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1. Introduction

In this paper, we make uniform estimates to the following fourth order elliptic

system: 
∆2u = Q1(x)e4v, in Ω ⊂ R4;

∆2v = Q2(x)e4u, in Ω ⊂ R4;

u = 4u = v = 4v = 0 on ∂Ω

(∗)

and investigate properties of the solutions to the following fourth order elliptic

system: {
∆2u = Q1(x)e4v, x ∈ R4;

∆2v = Q2(x)e4u, x ∈ R4.
(∗∗)

Where Ω is a bounded smooth domain in R4 and 42 is the biharmonic operator.

Qi(x) (i = 1, 2) are given function in Lp(Ω) for some 1 < p ≤ ∞. We assume that

u, v ∈ L1(Ω), e4u, e4v ∈ Lp
′
(Ω) (where p

′
is the conjugate exponent of p) so that

(∗) has a meaning in the sense of distributions. A first question is whether one

can conclude that all eventual solutions of (∗) have uniform bounds. As we will
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see in the Section 2 (see our main result, Theorem 2.4) the answer is positive. It

is obvious that we have generalized part works in [6] when u = v in (∗).
Recently, a series of works have been done to understand the existence and the

qualitative properties of the solutions of (∗∗) when Q1 = Q2 and u = v. In the

mean time, (∗∗) becomes

∆2u = Q(x)e4u, x ∈ R4, (∗ ∗ ∗)

where Q = Q1 = Q2.

When Q = 6, Lin [1] had given a complete classification of u in terms of its

growth, or of the behavior of 4u at ∞. Xu [2] had done similar work by using

moving spheres methods. Wei and Xu [4] and Martinazzi [7] also gave a complete

classification of solutions for higher order conformally invariant equations compared

to (∗∗∗). In Section 3, we consider more general functions Q1(x), Q2(x) for problem

(∗∗). This is considered as the generalization of problem (∗ ∗ ∗) in [1]. First, we

obtain the asymptotic behavior of solutions near infinity. Consequently, we prove

that all solutions satisfy an identity, which is similar to the well-known Kazdan-

Warner condition (see our main result, Theorem 3.2). Finally, using the harmonic

asymptotic expansion at∞ in [1], we show that all the solutions for (∗∗) are radial

symmetric provided Q1, Q2 is radially symmetric and non-increasing. This part

can be viewed as the completion of [1].

2. Uniform estimates for problem (∗)

Assume Ω ⊂ R4 is a bounded domain and let h be a solution of{
∆2h(x) = f(x), in Ω ⊂ R4;

h = 4h = 0 on ∂Ω.
(2.1)

Following the argument Brezis-Merle [8], Lin obtained the following Lemma:

Lemma 2.1. [1] Suppose f ∈ L1(Ω). For any δ ∈ (0, 32π2), there exists a constant

Cδ > 0 such that the inequality,∫
Ω

exp(
δ|h|
||f ||L1

)dx ≤ Cδ(diamΩ)4,

where diamΩ denotes the diameter of Ω.

By using above Lemma, we obtain following consequent results:

Theorem 2.1. Let u be a solution of (2.1) with f ∈ L1(Ω). Then for every

constant k > 0,

eku ∈ L1(Ω).
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Proof. Let 0 < ε < 1
k
, we may split f as f = f1 + f2 with ||f1||1 < ε and

f2 ∈ L∞(Ω). Write ui are the solutions of{
∆2ui = fi, in Ω;

ui = 4ui = 0 on ∂Ω.

By Lemma 2.1, we find
∫

Ω
exp[ |u1(x)|

||f1||1 ] < ∞ and thus
∫

Ω
exp[k|u1|] < ∞. The con-

clusion follows since |u| ≤ |u1|+ |u2| and u2 ∈ L∞(Ω).

Before stating our main results on a priori bounds, we state a result on the

regularity of the distribution solutions of (∗∗).

Theorem 2.2. Suppose (u, v) is a solution of equation (∗∗) with Q1, Q2 ∈ Lp(Ω)

and e4u, e4v ∈ Lp
′
(Ω) for some 1 < p ≤ ∞. Then u, v ∈ L∞(Ω).

