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Abstract. This paper studies the steady boundary layer flow over

an impermeable moving vertical flat plate with convective bound-

ary condition at the left side of the flat plate. The governing partial

differential equations are transformed into a system of ordinary (sim-

ilarity) differential equations by using corresponding similarity vari-

ables. These equations were then solved numerically using the func-

tion bvp4c from Matlab for different values of the Rayleigh number

Ra, the convective heat transfer parameter γ and the Prandtl num-

ber Pr. The paper demonstrates that a similarity solution is possible

if the convective boundary condition heat transfer associated with

the hot or cooled fluid on the left side of the flat plate proportional

to x−1/4. For the sake of comparison of the numerical results the case

of the static flat plate (σ = 0) has been also studied. For the case

of a moving flat plate (σ = 1) it is shown that the solutions have

two branches in a certain range of the positive (assisting flow) and

negative (opposing flow) values of the Rayleigh number Ra. In order

to test the physically available solutions, a stability analysis has been

also performed. The effects of the governing parameters on the skin

friction, heat transfer, wall temperature, velocity and temperature

profiles, as well as on the streamlines and isotherms are investigated.

Comparison with results from the open literature shows a very good

agreement.
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Nomenclature

a,A, b, c1, c1 constants

Cf skin friction coefficient

g acceleration due to gravity

Grx local Grashof number

hf heat transfer coefficient

k thermal conductivity

L characteristic length of the plate

Nux local Nusselt number

Pr Prandtl number

Ra Rayleigh numbers

Rex local Reynolds number

t time

T fluid temperature

Tf temperature of the hot fluid

T∞ temperature of the ambient fluid

Tw temperature of the plate

u, v velocity components along and normal to the plate

Uw(x) velocity of the moving plate

x, y coordinates along and normal to the plate

Greek letters

α thermal diffusivity

β coefficient of thermal expansion

ε eigenvalue parameter

γ convective heat transfer

η similarity variable

µ dynamic viscosity

ν kinematic viscosity

θ dimensionless temperature

ρ density

σ moving parameter

τ dimensionless time

ψ dimensionless stream function
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1. Introduction

The boundary layer flow due to a moving flat plate is a relevant type

of flow appearing in many industrial processes, such as manufacture and

extraction of polymer and rubber sheets, paper production, wire drawing

and glass-fiber production, melt spinning, continuous casting, etc. (Tad-

mor and Klein [39]). It seems that Sakiadis [37] initiated the problem of

boundary layer flow and heat transfer past a moving surface, which is dif-

ferent by the boundary layer flow past a stationary surface or the famous

Blasius [10] problem due to the entering of the boundary layer. This

problem has also many industrial applications such as heat treatment

of material traveling between a feed roll and wind-up roll or conveyer

belts, extrusion of steel, cooling of a large metallic plate in a bath, liquid

films in condensation process and in aerodynamics, etc. A considerable

amount of research has been reported on this topic (Jaluria [23], Karve

and Jaluria [24], Hayat et al. [15], etc.). Similarity solutions for moving

plates were investigated also by many authors. Among them Afzal et al.

[3], Afzal [1,2], Fang [12], Fang and Lee [13], Weidman et al. [40], Ishak

et al. [22] studied the boundary layer flow on a moving permeable plate

parallel to a moving stream and concluded that dual solution exists if

the plate and the free stream move in the opposite directions. Further,

we mention that Hayat et al. [15-20], Nawaz et al. [33], Aman et al. [5],

and Mansur and Ishak [32] have studied different problems on convective

boundary layers flows.

As per standard texts books by Bejan [8], Kays and Crawford [26],

Bergman et al. [9] and other literatures about the convective flow that oc-

curs in atmospheric and oceanic circulation, electronic machinery, heated

or cooled enclosures, electronic power supplies, etc. This topic has many

applications such as its influence on operating temperatures of power

generating and electronic devices. It plays also a great role in thermal

manufacturing applications and is important in establishing the temper-

ature distribution within buildings as well as heat losses or heat loads for

heating, ventilating and air conditioning systems. As it is well-known,
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the difference between convective heat transfer and forced convection

