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Abstract

We define and characterize reflexive–EP elements in rings, that is
elements which commute with their image-kernel (p, q)-inverse.
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1 Introduction

Let R be a ring with the unit 1. We use R• to denote the set of all idempo-
tents of R. Let a ∈ R. We say that b ∈ R is an outer inverse of a provided
that bab = b holds. An element b ∈ R is an inner inverse of a, if aba = a
holds. In this case a is inner regular (or relatively regular). The set of all
inner regular elements of R will be denoted by R−. If b is both inner and
outer generalized inverse of a, then b is a reflexive generalized inverse of a.

The outer inverse is not unique in general, but it is unique if we fix the
corresponding idempotents ([9]): let a ∈ R, and let p, q ∈ R•. An element
b ∈ R satisfying

bab = b, ba = p, 1− ab = q,

will be called (p, q)–outer generalized inverse of a, written b = a
(2)
p,q . If a(2)

p,q

exists, it is unique.
Instead of prescribing the idempotents ab and ba, we may prescribe cer-

tain kernel and image ideals related to these idempotents([12]): let p, q ∈ R•,
an element b ∈ R is the image-kernel (p, q)-inverse of a if

bab = b, baR = pR and (1− ab)R = qR.
∗The author is supported by the Ministry of Science, Republic of Serbia, grant no.

174007.
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The image-kernel (p, q)-inverse b is unique if it exists, and it will be denoted
by a×.

Observe that the image-kernel (p, q)-inverse of Kantún-Montiel ([12])
coincides with the (p, q, l)-outer generalized inverse of Cao and Xue ([6]),
but his approach is different.

If the image-kernel (p, q)-inverse b of a satisfies the equations a = aba,
then b is a reflexive image-kernel (p, q)-inverse of a and it is denote by a(1,×).
It follows that a(1,×) is also unique in the case when it exists.

An element a ∈ R is group invertible if there is a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a.

Recall that a# is uniquely determined by previous equations and it is called
the group inverse of a. We use R# to denote the set of all group invertible
elements of R. The group inverse a# double commutes with a, that is,
ax = xa implies a#x = xa# [2]. Recall that the group inverse is a particular
case of the generalized Drazin inverse (for more details see [14, 15, 16]).

For u, v ∈ R•, notice that u◦ = (1 − u)R and ◦u = R(1 − u). Also, we
have

uR = vR ⇔ ◦u =◦ v

and
Ru = Rv ⇔ u◦ = v◦.

Complex matrices and Hilbert spaces operators with closed ranges A
with the property that the ranges of A and A∗ coincides, are known as
EP or range-Hermitian (EP for equal projections onto R(A) and R(A∗)).
EP matrices, EP linear operators on Banach or Hilbert spaces and EP ele-
ments of C∗–algebras or Banach algebras have been investigated by many
authors (see [1, 3, 7, 8, 10]). In rings with involution EP elements are those
elements for which the group and the Moore–Penrose inverse exist and co-
incide [17, 20]. The EP elements are important since they are characterized
by commutativity with their Moore–Penrose inverse.

Tian and Wang [21] defined weighted–EP matrices as matrices that com-
mute with their weighted Moore-Penrose inverse. Similar objects in the con-
texts of C∗-algebra elements, Banach space operators and Banach algebra
elements are investigated in [5, 18].

The factorization of EP objects is a central topic of this area. In fact, fac-
torizations of EP elements were considered for matrices, Hilbert and Banach
space operators and Banach and C∗- algebra elements [4, 8, 19].
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The main objective of this article is to introduce and study the reflexive–
EP elements, that is elements which commute with their image-kernel (p, q)-
inverse. In this way we extend EP objects from C∗-algebras or rings with
involution to rings, a context where no involution is available, using an idea
that is similar to the one that led to introduce EP Banach space opera-
tors and EP Banach algebra elements. Also, we characterize reflexive–EP
elements in rings using one kind of factorization.

2 Reflexive–EP elements

In the beginning of this section, we state the definition of reflexive–EP ele-
ments in rings.