Proof. By Theorem 2.1, we know that eku ∈ L1(Ω) for all k, i.e., eu ∈ Lr(Ω) ∀r <
∞. It follows that Q2e

4u ∈ Lp−δ ∀δ > 0 if p < ∞, and Q2e
4u ∈ Lr(Ω) ∀r < ∞ if

p =∞. Standard elliptic estimates imply that 4v ∈ L∞(Ω). Hence, combing v = 0

on ∂Ω, we have v ∈ L∞(Ω). Similarly, we have u ∈ L∞(Ω).

Corollary 2.1. Suppose (u, v) is a solution of
∆2u = Q1e

4v + f(x), in Ω;

∆2v = Q2e
4u + g(x), in Ω;

u = g1, 4u = g2, on ∂Ω;

v = ψ1, 4v = ψ2 on ∂Ω

with Q1, Q2 ∈ Lp(Ω) and e4u, e4v ∈ Lp
′
(Ω) for some 1 < p ≤ ∞, where g1, g2, ψ1, ψ2 ∈

L∞(∂Ω) and f, g ∈ Lq(Ω) for some q > 1. Then u, v ∈ L∞(Ω).

It follows from Theorem 2.2 that, for any solution (u, v) of system (∗),
∫

Ω
Q1(x)e4vdx <

∞,
∫

Ω
Q2(x)e4udx < ∞. Our next result states that there is a uniform bound for

those integrals. For that matter, due to the fact that we are considering non-

autonomous problems, we need in the theorems below geometric assumptions con-

cerning the behavior of Q1 and Q2 near the boundary. So,

(H1) There exist r, δ > 0 such that Q1(x), Q2(x) ∈ C1(Ωr), and

∇Q1(x) · θ ≤ 0 and ∇Q2(x) · θ ≤ 0

for all x ∈ Ωr(Ωr := {x ∈ Ω̄ : dist(x, ∂Ω̄) ≤ r}, and unit vectors θ such that

|θ − ν(x̄)| < δ, where x̄ is the closest point to x in ∂Ω and ν(x̄) denotes the unit

external normal to ∂Ω in the point x̄.
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With assumption (H1) one can use the Moving Planes techniques to get bounds

for the functions u and v near the boundary.

Let φ1 be the eigenfunction associated to the first eigenvalue λ1 of (42, H2(Ω)∩
H1

0 (Ω)).

Theorem 2.3. Assume Qi(x), i = 1, 2 is continuous function with mi ≤ Qi ≤ Mi

for some positive constants mi and Mi and (H1). Assume furthermore that Ω is

convex. Then there exists a positive constant C, depending only on Qi, i = 1, 2 and

Ω, such that ∫
Ω

Q1(x)e4vdx < C,

∫
Ω

Q2(x)e4udx < C (2.2)

for all (u, v) solution of (∗).

Proof. Step 1 For each (u, v) solution of system (∗) we have∫
Ω

Q1(x)e4vφ1dx ≤ C,

∫
Ω

Q2(x)e4uϕ1dx ≤ C,

where the constant C depends only on Q1, Q2 and Ω.

From our basic assumptions for Qi, i = 1, 2, we know that there are positive

constants ai, i = 1, 2 with a1 × a2 > λ2
1 and c such that

Q1(x)e4t ≥ a1t− c and Q2(x)e4t ≥ a2t− c. (2.3)

Next, multiplying the equations in (∗) by φ1, integrating by parts and using (2.3),

we obtain ∫
Ω

Q1(x)e4vφ1dx = λ1

∫
Ω

uφ1dx ≥ a1

∫
Ω

vφ1dx− c1∫
Ω

Q2(x)e4uφ1dx = λ1

∫
Ω

vφ1dx ≥ a2

∫
Ω

uφ1dx− c1. (2.4)

Thus

λ1

∫
Ω

uφ1dx ≥
a1a2

λ1

∫
Ω

uφ1dx− c1

which implies ∫
Ω

uφ1dx ≤ C,

and therefore, ∫
Ω

Q1(x)e4vφ1dx ≤ C.

The other inequality in (2.2) is obtained in a similar way.

