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ABSTRACT. In the literature, many of the descriptions of different classes of Leibniz al-
gebras (L, [·, ·]) have been made by given the multiplication table on the elements of a
basis B = {vk}k∈K of L, in such a way that for any i, j ∈ K we have that [vi, vj ] =
λi,j [vj , vi] ∈ Fvk for some k ∈ K, where F denotes the base field and λi,j ∈ F. In
order to give an unifying viewpoint of all these classes of algebras we introduce the more
general category of Leibniz algebras admitting a multiplicative basis and study its struc-
ture. We show that if a Leibniz algebra L admits a multiplicative basis then it is the direct
sum L =

⊕
α
Iα with any Iα a well described ideal of L admitting a multiplicative basis

inherited from B. Also the B-simplicity of L is characterized in terms of the multiplicative
basis.
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1. INTRODUCTION AND PREVIOUS DEFINITIONS

The term Leibniz algebra was introduced in the study of a non-antisymmetric analogue
of Lie algebras by Loday [27], being so the class of Leibniz algebras an extension of the
one of Lie algebras. However this kind of algebras was previously studied, under the name
of D-algebras, by D. Bloh [6, 7, 8]. Since the 1993 Loday’s work, many researchers have
been attracted by this kind of algebras being remarkable the great activity in this field
developed in the last years. This activity has been mainly focussed in the frameworks of
low dimensional algebras, nilpotence and related problems (see [1, 4, 5, 9, 14, 15, 16, 18,
19, 24, 25, 26, 29, 30, 31, 32]).

Definition 1.1. A Leibniz algebra L is a vector space over a base field F endowed with a
bilinear product [·, ·] satisfying the Leibniz identity

[[y, z], x] = [[y, x], z] + [y, [z, x]],

for all x, y, z ∈ L.

In presence of anti-commutativity, Jacobi identity becomes Leibniz identity and so Lie
algebras are examples of Leibniz algebras.

Let L be a Leibniz algebra, the ideal S generated by the squares, that is S is generated
by the set {[x, x] : x ∈ L}, plays an important role in the theory since it determines the
(possible) non-Lie character of L. From the Leibniz identity, this ideal satisfies

(1) [L,S] = 0.

In fact a Leibniz algebra L is called simple when [L,L] 6= 0 and its only ideals are {0},
S and L.
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Observe that we can write
L = S ⊕ V

where V is a linear complement of S in L, (actually V is isomorphic as linear space to
L/S, the so called corresponding Lie algebra of L). Hence, by taking BS and BV bases of
S and V respectively we get

B = BS ∪̇BV
a basis of L.

Definition 1.2. A basis B = {vk}k∈K of L which decomposes B = BS ∪̇BV as above, is
said to be multiplicative if for any i, j ∈ K we have that [vi, vj ] ∈ Fvk for some k ∈ K.

Remark 1.1. Observe that if we write

BS = {ei}i∈I and BV = {uj}j∈J ,
the fact S is an ideal together with Equation (1) give us that the only possible non-zero
products among the elements in B are.

(1) For any i ∈ I and j ∈ J we have [ei, uj ] ∈ Fek for some k ∈ I .
(2) For any j, k ∈ J we have either [uj , uk] ∈ Ful or [uj , uk] ∈ Fei for some l ∈ J ,

i ∈ I .

Let us observe that if the base field F of a Leibniz algebra is of characteristic different
to 2, then S is the ideal generated by the set {[x, y] + [y, x] : x, y ∈ L}.

Lemma 1.1. Let (L, [·, ·]) be a Leibniz algebra over a base field F of characteristic dif-
ferent to 2. If B = {vk}k∈K is a basis of L satisfying that for any i, j ∈ K we have
[vi, vj ] = λi,j [vj , vi] ∈ Fvk for some k ∈ K and some λi,j ∈ F then L admits B as
multiplicative basis.