problems is thermodynamic and mathematical, as well, the convective

flows being driven by buoyancy effect due to the presence of gravita-

tional acceleration and density variations from one fluid layer to another

(Bejan [8]). It seems that Karwe and Jaluria [24] are the first who have

studied the fluid flow and mixed convection transport from a moving

plate in rolling and extrusion processes. Ali [4] investigated the effect of

temperature dependent viscosity on laminar mixed convection boundary

layer flow and heat transfer on a continuously moving vertical isother-

mal surface and obtained local similarity solutions. Further, Aziz [6] has

studied the classical problem of hydrodynamic and thermal boundary

layers over an impermeable flat plate in a uniform stream of fluid with

convective boundary condition. Magyari [27] presented an exact solution

of the problem considered by Aziz [6] for the thermal boundary layer

in a compact integral form, whilst Ishak [21] extended Aziz’s [6] prob-

lem for a permeable flat plate. Yao et al. [42] obtained exact analytical

solutions of the momentum and the energy equations of a viscous fluid

flow over a stretching/shrinking sheet with a convective boundary con-

dition. Makinde and Olanrewaju [28] considered the buoyancy effects on

the thermal boundary layer over a vertical flat plate with a convective

surface boundary condition, while Makinde [29] investigated MHD heat

and mass transfer over a moving vertical plate with a convective surface

boundary condition. In another paper Makinde [30] presented similarity

solution for natural convection from a moving vertical plate with internal

heat generation and a convective boundary condition. Makinde and Aziz

[31] analyzed the boundary layer flow of a nanofluid past a stretching

sheet with convective boundary condition. Finally, we mention that Aziz

and Khan [7] have very recently studied the natural convective boundary

layer flow of a nanofluid past a convectively heated vertical plate.

The objectives of the present study are to find new similarity trans-

formations and the corresponding similarity solutions for the problem

of steady viscous incompressible fluid past a moving vertical flat plate
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with thermal convective boundary condition and to solve the transformed

coupled ordinary differential equations numerically. The effects of the

convective heat transfer parameter γ, the Prandtl number Pr and the

Rayleygh number Ra on the flow and heat transfer characteristics are in-

vestigated numerically. To our best of knowledge this is a novel problem

with new and original results. On the other hand, it should be mentioned

that, this is a complete paper with a mathematical stability analysis of

the nature of the dual (first and second order or upper branch and lower

branch) solutions.

2. Basic equations

Consider a vertical flat plate moving with the velocity Uw(x) in an

unsteady laminar viscous and incompressible fluid as shown in Fig. 1. It

is assumed that the temperature of the ambient fluid is T∞, the unknown

temperature of the plate is Tw and the left surface of the plate is heated

from a hot fluid of temperature Tf (> T∞) or is cooled from a cooled

fluid (Tf < T∞) by the process of convection (see Aziz [6] and Ishak

[21]). This then yields a heat transfer variable coefficient hf(x). It is also

assumed that the thermophysical properties of the fluid are constant

except the density in the buoyancy force term. Under the assumption of

Boussinesq and boundary layer approximations, the governing boundary

layer equations relevant to our problem are (Bejan [8], Bergman et al.

[9]).
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(a) Assisting flow (b) Opposing flow

Fig. 1. Flow configuration and coordinate system.

∂u

∂x
+
∂v

∂y
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞) (2)

∂u

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3)

We assume that the initial and boundary conditions of these equations

are (Aziz [6], Ishak [21])

t < 0 : u = v = 0, T = T∞ for any x, y

t ≥ 0 : v = 0, u = σUw(x), −k
∂T

∂y
= hf(Tf − Tw) at y = 0

u → 0, T → T∞ as y → ∞

(4)

where t is the time, u and v are the velocity components along the x− and

y− axes, T is the temperature, ν is the kinematic viscosity, k is the ther-

mal conductivity, α is the thermal diffusivity, β is the volumetric thermal

coefficient, g is the acceleration due to gravity and σ is a constant with

σ = 0 for a fixed (static) plate and σ = 1 for a moving plate, respectively.

The convective boundary condition is based on surface energy balance

expressed as: heat conduction at the surface = heat convection at the

surface. This boundary condition encountered in practice as most of the

process involving heat transfer are exposed to environment at a specified

temperature (see Cengel [11]).