Step 2 We claim that there exist r, δ > 0 such that

∇u(x) · θ ≤ 0 and ∇v(x) · θ ≤ 0 for all x ∈ Ωr, |θ − ν(x)| < δ,
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for each (u, v) solutions of (∗), where θ and ν are as in (H1).

We can assume, without loss of generality, that Ω ⊂ R4
+ := {(x1, x2, x3, x4) ∈

R4 : x1 > 0} and (0, 0, 0, 0) ∈ ∂Ω. Now, we consider Tλ := {(x1, x2, x3, x4) :

x1 = λ}, the cap Σλ := {(x1, x2, x3, x4) ∈ Ω : x1 < λ} and the reflected cap

Σ
′

λ := {(2λ − x1, x2, x3, x4) : (x1, x2, x3, x4) ∈ Σλ}. It follows that there exists λ̄

such that Σλ ∪ Σ
′

λ ⊂ Ωr for each 0 < λ < λ̄. In fact this λ̄ depends only on r and

not on the particular point on the boundary.

For 0 < λ < λ̄, define in Σλ the auxiliary functions

wλ(x1, x2, x3, x4) = u(2λ− x1, x2, x3, x4)− u(x1, x2, x3, x4),

zλ(x1, x2, x3, x4) = v(2λ− x1, x2, x3, x4)− v(x1, x2, x3, x4).

Using condition (H1) we have

42wλ = Q1(2λ− x1, x2, x3, x4)e4v(2λ−x1,x2,x3,x4) −Q1(x1, x2, x3, x4)e4v(x1,x2,x3,x4)

≥ Q1(2λ− x1, x2, x3, x4)e4v(2λ−x1,x2,x3,x4) −Q1(2λ− x1, x2, x3, x4)e4v(x1,x2,x3,x4).

Now, using the mean value theorem we see that

42wλ ≥ c(x1, x2, x3, x4)(v(2λ− x1, x2, x3, x4)− v(x1, x2, x3, x4)),

where

c(x1, x2, x3, x4) = 4Q1(2λ− x1, x2, x3, x4)e4η(x1,x2,x3,x4) ≥ 0

and η(x1, x2, x3, x4) is real number between v(x1, x2, x3, x4) and v(2λ−x1, x2, x3, x4).

Thus

42wλ − c(x1, x2, x3, x4)zλ ≥ 0.

Similarly we can prove that

42zλ − c̄(x1, x2, x3, x4)wλ(x1, x2, x3, x4) ≥ 0,

where

c̄(x1, x2, x3, x4) = 4Q2(2λ− x1, x2, x3, x4)e4ξ(x1,x2,x3,x4) ≥ 0

and ξ(x1, x2, x3, x4) is real number between u(x1, x2, x3, x4) and u(2λ−x1, x2, x3, x4).

For λ sufficiently small and positive we have that Σλ has small measure and so

we can use the maximum principle for cooperative elliptic systems in small domains

(see [9, 10]) to conclude that

wλ ≥ 0 and zλ ≥ 0 in Σλ.
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Using similar arguments as in [10] we can also prove that

wλ ≥ 0 and zλ ≥ 0 in Σλ̄.

Therefore, there exists ε > 0 such that u and v are increasing in Ωε. Finally, the

conclusion follows in a standard way as in [11].

Step 3 We claim that there exist ε > 0 and C > 0 which depend only on Q1, Q2

and Ω such that ||u||L∞(Ωε), ||v||L∞(Ωε) ≤ C, for each (u, v) solution of (∗).
The conclusion follows by the same arguments as in [11], using Step 2 above.

Step 4 We claim that our theorem holds.

Let α := inf{φ1(x) : x ∈ Ω̄ \ Ωε}. Using Step 3 we obtain that Q1(x)e4v is

bounded in Ωε. Thus∫
Ω

Q1(x)e4vdx =

∫
Ωε

Q1(x)e4vdx+

∫
Ω\Ωε

Q1(x)e4vdx

≤ C +
1

α

∫
Ω\Ωε

Q1(x)e4vφ1dx

≤ C,

where we have used Step1 to estimate the last integral. Using a similar argument

we can prove the result for Q2(x)e4u.

Now, we presents our main result in this section.