Definition 2.1. Let a ∈ R and p, q ∈ R• such that a(1,×) exists. The
element a is reflexive–EP if aa(1,×) = a(1,×)a.

In a ring with involution R, let a ∈ R be a Moore-Penrose invertible
element and b = a†, the Moore-Penrose inverse of a. Note that b is the
reflexive image-kernel (p, q)-inverse of a, where p = a†a and q = 1 − aa†,
so that this notion consists in an extension of the Moore-Penrose inverse
to rings. The extension of the EP objects from C∗-algebras or rings with
involution to rings, is then clear.

Now, we present a lot of equivalent conditions for an element of a ring
to be reflexive–EP.

Theorem 2.1. Let p, q ∈ R• and let a ∈ R such that a(1,×) exists. Then
the following statements are equivalent:

(i) aa(1,×) = a(1,×)a,

(ii) a ∈ R# and a(1,×) = a#,

(iii) aR = pR and Ra = R(1− q),

(iv) aR ⊂ pR and Ra ⊂ R(1− q),

(v) aR ⊃ pR and Ra ⊃ R(1− q),

(vi) ◦a = ◦p and a◦ = (1− q)◦,

(vii) a ∈ R# and aa#a(1,×) = a(1,×)a#a,

(viii) a ∈ R# and ak = a(1,×)aak = akaa(1,×), for any/some integer k ≥ 1,

3



(ix) a ∈ R# and a#a(1,×) = a(1,×)a#,

(x) a ∈ R# and aa(1,×)a(1,×)a = a(1,×)aaa(1,×),

(xi) a ∈ R# and (a(1,×))2a# = a(1,×)a#a(1,×) = a#(a(1,×))2,

(xii) a ∈ a(1,×)R−1 ∩R−1a(1,×),

(xiii) there exist x, y ∈ R such that a = a(1,×)x = ya(1,×) and xR = R and
y◦ = {0},

(xiv) a ∈ a(1,×)R∩Ra(1,×),

(xv) a ∈ R# and aka(1,×) = a(1,×)ak, for any/some integer k ≥ 1,

(xvi) a ∈ R# and (a(1,×))k = (a#)k, for any/some integer k ≥ 1,

(xvii) (a(1,×))(1,×) = a,

(xviii) (a + λa(1,×))R = (λa + a3)R and R(a + λa(1,×)) = R(λa + a3), for
any/some complex number λ 6= 0.

Proof. (i) ⇔ (ii): Since the group inverse is unique, this equivalence holds.
(i) ⇒ (iii): Observe that aR = aa(1,×)R = a(1,×)aR = pR and Ra =

Ra(1,×)a = Raa(1,×) = R(1− q).
(iii) ⇒ (iv): It is obvious.
(iv) ⇒ (i): The hypothesis aR ⊂ pR can be write as aa(1,×)R ⊂

a(1,×)aR which implies aa(1,×) = a(1,×)ax for some x ∈ R. Hence, aa(1,×) =
a(1,×)aa(1,×)ax = a(1,×)aaa(1,×). In the similar way, Ra ⊂ R(1 − q) gives
a(1,×)a = a(1,×)aaa(1,×). Therefore, a(1,×)a = aa(1,×).

(iii) ⇒ (v) ⇒ (i): Analogy as (iii) ⇒ (iv) ⇒ (i), we can prove these
implications.

(iii) ⇔ (vi): For idempotents aa(1,×), a(1,×)a, p, 1− q, we have

aR = pR ⇔ aa(1,×)R = pR ⇔ ◦(aa(1,×)) = ◦p ⇔ ◦a = ◦p

and

Ra = R(1− q) ⇔ Ra(1,×)a = R(1− q) ⇔ (a(1,×)a)◦ = (1− q)◦

⇔ a◦ = (1− q)◦.