Proof. By the above observation, we can assert that S is generated as linear space by
{vj : j ∈ J ⊂ K}. From here, we can find a basis BS of S formed by elements of B and
a basis BV := B \ BS of V which make of B a multiplicative basis. �

Lemma 1.1 gives us the way of checking easily that the expositions of many of the
classes of Leibniz algebras which have been described in the literature, have been made
by presenting a multiplication table of the Leibniz algebra in terms of a multiplicative ba-
sis, becoming so examples of Leibniz algebras admitting a multiplicative basis. This is
the case for instance of the two and three dimensional nilpotent Leibniz algebras (see
[27, 2]), of the non-Lie Leibniz algebras L with L/S abelian described in [2], of the
classes of (complex) finite-dimensional naturally graded filiform Leibniz algebras and n-
dimensional filiform graded filiform Leibniz algebras of length n − 1 (see [3]), of the
categories of finite-dimensional 0-filiform Leibniz algebras, of finite-dimensional nonsplit
graded filiform Leibniz algebras, and of different types of finite-dimensional 2-filiform
nonsplit Leibniz algebras (see [17]), of the class of four-dimensional solvable Leibniz alge-
bras with three-dimensional rigid nilradical (see [20]), of the families of four-dimensional
solvable Leibniz algebras with two-dimensional nilradical and of certain types, respect to
its radical, of four-dimensional solvable Leibniz algebras (see [23]), of several types of
solvable Leibniz algebras with naturally graded filiform nilradical considered in [22], of
the solvable Leibniz algebras whose nilradical is NFn (see [21]), of the family of (com-
plex) finite-dimensional Leibniz algebras with Lie quotient sl2 (see [28]), and so on. From
here, the class of Leibniz algebras admitting a multiplicative basis becomes a wide class of
Leibniz algebras. Let us concrete one example of the above ones from [28].
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Example 1.1. Let L = S ⊕ V be the n-dimensional complex Leibniz algebra where

BS = {e11, ..., e1t1 , e
2
1, ..., e

2
t2 , ..., e

p
1, ..., e

p
tp}

is a basis of S, the set
BV = {v1, v2, v3}

is a basis of V and the non-zero products respect to the elements in the basis

B = BS ∪̇BV
of L are:

[v1, v3] = 2v1, [v2, v3] = −2v2, [v1, v2] = v3,

[v3, v1] = −2v1, [v3, v2] = 2v2, [v2, v1] = −v3,
[ejk, v3] = (tj − 2k)ejk, k = 0, ..., tj ,

[ejk, v2] = ejk+1, k = 0, ..., tj − 1,

[ejk, v1] = −k(tj + 1− k)ejk−1, k = 0, ..., tj ,
1 ≤ j ≤ p.

Then L becomes a Leibniz algebra admitting B as a multiplicative basis.

The present paper is devoted to the study of Leibniz algebras L of arbitrary dimension
and over an arbitrary base field F admitting a multiplicative basis, by focussing on its
structure.

The paper is organized as follows. In §2 and by inspiring in the connections of root
techniques developed for split Leibniz algebras and superalgebras in [12, 13] we introduce
connections techniques on the set of indexes of the multiplicative basis B so as to obtain a
powerful tool for the study of this class of algebras. By making use of these techniques we
show that any Leibniz algebra L admitting a multiplicative basis is of the form L =

⊕
α
Iα

with any Iα a well described ideal of L admitting a multiplicative basis inherited from B.
In §3 the B-simplicity of these ideals is characterized in terms of the multiplicative basis.

Finally, we would like to note that the techniques we develop in the preset paper are far
away from the ones introduced in the study of the previously mentioned classes of Leibniz
algebras having a multiplicative basis. The above references concerning these classes of
Leibniz algebras are mainly centered in the finite dimensional setup an so linear algebra
tools are fundamental in their arguments, but many times these argument do not hold in the
infinite-dimensional case or when the base field is not algebraically close. Our techniques
also hold in the infinite-dimensional case and over arbitrary base fields, being adequate
enough to provide us of a second Wedderburn-type theorem in this general framework
(Theorems 2.1 and 3.1). Indeed, although we make use of the ideal S which is inherent
to Leibniz theory, we hope these techniques can be useful in the study of the structure of
other wider categories of algebras.

Let us introduce the following infinite-dimensional Leibniz algebras which will be con-
sidered later. We will denote by N the set of non-negative integers.

Example 1.2. Let L = S ⊕ V be the Leibniz algebra, over a base field with characteristic
different to 2, where

BS = {en : n ∈ N}
is a basis of S, the set

BV = {va, vb, vc, vd}
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is a basis of V and the non-zero products respect to the elements in the basis

B = BS ∪̇BV
of L are:

[vb, vc] = va, [vc, vb] = −va, [vd, vd] = e0,

[e0, vd] = e1, [en, va] = en for n ≥ 2, [en, vb] = en+1 for n ≥ 2, and
[en, vc] = (n− 2)en−1 for n ≥ 3.

Then L becomes a Leibniz algebra admitting B as a multiplicative basis.