3. Steady-state flow analysis

In order to deal with our problem, we introduce the stream function

ψ defined in the classical form as u = ∂ψ/∂y and v = −∂ψ/∂x. Thus,
Eqs. (2) and (3) can be written as

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
+ gβ(T − T∞) (5)
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∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= α

∂2T

∂y2
(6)

and the boundary conditions (4) becomes

∂ψ

∂x
= 0,

∂ψ

∂y
= σUw(x), −k

∂T

∂y
= hf(Tf − Tw) at y = 0

∂ψ

∂y
→ 0, T → T∞ as y → ∞

(7)

Further, we define the independent and dependent similarity variables in

the usual form as (White [41])

η = c1
y

x1/4
, ψ = c2x

3/4f(η), θ(η) = (T − T∞)/∆T (8)

where ∆T = Tf − T∞ and c1 and c2 are positive constants and will be

determined later by using the condition that Eqs. (5) and (6) subject

to the boundary conditions (7) become similarity equations or ordinary

differential equations. Thus, substituting (8) into Eqs. (5) and (6), we

get

f ′′′ +
c2
νc1

(

3

4
ff ′′ − 1

2
f ′2

)

+
gβ∆T

νc2c31
= 0 (9)

1

Pr
θ′′ +

3

4

c2
νc1

fθ′ = 0 (10)

along with

c1c2x
1/2f ′(0) = Uw(x) (11)

where primes denote differentiation with respect to the similarity inde-

pendent variable η. To get the dimensionless form of η, f(η) and θ(η)

and to get rid of the fluid properties appearing in the coefficients of the

Eqs. (9) and (10),
c2
νc1

= 1, c1c2 ≡ A (12)

so that in the wall condition Uw(x) = Ax1/2, where the constant

A(m1/2/s) corresponds to the prescribed plate velocity at the distance

x = 1m from the origin, namely A = Uw(1). Accordingly, the first
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Eq.(12), c2 ≡ νc1 along with the prescribed equation c1c2 = A, determine

the constants c1 and c2 in terms of A uniquely, yielding

c1 =

√

A

ν
, c2 =

√
Aν (13)

In this way, the coefficient gβ∆T/(νc2c
3
1) in Eq. (9) leads to an essential

parameter of the problem, namely to the mixed convection parameter

gβ∆T

νc2c
3
1

=
gβ∆T

A2
(14)

Bearing in mind that the present problem does not possess a natural

length scale, the length unit L is to our disposal. Thus, choosing L as

L =
(να

A2

)1/3

(15)

one obtains from Eq. (14) the Rayleigh number Ra defined as

gβ∆T

νc2c31
=
gβ∆T

A2
=
gβ∆TL3

να
≡ Ra (16)

Thus, Eqs. (9) and (10) become

f ′′′ +
3

4
ff ′′ − 1

2
f ′2 +Raθ = 0 (17)

1

Pr
θ′′ +

3

4
fθ′ = 0 (18)

and the boundary conditions (7) can be written as

f(0) = 0, f ′(0) = σ, θ′(0) = −γ[1 − θ(0)]

f ′(η) → 0, θ(η) = 0 as η → ∞
(19)

where Pr = ν/α is the Prandtl number and γ is the convective heat

transfer parameter, which is given by

γ =
hf
c1k

x1/4 (20)

In order that Eqs. (17) and (18) have similarity solutions, the quantity

γ must be a constant and not a function of x as in Eq. (20) (see Aziz
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[6] and Ishak et al. [22]). This condition can happen if the heat transfer

coefficient hf (x) is proportional to x
−1/4. We therefore assume

hf = ax−1/4 (21)

where a is a constant. With the introduction of Eq. (21) into Eq. (20),

we have γ = a/(c1k). Thus, the solutions of Eqs. (17) and (18) with the

boundary conditions (19) yield the similarity solutions. Therefore, the

investigation of this problem has to be conducted with respect to three

characteristic parameters of the model, namely γ, Pr and Ra. It is worth

emphasizing that Ra is a proper physical characteristic of the problem,

depending on the temperature prescription ∆T for the fluid, as well as on

the velocity prescription A for the moving plate. Obviously, ∆T and A

are two physically independent input data. Moreover, Ra can be positive

(∆T , aiding flow) or negative (∆T < 0 opposing flow), respectively.