Theorem 2.4. Assume Qi(x), i = 1, 2 is continuous function with mi ≤ Qi ≤ Mi

for some positive constants mi and Mi and (H1). Assume furthermore that Ω is

convex. Then there exists a constant C > 0 such that

||u||L∞ and ||v||L∞ ≤ C,

for all eventual solutions (u, v) of system (∗).

Proof. In view of
∫

Ω
Q1(x)e4vdx < C and

∫
Ω
Q2(x)e4udx < C, we may assume

that there exist two nonnegative bounded measures µ and ν such that

Q1(x)e4vn → µ and Q2(x)e4un → ν. (2.5)

We also observe that, as a consequence of Theorem 2.3, the solutions ((un, vn)) of

(∗) are bounded in L1(Ω) :

||un||L1 , ||vn||L1 ≤ C, ∀n. (2.6)

A point x ∈ Ω is called a 8π2 regular point with respect to µ if there is a function

ψ ∈ Cc(Ω), 0 ≤ ψ ≤ 1, with ψ = 1 in a neighborhood of x such that∫
Ω

ψdµ < 8π2.
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We define

Ωµ(8π2) = {x ∈ Ω : x is not a 8π2 regular point with respect toµ}

Since
∫
dµ < c, it follows that Ωµ(8π2) is a finite set. Let Su be the blow-up set

for the sequence (un) , that is

Su := {x ∈ Ω : ∃(xn) ⊂ Ω such that xn → x and un(xn)→ +∞}.

In fact, our theorem will be proved if we can show that Su = Sv = ∅.
Next, we prove our above conclusion by four steps.

Step 1 We claim that for x0 is a regular point for the measure µ (or for the

measure ν), then there exist constants ρ > 0 and C, independent of n, such that

||un||L∞(Bρ(x0)) ≤ C, ||vn||L∞(Bρ(x0)) ≤ C.

Using the fact that x0 is a regular point of the measure µ we have a function

ψ ∈ Cc(Ω), 0 ≤ ψ ≤ 1, with ψ ≡ 1 in some neighborhood Vx0 of x0, such that∫
ψdµ < 8π2. Thus,

∫
Vx0

dµ < 8π2, which implies that there exist R > 0, δ > 0

and n0 such that for all n ≥ n0∫
BR(x0)

Q2(x)e4un ≤ 8π2 − δ. (2.7)

Using this estimates, we first work with the second equation in (∗). Let us write

vn := v1,n + v2,n, where

42v1,n = Q2(x)e4un , in BR(x0) and v1,n = 4v1,n = 0 on ∂BR(x0).

Notice that 42v2,n = 0 in BR(x0).

Using Lemma 2.1 and (2.7), we obtain

C ≥
∫
BR

e
(32π2− δ

2
)

v1,n∫
Q2(x)e4un ≥

∫
BR

ep4v1,n , (2.8)

where p > 1 is a constant depending only on δ. It follows from t < et that

||v1,n||Lp(BR(x0)) ≤ C. (2.9)

Since the function 4v2,n is harmonic , we have

||v2,n||L1(BR) ≤ ||vn||L1(BR) + ||v1,n||L1(BR) ≤ C,

and so

||v2,n||L∞(BR
4

) ≤ C. (2.10)
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On the other hand, from Q1(x)e4vn ≤ ce4v1,ne4v2,n , we have

||Q1(x)e4vn||Lp(BR
4

) ≤ c||e4vn||Lp(BR
4

) ≤ C, for some p > 1. (2.11)

In order to prove that ||vn||L∞(Bρ) ≤ C, for some ρ < R
4

, it is enough to prove a

similar bounds as (2.10) for v1,n, namely

||v1,n||L∞(Bρ) ≤ C. (2.12)

For that matter, we use the first equation in (∗). Let us write un = u1,n + u2,n,

where

42u1,n = Q1(x)e4vn , in BR
4

and u1,n = 4u1,n = 0 on ∂BR
4
.