Example 1.3. Let L = S ⊕ V be the Leibniz algebra, over a base field with characteristic
different to 2, where

BS = {en,m : (n,m) ∈ N× N}
is a basis of S, the set

BV = {vn : n ∈ N}
is a basis of V and the non-zero products respect to the elements in the basis

B = BS ∪̇BV
of L are:

[v1, v2] = v0, [v2, v1] = −v0,
[v3, v4] = v0, [v4, v3] = −v0,

[en,m, v0] = en,m for n,m ≥ 1, [en,m, v1] = en+1,m for n,m ≥ 1,
[en,m, v2] = (n− 1)en−1,m for n ≥ 2 and m ≥ 1,

[en,m, v3] = en,m+1, for n,m ≥ 1,
[en,m, v4] = (m− 1)en,m−1 for n ≥ 1 and m ≥ 2,

[e0,0, v5] = e0,0, [en,0, v4+2n] = en,0 for n ≥ 1 and
[e0,m, v5+2m] = e0,m for m ≥ 1

Then L becomes a Leibniz algebra admitting B as a multiplicative basis.

2. DECOMPOSITION AS DIRECT SUM OF IDEALS

In what follows L = S ⊕ V denotes a Leibniz algebra over a base field F admitting a
multiplicative basis B = BS ∪̇BV , with bases BS = {ei}i∈I and BV = {uj}j∈J of S and
V respectively.

We begin this section by developing connection techniques among the elements in the
sets of indexes I and J as the main tool in our study.

By renaming if necessary we can suppose I ∩ J = ∅. Now, for each k ∈ I∪̇J , a new
assistant variable k /∈ I∪̇J is introduced and we denote by

I := {i : i ∈ I} and J := {j : j ∈ J}
the sets consisting of all these new symbols. Also, given any k ∈ I∪̇J we will denote

(k) := k.

Finally, we will write by P(A) the power set of a given set A.

Next, we consider the following operation which recover, in a sense, certain multiplica-
tive relations among the elements of the basis B:
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? : (I∪̇J)× (I∪̇J∪̇I∪̇J)→ P(I∪̇J),

given by
• For i, k ∈ I ,

i ? k = ∅
• For i ∈ I and j ∈ J ,

i ? j = j ? i =
{
∅, if [ei, uj ] = 0
{k}, if 0 6= [ei, uj ] ∈ Fek with k ∈ I

• For i ∈ I and k ∈ I ,

i ? k = {j ∈ J : 0 6= [ek, uj ] ∈ Fei}

• For i ∈ I and j ∈ J ,
i ? j =

{k ∈ J : 0 6= [uj , uk] ∈ Fei}∪{l ∈ J : 0 6= [ul, uj ] ∈ Fei}∪{m ∈ I : 0 6= [em, uj ] ∈ Fei}
• For j, k ∈ J ,

j ? k = k ? j = α ∪ β
where

α =

 ∅, if [uj , uk] = 0
{l}, if 0 6= [uj , uk] ∈ Ful
{i}, if 0 6= [uj , uk] ∈ Fei

and β =

 ∅, if [uk, uj ] = 0
{m}, if 0 6= [uk, uj ] ∈ Fum
{r}, if 0 6= [uk, uj ] ∈ Fer

• For j ∈ J and i ∈ I ,

j ? i = ∅
• For j ∈ J and k ∈ J ,

j ? k = {l ∈ J : 0 6= [ul, uk] ∈ Fuj} ∪ {m ∈ J : 0 6= [uk, um] ∈ Fuj}.

The mapping ? is not still good enough for our purposes and so we need to introduce
the following one:

φ : P(I∪̇J)× (I∪̇J∪̇I∪̇J)→ P(I∪̇J),

as
• φ(∅, I∪̇J∪̇I∪̇J) = ∅,
• For any ∅ 6= K ∈ P(I∪̇J) and a ∈ I∪̇J∪̇I∪̇J ,

φ(K, a) =
⋃
k∈K

(k ? a).

It is straightforward to verify that for any i, j ∈ I∪̇J and a ∈ I∪̇J∪̇I∪̇J we have
that j ∈ i ? a if and only if i ∈ j ? a. This fact implies that for any K ∈ P(I∪̇J) and
a ∈ I∪̇J∪̇I∪̇J we have

(2) i ∈ φ(K, a) if and only if φ({i}, a) ∩K 6= ∅.
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Definition 2.1. Let i and j be distinct elements in the set of indexes I∪̇J . We say that i is
connected to j if there exists a subset

{i1, i2, ..., in−1, in} ⊂ I∪̇J∪̇I∪̇J
with n ≥ 2 such that the following conditions hold:

1. i1 = i.