The physical parameters of interest in the present problem are the skin

friction factor Cf and the local Nusselt number Nux, which are given by

Cf =
µ

ρU2
w(x)

(

∂u

∂y

)

y=0

, Nux =
x

∆T

(

−∂T
∂y

)

y=0

(22)

Substituting (8) into (22), we get

Re1/2x Cf = f ′′(0), Re−1/2
x Nux = −θ′(0) (23)

where Rex = Uw(x)x/ν is the local Reynolds number.

4. Flow stability

Weidman et al. [40], Postelnicu and Pop [35], and Roşca and Pop [36]

have shown for the forced convection boundary layer flow past a per-

meable flat plate and, respectively, for the forced convection flow of a

non-Newtonian fluid past a wedge, that the lower branch solutions are

unstable (not realizable physically), while the upper branch solutions

are stable (physically realizable). We test these features by considering

the unsteady equations (2) and (3). Following Weidman et al. [40], we

introduce the new dimensionless time variable τ = ct. The use of τ is
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associated with an initial value problem and is consistent with the ques-

tion of which solution will be obtained in practice (physically realizable).

Using the variables τ and (8), we have

u = Ax1/2
∂f

∂η
, v = −c2

4
x−1/4

(

3f − η
∂f

∂η

)

θ(η, τ) = (T − T∞)/∆T, τ = c21x
−1/2t, η = c1

y

x1/4

(28)

so that Eqs. (3) and (5) can be written as

∂3f

∂η3
+

3

4
f
∂2f

∂η2
− 1

2

(

∂f

∂η

)2

− ∂2f

∂η∂τ
+Raθ = 0 (29)

1

Pr

∂2θ

∂η2
+

3

4
f
∂θ

∂η
− ∂θ

∂τ
= 0 (30)

subject to the boundary conditions

f(0, τ) = 0,
∂f

∂η
(0, τ) = σ,

∂θ

∂η
(0, τ) = −γ[1− θ(0, τ)]

∂f

∂η
(n, τ) → 0, θ(η, τ) → 0 as η → ∞

(31)

To test stability of the steady flow solution f(η) = f0(η) and θ(η) = θ0(η)

satisfying the boundary-value problem (17)-(19), we write (see Weidman

et al. [40] or Roşca and Pop [36]),

f(η, τ) = f0(η) + e−ετF (η, τ), θ(η, τ) = θ0(η) + e−ετG(η, τ) (32)

where ε is an unknown eigenvalue parameter, and F (η, τ) and G(η, τ)

are small relative to f0(η) and θ0(η). Substituting (32) into Eqs. (29) and

(30), we obtain the following linearized problem

∂3F

∂η3
+

3

4

(

f0
∂2F

∂η2
+ f ′′

0F

)

− (f ′

0 − ε)
∂F

∂η
− ∂2F

∂η∂τ
+RaG = 0 (33)

1

Pr

∂2G

∂η2
+

3

4

(

f0
∂G

∂η
+ Fθ′0

)

+ εG− ∂G

∂τ
= 0 (34)
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along with the boundary conditions

F (0, τ) = 0,
∂F

∂η
(0, τ) = 0,

∂G

∂η
(0, τ) = γG(0, τ)

∂F

∂η
(η, τ) → 0, G(η, τ) → 0 as η → ∞

(35)

As suggested by Weidman et al. [40], we investigate the stability of the

steady flow and heat transfer solution f0(η) and θ0(η) by setting τ = 0,

and hence F = F0(η) and G = G0(η) in (33) and (34) to identify initial

growth or decay of the solution (26). To test our numerical procedure we

have to solve the linear eigenvalue problem

F ′′′

0 +
3

4
(f0F

′′

0 + f ′′

0F0)− (f ′

0 − ε)F ′

0 +RaG0 = 0 (36)

1

Pr
G′′

0 +
3

4
(f0G

′

0 + F0θ
′

0) + εG0 = 0 (37)

along with the boundary conditions

F0(0) = 0, F ′

0(0) = 0, G′

0(0) = γG0(0)

F ′

0(η) → 0, G0(η) → 0 as η → ∞
(38)

It should be mentioned that for particular values of ε, Pr and Ra the

corresponding steady flow solution f0(η) and θ0(η), the stability of the

steady flow solution is determined by the smallest eigenvalue ε. According

to Harris et al. [14], the range of possible eigenvalues can be determined

by relaxing a boundary condition on F0(η) or G0(η). For the present

problem, we relax the condition that G0(η) → 0 as n → ∞ and for a

fixed value of γ we solve the system (36,37) along with the new boundary

condition G0(0) = 1.