Observe that in view of (2.11), by standard elliptic regularity we have

||u1,n||L∞(BR
8

) ≤ C. (2.13)

Notice that 42u2,n = 0 in BR
4
. Thus 4u2,n is harmonic in BR

4
, and it follows that

||u2,n||L∞(B R
16

) ≤ C. (2.14)

From (2.13) and (2.14) we have

||un||L∞(B R
16

) ≤ C. (2.15)

Now we go back to the second equation in (∗). Using (2.15) and elliptic regularity

we have

||v2,n||L∞(B R
16

) ≤ C. (2.16)

From (2.12) and (2.16) we have

||vn||L∞(B R
16

) ≤ C,

which together with (2.15) proves our Step 1, taking ρ = R
16
.

Step 2 We claim that Sµ ⊂ Ωµ and Sν ⊂ Ων .

In fact, This follows directly from Step 1 and the definition of the sets Ωµ, Sµ, Sν

and Ων .

Step 3 We claim that Ωµ ⊂ Sν and Ων ⊂ Sµ.

Let x0 ∈ Ωµ. We claim that for each R > 0 we have

lim
n→+∞

||un||L∞(BR(x0)) = +∞. (2.17)
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Suppose by contradiction that there exists R0 > 0 and a subsequence, which we

denote also by (un), such that

||un||L∞(BR0
(x0)) ≤ C.

So,

||Q2(x)e4un||L∞(BR0
(x0)) ≤ C,

which implies that for R < R0 we have∫
BR(x0)

Q2(x)e4un ≤ CR4.

Thus, there exists R1 > 0, such that∫
BR1

(x0)

Q2(x)e4un ≤ 8π2.

This implies that x0 is a regular point of µ, which is a contradiction.

Now we observe that there exists R > 0 such that x0 is the only non-regular

point in BR(x0).

Next, we use (2.17) to prove that x0 ∈ Sν . Indeed, from (2.17) there exists

(xn) ⊂ BR(x0) such that xn → x̃ and v(xn)→ +∞. So, one needs to prove x̃ = x0.

Indeed if this were not the case, then x̃ would be a regular point, which is not

possible, since un is bounded in a neighborhood of a regular point.

With similar arguments as in the proof we just completed, we can prove that

Ων ⊂ Sµ.

As a consequence of Step 2 and Step 3 we conclude that those four sets coincide:

Sµ = Ωµ = Sν = Ων .

Step 4 We claim that Sµ = ∅.
We prove this claim by contradiction. Suppose that there exist x0 ∈ Sµ. Since

x0 is isolated, we can take R > 0 such that BR(x0) ∩ (Sµ \ {x0}) = ∅.
Next, we consider the Navier boundary value problems in BR(x0),

42zn = Q2(x)e4un , in BR(x0) and zn = 4zn = 0 on ∂BR(x0).

We know that the function un satisfies

42vn = Q2(x)e4un , in BR(x0) and vn ≥ 0,4vn ≤ 0 on ∂BR(x0).

Thus, by the maximum principle we have

0 ≤ zn ≤ vn in BR(x0).
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Taking the limit we have that zn → z, where z is a solution of the problem

42z = µ, in BR(x0) and z = 4z = 0 on ∂BR(x0).

On the other hand the problem

42w = 8π2δ0, in BR(x0) and w = 4w = 0 on ∂BR(x0)

has the solution

w(x) = ln
R

|x− x0|
.

Since x0 is not a regular point it follows that µ > 8π2δ0. So

z(x) ≥ ln|x− x0|−1 + ◦(1), x→ x0.

Now with the hypothesis Q1(x)e4t ≥ Ce4t, we have

lim
n→+∞

∫
BR(x0)

Q1(x)e4vn ≥ C

∫
BR(x0)

e4w =∞,

which is impossible.

3. Qualitative properties of solutions of problem (∗∗)

In this section, we study the qualitative properties of solutions of problem (∗∗).
From [8], Brezis-Merle implies that u is bounded from above when u satisfies

−4u = V (x)eu and other conditions. This result is used to study the qualitative

properties and classification of solutions for some second order elliptic equation

( See [12, 13]). Now, one naturally ask: is any solution (u, v) to system (∗∗)
with

∫
R4 Q1(x)e4v < +∞ and

∫
R4 Q2(x)e4u < +∞ bounded from above? We will

partially answer this problem and obtain the following result:

Theorem 3.1. Assume Qi(x), i = 1, 2 is a positive bounded away from 0 and

bounded from above function and (u, v) is a C2 solution of (∗∗) with
∫
R4 e

4u <

+∞, u(x) = ◦(|x|2) and
∫
R4 e

4v < +∞, v(x) = ◦(|x|2) Then u+ ∈ L∞(R4) and

v+ ∈ L∞(R4).