(ii) ⇒ (vii) ∧ (viii): This is trivial.
(vii) ⇒ (i): The equality aa#a(1,×) = a(1,×)a#a gives

aa(1,×) = aaa#a(1,×) = aa(1,×)a#a = aa(1,×)aa# = aa#
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and
a(1,×)a = a(1,×)a#aa = aa#a(1,×)a = a#a.

So, aa(1,×) = a#a = a(1,×)a.
(viii) ⇒ (i): If a ∈ A# and ak = a(1,×)aak = akaa(1,×), for any/some

integer k ≥ 1, then

aa# = ak(a#)k = a(1,×)aak(a#)k = a(1,×)aaa# = a(1,×)a

and
a#a = (a#)kak = (a#)kakaa(1,×) = a#aaa(1,×) = aa(1,×).

So, a(1,×)a = aa# = aa(1,×).
(i) ⇒ (ix): Since the group inverse a# double commutes with a, we

conclude that this implication is true.
(ix) ⇒ (i): Consequently, by (a#)# = a and double commutativity.
(i) ⇒ (x): Obviously.
(x) ⇒ (viii): Let a ∈ R# and aa(1,×)a(1,×)a = a(1,×)aaa(1,×). Then

a(1,×)aaa(1,×) = aa(1,×)a(1,×)a = aa#(aa(1,×)a(1,×)a)a#a

= a#aa(1,×)aaa(1,×)aa# = a#a. (1)

Multiplying the equality (1) by ak, for any/some integer k ≥ 1, from the
left side, we get akaa(1,×) = ak. Also, multiplying the equality (1) by ak,
for any/some integer k ≥ 1, from the right side, we obtain a(1,×)aak = ak.
Hence, (viii) holds.

(ix) ⇒ (xi): Trivial.
(xi) ⇒ (vii): If a ∈ R# and (a(1,×))2a# = a(1,×)a#a(1,×) = a#(a(1,×))2,

we get

(a(1,×))2a = (a(1,×))2a#a2 = a(1,×)a#a(1,×)a2

= a(1,×)(a#)2aa(1,×)a2 = a(1,×)a#a

and
a(a(1,×))2 = a2a#(a(1,×))2 = a2a(1,×)a#a(1,×) = aa#a(1,×).

Since the group inverse (a#)# = a double commutes with a#, (a(1,×))2a# =
a#(a(1,×))2 implies (a(1,×))2a = a(a(1,×))2 which gives a(1,×)a#a = aa#a(1,×).

(i) ⇒ (xii): From the hypothesis aa(1,×) = a(1,×)a, we can obtain a =
(a2 + 1− a(1,×)a)a(1,×) and

(a2 + 1− a(1,×)a)−1 = (a(1,×))2 + 1− a(1,×)a.
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So, a ∈ R−1a(1,×). In the same way, we have a = a(1,×)(a2 + 1 − aa(1,×))
and (a2 + 1− aa(1,×))−1 = (a(1,×))2 + 1− aa(1,×). Therefore, a ∈ a(1,×)R−1

and the statement (xii) is satisfied.
(xii) ⇒ (xiii) ⇒ (xiv): Obviously.
(xiv) ⇒ (iv): This implication follows by a(1,×)R = a(1,×)aR = pR and

Ra(1,×) = Raa(1,×) = R(1− q).
(i) ⇒ (xv): It is obvious.
(xv)⇒ (iv): Assume that a ∈ R# and aka(1,×) = a(1,×)ak, for any/some

integer k ≥ 1. Since a = ak(a#)k−1 = aka(1,×)a(a#)k−1, we have

aR ⊂ aka(1,×)R = a(1,×)akR ⊂ a(1,×)aR = pR.

From a = (a#)k−1aa(1,×)ak = (a#)k−1aaka(1,×), we deduce that Ra ⊂
Raa(1,×) = R(1− q). Hence, (iv) holds.

(ii) ⇒ (xvi): We can easy verify.
(xvi) ⇒ (iv): If a ∈ R# and (a(1,×))k = (a#)k, for any/some integer

k ≥ 1, then

aR = (a#)kak+1R = (a(1,×))kak+1R ⊂ a(1,×)R = pR

and
Ra ⊂ Rak+1(a#)k ⊂ R(a(1,×))k ⊂ Ra(1,×) = R(1− q).