5. Results and discussion

The set of coupled non-linear ordinary differential Eqs. (17) and (18)

with boundary conditions in Eq. (16) form a two point boundary value

problem and have been solved numerically using the function bvp4c from

Matlab for different values of the Rayleigh number Ra, the convective

heat transfer parameter γ and the Prandtl number Pr. Both the cases of
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assisting flow (Ra > 0) and opposing flow (Ra < 0) and also both cases

of static (σ = 0) and moving (σ = 1) flat plate have been considered.

The relative tolerance was set to 10−10. In this method, we have chosen

a suitable finite value of η → ∞, namely η = η∞ = 12. It was noticed

by Pantokratotars [34] that some results are erroneous as the graphs for

velocity and temperature distributions in the boundary layers do not ap-

proach the correct values in a asymptotic manner due to small value of

ηmax. Since the present problem may have more than one (dual) solu-

tion, the bvp4c function requires an initial guess of the desired solution

for the ordinary differential equations (17) and (18) with the boundary

conditions (19). The guess should satisfy the boundary conditions and

reveal the behavior of the solution. Determining an initial guess for the

first (upper branch) solution is not difficult because the bvp4c method

will converge to the first solution even for poor guesses. However, it is

difficult to come up with a sufficiently good guess for the solution of the

system of the ordinary differential equations (17) and (18) in the case of

opposing flow. To overcome this difficulty, we start with a set of param-

eter values for which the problem is easy to be solved. Then, we use the

obtained result as initial guess for the solution of the problem with small

variation of the parameters. This is repeated until the right values of the

parameters are reached. This technique is called continuation (Shampine

et al. [38]). Table 1 shows the comparison of heat transfer for several

values of Pr when σ = 0 (fixed plate), γ → ∞ (isothermal plate) and

Ra = 1 (assisting flow) with those reported by Bejan [7]. It is seen that

the results are in very good agreement. Further, Eqs. (17) and (18) have

been also numerically solved using the Runge-Kutta-Fehlberg fourth-fifth

order numerical method proposed by Aziz [6]. The values of −f ′′(0) and

θ(0) for different values of the Prandtl number Pr and the convective

heat transfer parameter γ are given in Table 2 for Ra = 1 (assisting

flow) and a moving plate (σ = 1). The results are shown in Table 2.

Also, this table shows a very agreement. Therefore, the results presented

in the both Tables 1 and 2 support the validity of the present numerical
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results. We are, therefore, confident that these results are accurate and

correct.

In Figs. 2 and 3 we plot the reduced skin friction f ′′(0) and the reduced

heat transfer from the plate −θ′(0) against the Rayleigh number Ra for

different values of the convective heat transfer parameter γ when the

Prandtl number Pr = 1 and the plate is moving (σ = 1). In this case, we

find the existence of dual solutions, an upper brunch (or first) solution

(shown by full lines) and lower brunch (or second) solution (shown by dot

lines) for f ′′(0) and −θ′(0) for both the cases of assisting (Ra > 0) and

opposing (Ra < 0) flows. It is seen that there are critical values Rac < 0

of Ra < 0, with the values of |Rac| decreasing with increasing γ for f ′′(0)

and increasing with γ for −θ′(0), respectively. Further, it is seen that

there is a saddle-node bifurcation at Ra = Rac giving rise to the two

solution branches for Rac < Ra < 0. Both solution branches continue

into the aiding flow region (Ra > 0) with the upper solution branch

passing through the forced convection solution at Ra = 0 for f ′′(0).

On this upper solution branch f ′′(0) increases with γ. The numerical

solutions for the both upper and lower brunch solutions pass smoothly

through Ra = 0 without a singularity appearing, as seen for example in

Weidman et al. [40]. Further, has been shown from the stability analysis

that the upper branch solutions are stable and physically realizable, while

the lower branch solutions are unstable and, therefore, not physically

realizable. The smallest eigenvalues ε for Ra = −0.5 and −1 (opposing

flow), γ = 0.05 and 0.1 and Pr = 1 are given in Table 3.