Before we begin our proof, we need following lemmas:

Lemma 3.1. [3, 5] Suppose (u, v) is a C2 function on R4 such that

(a) Q1e
4v and Q2e

4u are in L1(R4) with 0 < mi ≤ Qi ≤ Mi, i = 1, 2 for some

constants mi,Mi;
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(b) in the sense of weak derivative, u, v respectively satisfies the following equa-

tions:

4u+
2

β0

∫
R4

Q1(y)e4v(y)

|x− y|2
dy = 0

and

4v +
2

β0

∫
R4

Q2(y)e4u(y)

|x− y|2
dy = 0.

Then there are two constants c1, c2 > 0, respectively depending on v, u, such that

|4u|(x) ≤ c1 on R4 and |4v|(x) ≤ c2 on R4. Where β0 being given by (−4x)
2(ln 1

|x−y|)

= β0δy(x). In fact, β0 = 8π2.

Lemma 3.2. [5] Suppose S is C2 function on R4 such that 0 ≤ (−4)S(x) ≤ A on

R4 for some constant A and
∫
R4 Q(y)e4S(y)dy = α <∞ with 0 < m ≤ Q ≤M. Then

there exists a constant B, depending only on A,m,Mand α such that S(x) ≤ B on

R4.

Lemma 3.3. Suppose (u, v) is a solution of (∗∗). Let

w1(x) =
1

8π2

∫
R4

ln
|x− y|
|y|+ 1

Q1(y)e4v(y)dy

and

w2(x) =
1

8π2

∫
R4

ln
|x− y|
|y|+ 1

Q2(y)e4u(y)dy.

Then there exist two constants c1, c2 such that

w1(x) ≤ β1ln(|x|+ 1) + c1

and

w2(x) ≤ β2ln(|x|+ 1) + c2,

where β1 = 1
8π2 (

∫
R4 Q1(y)e4v(y)dy) and β2 = 1

8π2 (
∫
R4 Q2(y)e4u(y)dy).

Proof. For |x| ≥ 4, we decompose R4 = A1 ∪ A2, where A1 = {y||y − x| ≤ |x|
2
}

and A2 = {y||y − x| ≥ |x|
2
}. For y ∈ A1, we have |y| ≥ |x| − |x− y| ≥ |x|

2
≥ |x− y|,

which implies

ln
|x− y|
|y|+ 1

≤ 0.

Since |x− y| ≤ |x| + |y| ≤ |x|(|y| + 1) for |x|, |y| ≥ 2 and ln|x− y| ≤ ln|x| + c for
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|x| ≥ 4 and |y| ≤ 2, we have

w1(x) ≤ 1

8π2

∫
A2

ln
|x− y|
|y|+ 1

Q1(y)e4v(y)dy

≤ 1

8π2
(

∫
R4

Q1(y)e4v(y)dy)ln|x|+ c1

= β1ln(|x|+ 1) + c1.

Similarly, we have

w2(x) ≤ β2ln(|x|+ 1) + c2.

Lemma 3.4. Suppose (u, v) is a solution of (∗∗) with u(x) = ◦(|x|2) and v(x) =

◦(|x|2). Then 4u(x) and 4v(x) can be represented by

4u(x) = − 1

4π2

∫
R4

Q1(y)e4v(y)

|x− y|2
dy (3.1)

and

4v(x) = − 1

4π2

∫
R4

Q2(y)e4u(y)

|x− y|2
dy. (3.2)

Proof. Let k = u + w1. It is obvious that 42k ≡ 0 in R4. Similar proof of Lin

[1], we have for any x0 ∈ R4 and r > 0

2π2r3exp(
r2

2
4k(x0)) ≤ e−4k(x0)

∫
|x−x0|=r

e4kdσ.

Since k = u+ w1 ≤ u(x) + βln|x|+ c follows from Lemma 3.3, we have

r3−4βexp(
4k(x0)

2
r2) ∈ L1[1,+∞].