2. φ({i1}, i2) 6= ∅,
φ(φ({i1}, i2), i3) 6= ∅,
φ(φ(φ({i1}, i2), i3), i4) 6= ∅,
· · · · · · · · ·
φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1) 6= ∅.

3. j ∈ φ(φ(· · · (φ({i1}, i2), · · · ), in−1), in).

The subset {i1, i2, ..., in−1, in} is called a connection from i to j and we accept i to be
connected to itself.

Proposition 2.1. The relation ∼ in I∪̇J , defined by i ∼ j if and only if i is connected to
j, is an equivalence relation.

Proof. By definition i ∼ i, that is, the relation ∼ is reflexive.
Let us see the symmetric character of ∼: If i ∼ j with i 6= j then there exists a

connection
{i1, i2, ..., in−1, in}

from i to j satisfying Definition 2.1. Let us show that the set

{j, in, in−1, ..., i3, i2}
gives rise to a connection from j to i.

Indeed, by taking K := φ(· · · (φ({i1}, i2), · · · ), in−1) we can apply the relation given
by (2) to the expression

j ∈ φ(φ(· · · (φ({i1}, i2), · · · ), in−1), in)

to get
φ({j}, in) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1) 6= ∅

and so
φ({j}, in) 6= ∅.

By taking

k ∈ φ({j}, in) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1),

the relation given by (2) and the fact k ∈ φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1) allow us
to assert

φ(φ({j}, in), in−1) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−3), in−2) 6= ∅
and consequently

φ(φ({j}, in), in−1) 6= ∅.
By iterating this process we get

φ(φ(· · · (φ({j}, in), · · · ), in−r+1), in−r)∩

φ(φ(· · · (φ({i1}, i2), · · · ), in−r−2), in−r−1) 6= ∅
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for 0 ≤ r ≤ n− 3. Observe that this relation in the case r = n− 3 reads as

φ(φ(· · · (φ({j}, in), · · · ), i4), i3) ∩ φ({i1}, i2) 6= ∅.

Since i1 = i, if we write K := φ(φ(· · · (φ({j}, in), · · · ), i4), i3), the previous observation
allows us to assert that φ({i}, i2) ∩K 6= ∅. Hence the relation (2) applies to get

i ∈ φ(φ(· · · (φ({j}, in), · · · ), i3), i2)

and concludes ∼ is symmetric.
Finally, let us verify the transitive character of ∼. Suppose i ∼ j and j ∼ k. If i = j

or j = k it is trivial, so suppose i 6= j and j 6= k and write {i1, ..., in} for a connection
from i to j and {j1, ..., jm} for a connection from j to k. Then we clearly have that
{i1, ..., in, j2, ..., jm} is a connection from j to k. We have shown the connection relation
is an equivalence relation. �

By the above Proposition we can consider the next quotient set on the set of indexes
I∪̇J ,

I∪̇J/ ∼= {[i] : i ∈ I∪̇J},
becoming [i] the set of elements in I∪̇J which are connected to i.

Our next goal in this section is to associate an ideal I[i] of L to any [i]. Fix i ∈ I∪̇J , we
start by defining the linear subspaces S[i] ⊂ S and V[i] ⊂ V as follows

S[i] :=
⊕

j∈[i]∩I

Fej ⊂ S,

V[i] :=
⊕

k∈[i]∩J

Fuk ⊂ V

Finally, we denote by I[i] the direct sum of the two subspaces above, that is,

I[i] := S[i] ⊕ V[i].

Definition 2.2. Let L be a Leibniz algebra with a multiplicative basis B. It is said that a
subalgebra A of L admits a multiplicative basis BA inherited from B if BA is a multiplica-
tive basis of A satisfying BA ⊂ B.

Proposition 2.2. For any i ∈ I∪̇J , the linear subspace I[i] is an ideal of L admitting a
multiplicative basis inherited from the one of L.

Proof. We can write

[I[i], L] = [S[i] ⊕ V[i], (
⊕
l∈I

Fel)⊕ (
⊕
j∈J

Fuj)].

In case [ek, uj ] 6= 0 for some k ∈ [i] ∩ I and j ∈ J , we have that 0 6= [ek, uj ] ∈ Fem
with m ∈ I and so the connection {k, j} gives us k ∼ m, so m ∈ [i] and then 0 6=
[ek, uj ] ∈ S[i]. Hence we get

[S[i],
⊕
j∈J

Fuj ] ⊂ S[i].