(xvii) ⇒ (iii): From (a(1,×))(1,×) = a, we have aR = aa(1,×)R = pR and
Ra = Ra(1,×)a = R(1− q).

(iii) ⇒ (xvii): The condition (iii) gives aa(1,×)R = aR = pR and
Ra(1,×)a = Ra = R(1− q). So, (a(1,×))(1,×) = a.

(xviii) ⇒ (v): Since (a + λa(1,×))R = (λa + a3)R, λ 6= 0, there exists
x ∈ R such that a+ λa(1,×) = (λa+ a3)x. Now, we have

a+ λaa(1,×)a(1,×) = aa(1,×)(a+ λa(1,×)) = aa(1,×)(λa+ a3)x
= (λa+ a3)x = a+ λa(1,×),

which gives a(1,×) = aa(1,×)a(1,×). Therefore,

pR = a(1,×)R = aa(1,×)a(1,×)R ⊂ aR.

Analogously, byR(a+λa(1,×)) = R(λa+a3), we obtain a(1,×) = a(1,×)a(1,×)a
which implies R(1− q) = Ra(1,×) ⊂ Ra.

(ii) ⇒ (xviii): Applying the hypothesis a(1,×) = a#, from

a+ λa# = (a3 + λa)(a#)2 = (a#)2(a3 + λa)
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and
a3 + λa = (a+ λa#)a2 = a2(a+ λa#),

we deduce that condition (xviii) holds.

We can check the following result.

Corollary 2.1. Let p, q ∈ R• and let a ∈ R such that a(1,×) exists. Then
the following statements are equivalent:

(i) aa(1,×) = a(1,×)a,

(ii) a(1,×) = a(a(1,×))2 = (a(1,×))2a;

(iii) a ∈ R# and a# = a(a(1,×))2 = (a(1,×))2a,

(iv) if b ∈ R is such that ab = ba, then a(1,×)b = ba(1,×),

(v) a ∈ R# and a(1,×)a#a+ aa#a(1,×) = 2a(1,×),

(vi) a ∈ R# and akaa(1,×) + a(1,×)aak = 2ak, for any/some integer k ≥ 1,

(vii) a ∈ R# and a2k−1 = a(1,×)a2k+1a(1,×), for any/some integer k ≥ 1,

(viii) a ∈ R# and (a#)ka(1,×) = a(1,×)(a#)k, for any/some integer k ≥ 1,

(ix) aa(1,×)(a + λa(1,×)) = (a + λa(1,×))aa(1,×) and a(1,×)a(a + λa(1,×)) =
(a+ λa(1,×))a(1,×)a, for any/some complex number λ 6= 0,

(x) a ∈ A# and (a#)ka(1,×)a = (a(1,×))k, for any/some integer k ≥ 1,

(xi) a ∈ A# and (a#)k+l−1 = (a(1,×))l(a#)k−1 = (a#)k−1(a(1,×))l, for
any/some integers k, l ≥ 1.

(xii) a ∈ A# and a(a(1,×))k+1 = (a#)k = (a(1,×))k+1a, for any/some integer
k ≥ 1,

(xiii) a ∈ A# and (a(1,×))k+1 = (a#)ka(1,×) = a(1,×)(a#)k, for any/some
integer k ≥ 1.

Let A be a complex unital Banach algebra. One important characteriza-
tion of reflexive–EP elements in a Banach algebra will be given in the next
result.

Theorem 2.2. Let a ∈ A− and p, q ∈ A• such that a(1,2)
p,q exists. Then, the

following statements are equivalent:
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(i) aa(1,×) = a(1,×)a,

(ii) there exists some holomorphic function f : U → C, where U is an open
neighbourhood of σ(a), such that a(1,×) = f(a).