Thus 4k(x0) ≤ 0 for all x0 ∈ R4. By Liouville’s theorem, 4k(x) ≡ −c1 in R4 for

some constant c1 ≥ 0. Hence, we have

4u(x) = − 1

4π2

∫
R4

Q1(y)e4v(y)

|x− y|2
dy − c1. (3.3)

Now, we claim that c1 = 0. Otherwise, we have 4u(x) ≤ −c1 < 0 for |x| ≥ R0

where R0 is sufficiently large. Let

h(y) = u(y) + ε|y|2 + A(|y|−2 −R−2
0 ), (3.4)

where ε is small such that

4h(y) = 4u+ 8ε < −c1

2
< 0 (3.5)
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for |y| > R0, and A is sufficiently large so that inf
|y|≥R0

h(y) is achieved by some

y0 ∈ R4 with |y0| > R0. Applying the maximum principle to (3.5) at y0, we have a

contradiction. Hence, our claim is proved.

Similarly, we can prove that (3.2) holds.

Proof of Theorem 3.1. By Lemma 3.2 and Lemma 3.4, our conclusion holds.

Now, we study the qualitative properties of solutions of equation (∗∗). Following

our Theorem 3.1 and Chen [13], we obtain the following results:

Theorem 3.2. Assume that Qi(x), i = 1, 2 is a positive C1 function bounded

away from 0 and from above and (u, v) is a C2 solution of equation (∗∗) with∫
R4 e

4udx <∞ and
∫
R4 e

4vdx <∞, u(x) = ◦(|x|2) and v(x) = ◦(|x|2). Then

−β1ln(|x|+ 1)− c ≤ u(x) ≤ −β1ln(|x|+ 1) + c (3.6)

with β1 > 1 and

−β2ln(|x|+ 1)− c ≤ v(x) ≤ −β2ln(|x|+ 1) + c (3.7)

with β2 > 1.

Furthermore, we have the following identity∫
R4

[(x,∇Q1)e4v + (x,∇Q2)e4u]dx = 32π2[β1β2 − (β1 + β2)]. (3.8)

Theorem 3.3. Suppose (u, v) satisfies the assumptions of Theorem 3.2 and Qi, i =

1, 2 is radially symmetric and monotone decreasing, then u and v are radially sym-

metric and monotone decreasing.

Lemma 3.5. Assume (u, v) satisfies the assumptions of Theorem 3.2, then

wi(x)

ln|x|
→ βi, uniformly as |x| → ∞.

Proof. Here we prove w1(x)→ β1ln|x| as |x| → ∞. We need only to verify that

I =

∫
R4

ln|x− y| − ln(|y|+ 1)− ln|x|
ln|x|

Q1(y)e4v(y)dy → 0 as |x| → ∞.

Write I = I1 + I2 + I3, are the integrals on the regions D1 = {y : |x − y| ≤ 1},
D2 = {y : |x − y| > 1 and |y| ≤ k} and D3 = {y : |x − y| > 1 and |y| > k}
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respectively. We may assume that |x| ≥ 3.

(a) To estimate I1, we simply notice that

|I1| ≤ C

∫
|x−y|≤1

Q1(y)e4v(y)dy − 1

ln|x|

∫
|x−y|≤1

ln|x− y|Q1(y)e4v(y)dy.

Then by the boundedness of Qe4v (See Theorem 3.1) and
∫
R4 Q1(y)e4v(y)dy, we see

that I1 → 0 as |x| → ∞.
(b) For each fixed k, in region D2, we have, as |x| → ∞,

ln|x− y| − ln(|y|+ 1)− ln|x|
ln|x|

→ 0.

Hence I2 → 0.

(c) To see I3 → 0, we use the fact that for |x− y| > 1

| ln|x− y| − ln(|y|+ 1)− ln|x|
ln|x|

| ≤ c.

Then let k →∞.

Similarly, we have w2(x)→ β2ln|x| as |x| → ∞.

Lemma 3.6. Assume (u, v) satisfies the assumptions of Theorem 3.2, then

u(x) =
1

8π2

∫
R4

ln
|y|+ 1

|x− y|
Q1(y)e4v(y)dy + c0

and

v(x) =
1

8π2

∫
R4

ln
|y|+ 1

|x− y|
Q2(y)e4u(y)dy + c̃0

where c0 and c̃0 are two constants.