In a similar way we have [V[i],
⊕
j∈J

Fuj ] ⊂ I[i] and so

[I[i], L] ⊂ I[i].
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On the other hand,

[L, I[i]] = [(
⊕
l∈I

Fel)⊕ (
⊕
j∈J

Fuj),S[i] ⊕ V[i]]

and in case 0 6= [el, uk] ∈ Fem for some l ∈ I and k ∈ [i]∩ J we have that the connection
{k, l} gives us k ∼ m and so [

⊕
l∈I
Fel, V[i]] ⊂ S[i]. In a similar way [

⊕
j∈J

Fuj , V[i]] ⊂ I[i]

and then

[L, I[i]] ⊂ I[i].

Hence I[i] is an ideal of L.
Finally, observe that the set

BI[i] := {ej : j ∈ [i] ∩ I}∪̇{uk : k ∈ [i] ∩ J}

is a multiplicative basis of I[i] satisfying BI[i] ⊂ B. From here we have that I[i] admits a
multiplicative basis inherited from the one of L. �

Corollary 2.1. If L is simple, then there exists a connection between any couple of ele-
ments in the set of indexes I∪̇J .

Proof. The simplicity of L implies [L,L] 6= 0 and so J 6= ∅. From here, Proposition 2.2
gives us I[j0] = L for some j0 ∈ J being then [j0] = I∪̇J . That is, any couple of elements
in I∪̇J are connected. �

Theorem 2.1. A Leibniz algebra L with a multiplicative basis decomposes as the direct
sum

L =
⊕

[i]∈(I∪̇J)/∼

I[i],

where any I[i] is one of the ideals, admitting a multiplicative basis inherited from the one
of L, given in Proposition 2.2.

Proof. Since we can write

L = S ⊕ V

and

S =
⊕

[i]∈(I∪̇J)/∼

S[i], V =
⊕

[i]∈(I∪̇J)/∼

V[i]

we clearly have

L =
⊕

[i]∈(I∪̇J)/∼

I[i].

�

Example 2.1. Consider the Leibniz algebra L = S ⊕ V in Example 1.2. We have

I = N and J = {a, b, c, d}.
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From the multiplication table of L it is not difficult to write the operation ? in detail. For
instance, we have that given n ∈ N and j ∈ J ,

n ? j = j ? n =



{1}, if n = 0 and j = d
∅, if n = 0 and j ∈ {a, b, c}
∅, if n = 1 and any j ∈ J
{n}, if n ≥ 2 and j = a
{n+ 1}, if n ≥ 2 and j = b
{n− 1}, if n ≥ 3 and j = c
∅, if n = 2 and j = c

From here, we can also obtain an explicit expression of the mapping

φ : P(N ∪ J)× (N∪J∪N∪J)→ P(N ∪ J).

Observe that the connection {0, d} gives us 0 ∼ 1, the connection {0, d} gives us 0 ∼ d,
the connection {b, c} gives us b ∼ a, the connection {b, c, b} gives us b ∼ c, the connection
{b, c, n} gives us b ∼ n for n ≥ 2 and that 0 � b. Hence, (N ∪ J)/ ∼= {[0], [2]} where
[0] = {0, 1, d} and [2] = {n ∈ N : n ≥ 2} ∪ {a, b, c} and so Theorem 2.1 allows us to
assert that

L = L1 ⊕ L2,

where any Li is an ideal of L and where L1 has as (multiplicative) basis {e0, e1, vd} and
L2 has as (multiplicative) basis {ei : i ≥ 2} ∪ {va, vb, vc} .

Example 2.2. Consider the Leibniz algebra L = S ⊕ V in Example 1.3. We have

I = N× N and J = N.

From the multiplication table of L it is routine to describe ? in detail. For instance, we get
that for any (n,m) ∈ N× N and p ∈ N,

(n,m) ? p = p ? (n,m) =



{(0, 0)}, if n = 0, m = 0 and p = 5
∅, if n = 0, m = 0 and p 6= 5
{(n, 0)}, if n ≥ 1, m = 0 and p = 4 + 2n
∅, if n ≥ 1, m = 0 and p 6= 4 + 2n
{(0,m)}, if n = 0, m ≥ 1 and p = 5 + 2m
∅, if n = 0, m ≥ 1 and p 6= 5 + 2m
{(n,m)}, if n ≥ 1, m ≥ 1 and p = 0
{(n+ 1,m)}, if n ≥ 1, m ≥ 1 and p = 1
{(n− 1,m)}, if n ≥ 2, m ≥ 1 and p = 2
∅, if n = 1, m ≥ 1 and p = 2
{(n,m+ 1)}, if n ≥ 1, m ≥ 1 and p = 3
{(n,m− 1)}, if n ≥ 1, m ≥ 2 and p = 4
∅, if n ≥ 1, m = 1 and p = 4

As in Example 2.1 it is now straightforward to compute the equivalence classes in

((N× N) ∪ N)/ ∼ .