Proof. (i)⇒ (ii): Since a(1,×) = a#, by [13, Theorem 4.4], a# = f(a), where
f is holomorphic in a neighbourhood of σ(a), and f(λ) = 0 in a neighbour-
hood of 0, f(λ) = λ−1 in a neighbourhood of σ(a)\{0}. Consequently, the
statements (ii) holds.

(ii) ⇒ (i): If a(1,×) = f(a), for some function f holomorphic in a neigh-
bourhood of σ(a), by a property of the holomorphic calculus, a(1,×) com-
mutes with a.

3 Factorization a = uv

Let p, q ∈ R•. Consider a factorization of a ∈ R of the form

a = uv, u′u = 1 = vv′, Ru′ = R(1− q), v′R = pR. (2)

There exist u′, v′ ∈ R such that u′u = 1 = vv′ if and only if Ru = R = vR.
Therefore, u′ = u

(1,×)
1,q and v′ = v

(1,×)
p,1 , where u

(1,×)
1,q is the image-kernel

(1, q)-inverse of u and v
(1,×)
p,1 is the image-kernel (p, 1)-inverse of v.

Theorem 3.1. Let p, q ∈ R• and let a ∈ R have a factorization (2). Then
a(1,×) exists and a(1,×) = v

(1,×)
p,1 u

(1,×)
1,q .

Proof. Denote by a′ = v
(1,×)
p,1 u

(1,×)
1,q . Observe that

a′aa′ = v
(1,×)
p,1 u

(1,×)
1,q uvv

(1,×)
p,1 u

(1,×)
1,q = v

(1,×)
p,1 · 1 · u(1,×)

1,q = a′

and
aa′a = uvv

(1,×)
p,1 u

(1,×)
1,q uv = u · 1 · v = a.

Also, a′aR = v
(1,×)
p,1 vR = pR and Raa′ = Ruu(1,×)

1,q = R(1 − q). Thus,
a′ = a(1,×).

Lemma 3.1. Let p, q ∈ R• and let a ∈ R have a factorization (2). Then

(i) v
(1,×)
p,1 R = v

(1,×)
p,1 vR = pR,

(ii) ◦v(1,×)
p,1 = ◦v

(1,×)
p,1 v = ◦p,
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(iii) Ru(1,×)
1,q = Ruu(1,×)

1,q = R(1− q),

(iv) (u(1,×)
1,q )◦ = (uu(1,×)

1,q )◦ = (1− q)◦.

We study characterizations of elements which satisfy aa(1,×) = a(1,×)a in
rings using factorization of the form a = uv.

Theorem 3.2. Let p, q ∈ R• and let a ∈ R have a factorization (2). Then
the following statements are equivalent:

(i) aa(1,×) = a(1,×)a,

(ii) uu
(1,×)
1,q = v

(1,×)
p,1 v,

(iii) Rv = R(1− q) and uR = pR,

(iv) v◦ = (1− q)◦ and ◦u = ◦p,

(v) ∃ c ∈ R−1 : v = cu
(1,×)
1,q and u = v

(1,×)
p,1 c,

(vi) R−1v = R−1u
(1,×)
1,q and uR−1 = v

(1,×)
p,1 R−1,

(vii) a(1,×) ∈ uR∩Rv.

Proof. We can verify that the statements (i), (ii), (iii) and (iv) are equiva-
lent, by the proof of Theorem 3.1.

(ii) ⇒ (v): Let c = vu and d = u
(1,×)
1,q v

(1,×)
p,1 . Then, from

v = vv
(1,×)
p,1 v = vuu

(1,×)
1,q = cu

(1,×)
1,q

and
u = uu

(1,×)
1,q u = v

(1,×)
p,1 vu = v

(1,×)
p,1 c,

we deduce that

cd = cu
(1,×)
1,q v

(1,×)
p,1 = vv

(1,×)
p,1 = 1 = u

(1,×)
1,q u = u

(1,×)
1,q v

(1,×)
p,1 c = dc.