Proof. By the Lemma 3.4, we have 4(u + w1) = 0 in R4. By Theorem 3.1,

we have u+ ∈ L∞. So, combing lemma 3.3, we have u + w1 ≤ cln|x| + c, since

u + w1 is harmonic function, by the gradient estimates of harmonic functions, we

have u(x) + w1(x) ≡ c0. Similarly, we have v(x) + w2(x) ≡ c̃0.

Lemma 3.7. Suppose (u, v) satisfies the assumptions of Theorem 3.2, then u1(x) ≥
−β1ln(|x|+ 1)− c1 with β1 > 1 and u2(x) ≥ −β2ln(|x|+ 1)− c2 with β2 > 1 .

Proof. By Lemma 3.3 and Lemma 3.6, we have

u(x) > −β1ln(|x|+ 1)− c1
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and

v(x) > −β2ln(|x|+ 1)− c2.

From above inequality,
∫
R4 e

4vdx < +∞ and
∫
R4 e

4udx < +∞, we have β1 > 1, β2 >

1.

Lemma 3.8. Suppose (u, v) satisfies the assumptions of Theorem 3.2, then u(x) ≤
−β1ln(|x|+ 1) + c1 and v(x) ≤ −β2ln(|x|+ 1) + c2.

Proof. In fact, for |x− y| ≥ 1, we have

|x| ≤ |x− y|(|y|+ 1).

Then

ln|x| − 2ln(|y|+ 1) ≤ ln|x− y| − ln(|y|+ 1).

Consequently,

w1(x) ≥ 1

8π2

∫
|x−y|≥1

(ln|x| − 2ln(|y|+ 1))Q1(y)e4v(y)dy

+
1

8π2

∫
|x−y|≤1

(ln|x− y| − ln(|y|+ 1))Q1(y)e4v(y)dy

≥ β1ln|x| −
ln|x|
8π2

∫
|x−y|≤1

Q1(y)e4v(y)dy

+
1

8π2

∫
|x−y|≤1

ln|x− y|Q1(y)e4v(y)dy

− 1

8π2

∫
R4

ln(|y|+ 1)Q1(y)e4v(y)dy

= β1ln|x|+ I1 + I2 + I3.

Taking into account of the fact (see Lemma 3.5) that

u(x)

ln|x|
→ −β1 and β1 > 1

and by the boundedness of Q1(x), we have

I1, I2 → 0 as |x| → ∞

and I3 is finite. Therefore

w1(x) ≥ β1ln(|x|+ 1)− c1.
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By lemma 3.6, we have

u(x) ≤ −β1ln(|x|+ 1) + c1.

Similarly, we have

v(x) ≤ −β2ln(|x|+ 1) + c2.

Proof of Theorem 3.2. By Lemma 3.7 and Lemma 3.8, then (3.6) and (3.7)

hold. By Lin’s Lemma 2.6 and lemma 2.7 in [1], we can similarly infer that (3.8)

hold.

Proof of Theorem 3.3. By Theorem 3.2, we have u(x)→ −β1ln|x| as |x| → ∞,
where β1 > 1. Let ṽ(x) = −4u(x). By revised Lin’s Lemma 2.8 [1], ṽ(x) has a

harmonic asymptotic expansion at ∞ :
ṽ(x) = 1

|x|2 (2β1 +
∑4

j=1
aj
|x|2 ) +©( 1

|x|4 ),

ṽxi = −4β1xi
|x|4 +©( 1

|x|4 ),

ṽxixj =©( 1
|x|4 ).

(3.9)

Where aj (j = 1 to 4) are constants. Let ũ(x) = −4v(x). Similarly, we have
ũ(x) = 1

|x|2 (2β2 +
∑4

j=1
bj
|x|2 ) +©( 1

|x|4 ),

ũxi = −4β2xi
|x|4 +©( 1

|x|4 ),

ũxixj =©( 1
|x|4 ).

(3.10)

Where bj (j = 1 to 4) are constants.

Remained proof essentially equals to Lin’s proof. We omit it here.
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