We next illustrate in Figs. 4 to 11, the velocity f ′(η) and tempera-

ture θ(η) profiles for several values of Ra both positive (assisting flow,

Ra > 0) and negative (opposing flow, Ra < 0) and for several values of

γ, Pr = 1 when the flat plate is moving (σ = 1). These figures show that

there are also dual (upper and lower brunch) solutions for the velocity

and temperature profiles. Figures 4 and 5 display the velocity f ′(η) and

temperature θ(η) profiles for several values of Ra < 0 (opposing flow)

and γ = 0.01. We notice that the velocity profiles decrease, while the
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temperature profiles increases as |Ra| increases for the both branch solu-

tions. For the velocity field, the boundary layer thickness is higher for the

upper branch than the lower branch solutions. However, reverse happens

for the temperature profiles. Further, the velocity f ′(η) and the temper-

ature θ(η) profiles for several values of γ when Ra = −1 (opposing flow),

Pr = 1 and σ = 1, are illustrated in Figs. 6 and 7. It is seen that f ′(η)

decreases, while θ(η) increases with γ for the both branch solutions. Phys-

ically, this is because fluids on the right side of the flat plate are cooled,

so that higher values of γ increases temperature. Further, Figs. 8 and 9

show the velocity f ′(η) and temperature θ(η) profiles for several values

of Ra > 0 (assisting flow) when γ = 0.01, Pr = 1 and σ = 1. It can

be seen that f ′(η) increases, while θ(η) decreases with Ra for the both

branch solutions. Fluids on the right side surface of the plate are heated

up making it become lighter and flow faster. Also, the velocity f ′(η) and

temperature θ(η) profiles are given in Figs. 10 and 11 for several values

of γ when Ra = 1 (assisting flow), Pr = 1 and σ = 1. It is found that for

the velocity profiles the upper branch solutions increase, while the lower

branch solutions decreases with γ. However both the upper and lower

branch solutions continuously increase with γ. For an opposing flow, ef-

fects of these parameters are reverse to that of the effect for the assisting

case. It is worth mentioning to this end that for both dual solutions the

velocity f ′(η) and temperature θ(η) profiles attain smoothly the bound-

ary conditions (19) as η → ∞ and it shows again that the present results

are accurate. Finally, the streamlines and isotherms for the first (upper

branch) and the second (lower branch) solutions are illustrated in Figs.

12 and 13 when γ = 0.05 and 0.06, Ra = −1 and Pr = 1.

6. Conclusions

The steady two-dimensional boundary layer flow of a viscous and in-

compressible fluid over a moving vertical flat plate subject to the thermal

convective boundary condition has been examined in this paper. The

analysis revealed that similarity solutions exist if the convective heat

14



transfer coefficient γ is inversely proportional to x−1/4. The numerical

solutions have been reported for various governing parameters. The fol-

lowing conclusions can be made:

• Multiple (dual) solutions exist for both the cases of assisting

(Ra > 0) and opposing (Ra < 0) cases.

• The stability analysis has revealed that the upper branch solu-

tions are stable and physically realizable, while the lower branch

solutions are unstable and, therefore, not physically realizable.

• It is found that there are critical values Rac < 0 of Ra < 0, with

the values of |Rac| decreasing with increasing γ for f ′′(0) and

increasing with γ for −θ′(0), respectively.
• The reduced skin friction f ′′(0) decreases whilst the rate of heat

transfer increases with the increasing of γ when the flow is op-

posing (Ra < 0).

• The velocity and temperature profiles are also affected by the

governing parameters Ra and γ.
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Table 1. Comparison of heat transfer for several values of Pr

when σ = 0 (fixed plate), γ → ∞ (isothermal plate)

and Ra = 1 (assisting flow).

15



Pr Present study Bejan [7]

−θ′(0)Pr−1/4 NuRa−1/4

0.01 0.180 0.162

0.72 0.387 0.387

1 0.401 0.401

2 0.426 0.426

10 0.464 0.465

100 0.489 0.490

1000 0.497 0.499
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Table 2. Values of −f ′′(0) and θ(0) for various of Pr and γ

when σ = 1 (moving plate) and Ra = 1 (assists flow).