Hence, c ∈ R−1 and (iv) is satisfies.
Obviously, the following implications hold: (v) ⇒ (iii) and (i) ⇒ (vii).
(vii) ⇒ (i): By (vii), we get a(1,×) = a(a(1,×))2 = (a(1,×))2a which gives

(i).

In the next result which can be proved easy, we give new equivalent
condition for an element a of a ring to be reflexive–EP.
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Corollary 3.1. Let p, q ∈ R• and let a ∈ R have a factorization (2). Then
the following statements are equivalent:

(i) aa(1,×) = a(1,×)a,

(ii) ∃ c ∈ R : c◦ = {0} = ◦c, v = cu
(1,×)
1,q and u = v

(1,×)
p,1 c,

(iii) ∃ c ∈ R : cR = R = Rc, v = cu
(1,×)
1,q and u = v

(1,×)
p,1 c,

(iv) ∃ t ∈ R−1 : u(1,×)
1,q = tv and v(1,×)

p,1 = ut,

(v) ∃ t ∈ R : t◦ = {0} = ◦t, u
(1,×)
1,q = tv and v(1,×)

p,1 = ut,

(vi) ∃ t ∈ R : tR = R = Rt, u(1,×)
1,q = tv and v(1,×)

p,1 = ut,

(vii) ∃ c, c1, t, t1 ∈ R : v = cu
(1,×)
1,q , u = v

(1,×)
p,1 c1, u

(1,×)
1,q = tv and v

(1,×)
p,1 =

ut1,

(viii) u = v
(1,×)
p,1 vu, v = vuu

(1,×)
1,q , u(1,×)

1,q = u
(1,×)
1,q v

(1,×)
p,1 v and v(1,×)

p,1 = uu
(1,×)
1,q v

(1,×)
p,1 .

Let R be a ring with involution and let a ∈ R be a Moore-Penrose
invertible element. Then b = a† is the reflexive image-kernel (p, q)-inverse of
a, where p = a†a and q = 1−aa†. If, for mentioned p and q, the element a has
a factorization (2), we get p = a†a = v′u′uv = v′v and q = 1− aa† = 1−uu′
implying u′ = u† and v′ = v†. So, observe that the result of this section
recovers some results related to the corresponding factorization presented in
[4].

4 Final remarks

According to [11, Thorem 6], the condition of being inner regular is equiva-
lent to the one of being Moore-Penrose invertible, for C∗-algebra elements.
In rings with involution the inner regularity is not enough to ensure the ex-
istence of a Moore–Penrose inverse. EP elements present a particular class
of Moore-Penrose invertible elements which have been intensively studied in
different contexts such as matrices, Hilbert space bounded and linear maps,
C∗-algebras, rings with involution.

Boasso in [3] made further inroads into the theory when he gave a def-
inition of EP elements of a Banach algebra in the absence of involution.
His definition relies on the characterization of Hermitian elements using the
topology of the underlying algebra due to Palmer and Vidav. However,
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there are no obvious candidates for Hermitian elements in a ring (or alge-
bra) without involution, and so this avenue does not seem to be accessible
from the purely algebraic point of view.

In this article, we introduce and study the reflexive–EP elements as
objects similar to EP elements in the contexts of ring elements. Notice
that the reflexive–EP elements are characterized using the concept of group
inverse, since the reflexive–EP ring elements consists in a particular class of
group invertible elements. The aim of this paper is to observe that a lot of
characterizations which are true for EP elements in C∗-algebra are also true
for the reflexive–EP elements in ring.

Acknowledgment. The author is very grateful to the referees for con-
structive comments towards improvement of the original version of this pa-
per.
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vertible and weighted EP Banach algebra elements, J. Korean Math.
Soc. 50 (6) (2013) 1349-1367.

[6] J. Cao, Y. Xue, The characterizations and representations for the
generalized inverses with prescribed idempotents in Banach algebras,
FILOMAT 27(5) (2013) 851-863.
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18000 Nǐs, Serbia

E-mail: dijana@pmf.ni.ac.rs

13


