is p-supersolvable.

Proof. Since (2) ⇒ (1) is obvious, we consider (1) ⇒ (2).
Assume that the result is false and G is a counterexample with minimal order. We

will conduct a contradiction in several steps.

Step 1. Op′(G) = 1.
It follows from Lemma 2.1, G/Op′(G) satisfies the hypotheses of the theorem. The

minimal choice implies that Op′(G) = 1.

Step 2. Let N be a minimal normal subgroup. Then either G/N is p-supersolvable
or G/N is a non-p-solvable group whose Sylow p-subgroups are of order p.

Consider G/N . Let M/N be a maximal subgroup of PN/N . It is easy to see M = P1N
for some maximal subgroup P1 of P . By the hypotheses, P1 is a CAP∗-subgroup of G.
Hence M/N = P1N/N is a CAP∗-subgroup of G/N by Lemma 2.1. Therefore G/N
satisfies the hypotheses of the theorem. The choice of G yields that either G/N is p-
supersolvable or G/N is a non-p-solvable group whose Sylow p-subgroups are of order p.

Step 3. Let N be a minimal normal subgroup of G. Then 1 6= Np = N ∩ P < P .
By Step 1, the prime p divides the order of N and then Np = N ∩ P 6= 1.
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Notice that if P ∩N = P , then P ≤ N . If N ≤ Φ(G), then P ≤ Φ(G). This is impos-
sible. Hence N 6≤ Φ(G). By Lemma 2.6, we have |N |p = p, i.e., |P | = p, a contradiction.

Step 4. The minimal normal subgroup of G is unique, N say.

Suppose that there exist two distinct minimal normal subgroups M and N of G. By
Step 3, we know that both G/N and G/M satisfy the hypotheses of the theorem. If
G/N and G/M are p-supersolvable, the G is p-supersolvable, a contradiction. Suppose
that G/N is a non-p-solvable group whose Sylow p-subgroups are of order p and G/M is
p-supersolvable. Since NM/M is a minimal normal subgroup of G/M , we know, by Step
1, that NM/M is of order p. Hence |N | = p and P is of order p2. On the other hand,
MN/N is a minimal normal subgroup of G/N and p divides the order of M . We have M
is a non-abelian simple group. As a maximal subgroup of P , the Sylow p-subgroup Mp

of M is a CAP∗-subgroup of G by the hypotheses. Hence Mp covers the G-chief factor
M/1. So M = Mp is solvable, a contradiction. Finally, we assume that both G/N and
G/M are non-p-solvable groups whose Sylow p-subgroups are of order p. With the same
arguments as above, we have |P | = p2 and M is a non-abelian simple group whose Sylow
p-subgroups are of order p, and Mp is a CAP∗-subgroup of G. Again, this implies that
Mp covers the G-chief factor M/1 and M = Mp is solvable, a contradiction.

This completes the proof of this step.

Step 5. N 6≤ Φ(P ).

Suppose that N ≤ Φ(P ). Then, by [4, A, 9.2.d], we have N ≤ Φ(G).

If G/N is p-supersolvable, then G is p-supersolvable as the class of all p-supersolvable
groups is a saturated formation, a contradiction. Hence G/N is a non-p-solvable group
whose Sylow p-subgroups are of order p by Step 2. Since N ≤ Φ(P ), we have P is a cyclic
group. Therefore N is a cyclic group of order p and |P | = p2. By [2, Theorem 7], this is
impossible.

Step 6. Op(G) = 1.

Suppose that Op(G) 6= 1. Then N ≤ Op(G) by Step 4.

If N 6≤ Φ(G), then N is of order p by Lemma 2.7. Applying Step 2, we have G/N
is a non-p-solvable group whose Sylow p-subgroups are of order p. So |P | = p2. By [2,
Theorem 7], this is impossible. So we have N ≤ Φ(G). Again, applying Step 2, we have
G/N is a non-p-solvable group whose Sylow p-subgroups are of order p. In this case,
Op′

(G/N) is a non-abelain simple group by [1, Lemma 3.1]. Denote K/N = Op′
(G/N).

Then K/N is a non-Frattini G-chief factor.

By Step 5, we can pick a maximal subgroup P1 of P such that P = NP1. By the
hypotheses, P1 is a CAP∗-subgroup of G. Hence P1 covers or avoids K/N . Since K/N is a
non-abelain simple group, we have P1 avoids K/N . Therefore, P1∩K = P1∩N . Noticing
P ≤ K, we have P1 = P1 ∩N . So P = NP1 = N , a contradiction. Hence Op(G) = 1.
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Step 7. The final contradiction.
By Lemma 2.6, we have N is a non-abelain simple group. Now we can pick a maximal

subgroup P1 of P such that Np ≤ P1 by Step 3. Since P1 is a CAP∗-subgroup of G and
N/1 is a non-Frattini G-chief factor, P1 covers or avoids N/1. If P1 avoids N/1, then
Np = P1 ∩N = P1 ∩ 1 = 1, contrary to Step 3. If P1 covers N/1, then N ≤ P1 and N is
solvable, a contradiction.

This completes the proof of this theorem. �

Corollary 3.4 ([10, Theorem 4.2]) Let p be a prime dividing the order of a group G and
P a Sylow p-subgroup of G. Suppose that NG(P ) is p-nilpotent. Then G is p-nilpotent if
every maximal subgroup of P is a CAP∗-subgroup of G.

Proof. By Theorem 3.5 we know that G is p-supersolvable . Since the p-length of
p-supersolvable groups is at most 1, we have POp′(G) is normal in G. Set G = G/Op′(G).
Then G = NG(P ) = NG(P )Op′(G)/Op′(G) is p-nilpotent by hypotheses. Hence G is p-
nilpotent, as desired. �

Corollary 3.5 ([10, Theorem 4.1]) Let p be a prime dividing the order of G and P a
Sylow p-subgroup of G. Then the following statements are equivalent:

(1) G is p-supersolvable.
(2) P and every maximal subgroup of P is a CAP∗-subgroup of G.

Proof. We only need to consider (2) ⇒ (1).
By Theorem 3.5 we know that P is of order p or G is p-supersolvable from the hy-

pothesis that every maximal subgroup of P is a CAP∗-subgroup of G. Now suppose that
P is of order p. By [1, Lemma 3.1], we know that Op′

(G/Op′(G)) is a simple group.
Denote Op′

(G/Op′(G)) = K/Op′(G), then P ≤ K and K/Op′(G) is a non-Frattini G-chief
factor. Since P is a CAP∗-subgroup of G by hypotheses, we have P covers K/Op′(G).
This implies that K = POp′(G). Hence G is p-supersolvable, as desired. �

It is easy to see that [10, Lemma 3.1], i.e., Lemma 2.7, is a corollary of Theorem 3.3,
we do not repeat this here.
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