−f ′′(0) θ(0)

Pr γ = 0.01 γ = 0.5 γ = 1 γ = 100 γ → ∞ γ = 0.01 γ = 0.5 γ = 1 γ = 100 γ → ∞

0.72 0.75078 0.40563 0.30576 0.11401 0.11109 0.02346 0.51325 0.67276 0.99495 1.0000

(0.75078)(0.40564)(0.30577)(0.11401)(0.11109)(0.02347)(0.51326)(0.67276)(0.99495)

1 0.75686 0.46931 0.37381 0.17471 0.17149 0.01892 0.46879 0.63321 0.99400 1.00000

(0.75683)(0.46929)(0.37379)(0.17470)(0.17149)(0.01893)(0.46879)(0.63322)(0.99401)

3 0.76618 0.63247 0.56516 0.36501 0.36085 0.00966 0.32360 0.48667 0.98930 1.00000

(0.76615)(0.63245)(0.56515)(0.36501)(0.36085)(0.00966)(0.32359)(0.48668)(0.98930)

7 0.76859 0.70169 0.65942 0.48338 0.47864 0.00599 0.23062 0.37398 0.98330 1.00000

(0.76857)(0.70167)(0.65942)(0.48339)(0.47863)(0.00599)(0.23062)(0.37398)(0.98331)

10 0.76910 0.71992 0.68647 0.52453 0.51958 0.00493 0.19816 0.33027 0.97991 1.00000

(0.76910)(0.71990)(0.68648)(0.52453)(0.51958)(0.00493)(0.19816)(0.33028)(0.97992)

100 0.77023 0.76430 0.75903 0.68829 0.68277 0.00148 0.06901 0.12909 0.93672 1.00000

(0.77024)(0.76459)(0.75932)(0.68833)(0.68273)(0.00148)(0.06901)(0.12909)(0.93672)

Results obtained using the Runge-Kutta-Fehlberg fourth-fifth order

method (Aziz [6]).

Table 3. Smallest eigenvalues of ε for several values of γ

when Ra = −0.5 and −1 (opposing flow) with Pr = 1.

Ra γ Upper branch Lower branch

−0.5 0.05 0.2142 −0.0498

0.1 0.1835 −0.0450

−1 0.05 0.2958 −0.0296

0.1 0.2347 −0.0168
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Fig. 2. Variation of f ′′(0) with Ra for several values of γ

when Pr = 1 and a moving plate (σ = 1).

Fig. 3. Variation of −θ(0) with Ra for several values of γ

when Pr = 1 and a moving plate (σ = 1).
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Fig. 4. Velocity profiles f ′(η) for several values of Ra < 0

(opposing flow) when γ = 0.01, Pr = 1 and σ = 1.

Fig. 5. Temperature profiles θ(η) for several values of Ra < 0

(opposing flow) when γ = 0.01, Pr = 1 and σ = 1.
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Fig. 6. Velocity profiles f ′(η) for several values of γ

when Ra = −1 (opposing flow), Pr = 1 and σ = 1.

Fig. 7. Temperature profiles θ(η) for several values of γ

when Ra = −1 (opposing flow), Pr = 1 and σ = 1.
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Fig. 8. Velocity profiles f ′(η) for several values of Ra > 0

(assisting flow) when γ = 0.01, Pr = 1 and σ = 1.

Fig. 9. Temperature profiles θ(η) for several values of Ra > 0

(assisting flow) when γ = 0.01, Pr = 1 and σ = 1.
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Fig. 10. Velocity profiles f ′(η) for several values of γ

when Ra = 1 (assisting flow), Pr = 1 and σ = 1.

Fig. 11. Temperature profiles θ(η) for several values of γ

when Ra = 1 (assisting flow), Pr = 1 and σ = 1.
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(a) (b)

Fig. 12. Streamlines for the first solution branch (a) and second solution

branch (b) when γ = 0.05 (solid line) and γ = 0.06 (dotted line),

Ra = −1 and Pr = 1.

(a) (b)

Fig. 13. Isotermlines for the first solution branch (a) and second

solution branch (b) when γ = 0.05 (solid line) and γ = 0.06

(dotted line), Ra = −1 and Pr = 1.
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Babeş-Bolyai University

R-400084 Cluj-Napoca, Romania

E-mail address : alin.rosca@econ.ubbcluj.ro

2School of Mathematical Sciences

Universiti of Sains Malaysia

11800 USM, Penang, Malaysia

3Department of Mathematics
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