We obtain

((N× N) ∪ N)/ ∼= [(1, 1)] ∪ [(0, 0)] ∪ {[(n, 0)] : n ≥ 1} ∪ {[(0,m)] : m ≥ 1},

being [(1, 1)] = {(n,m) : n ≥ 1,m ≥ 1}∪{0, 1, 2, 3, 4}, [(0, 0)] = {(0, 0), 5}, [(n, 0)] =
{(n, 0), 4 + 2n} for any n ≥ 1 and [(0,m)] = {(0,m), 5 + 2m} for any m ≥ 1.
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From here, Theorem 2.1 allows us to assert that L decomposes as the direct sum of the
ideals

L = L(1,1) ⊕ L(0,0) ⊕ (
⊕
n≥1

L(n,0))⊕ (
⊕
m≥1

)L(0,m)

where L(1,1) admits as (multiplicative) basis {v0, v1, v2, v3} ∪ {e(n,m) : n ≥ 1,m ≥ 1},
the ideal L(0,0) has as (multiplicative) basis {v5, e(0,0)}, any L(n,0), n ≥ 1, admits as
(multiplicative) basis {v4+2n, e(n,0)} and any L(0,m), m ≥ 1, has as (multiplicative) basis
{v5+2m, e(0,m)}.

3. THE B-SIMPLE COMPONENTS

In this section our target is to characterize the minimality of the ideals which give rise
to the decomposition of L in Theorem 2.1, in terms of connectivity properties in the set of
indexes I∪̇J . Since a Leibniz algebra L is called simple when its only ideals are {0}, S
and L (see [2]), we introduce the next concept in a natural way.

Definition 3.1. A Leibniz algebra L admitting a multiplicative basis B is called B-simple
if its only ideals admitting a multiplicative basis inherited from B are {0}, S and L.

Observe that we can find in a Leibniz algebra admitting a multiplicative basis B ideals
which do not admit a multiplicative basis inherited from B. Indeed, consider the Leibniz
algebra L in Example 1.2. The linear subspace with basis {va, va+vb+vc}∪BS is actually
an ideal of L which does not admit any multiplicative basis inherited from B. However, it
is clear that any simple Leibniz algebra admitting a multiplicative basis B is B-simple.

As in the previous section, L = S ⊕ V will denote a Leibniz algebra over an arbitrary
base field F and of arbitrary dimension, admitting a multiplicative basis B = BS ∪̇BV with
BS = {ei}i∈I and BV = {uj}j∈J bases of S and V respectively.

We will have the opportunity of restricting the connectivity relation to the set I and to
the set J by just allowing that the connections are formed by elements in J∪̇J . Then we
will say that two indexes k, l ∈ K, where either K = I or K = J , are J-connected.

Definition 3.2. Let k and l be two distinct elements inK with eitherK = I orK = J . We
say that k is J-connected to l, denoted by k ∼J l, if there exists a connection {i1, i2, ..., in}
from k to l such that

i2, ..., in ∈ J∪̇J.
We will also say that the set {i1, i2, ..., in} is a J-connection from k to l and accept k to
be J-connected to itself.

We observe that it is straightforward to verify that the arguments in Proposition 2.1
allow us to assert that the relation ∼J is an equivalence relation in I and in J .

Let us introduce the notion of ?-multiplicativity in the framework of Leibniz algebras
with multiplicative bases, in a similar way to the ones of closed-multiplicativity for graded
Lie algebras, graded Lie superalgebras, split Leibniz algebras and split Leibniz superalge-
bras (see [10, 11, 12, 13] for these notions and examples). From now on, for any j ∈ J we
will denote uj = 0.

Definition 3.3. We say that a Leibniz algebra L = S ⊕ V admits a ?-multiplicative basis
B if it is multiplicative and the conditions below hold.

(1) Given j ∈ J and k ∈ I∪̇J such that k ∈ j ? a for some a ∈ J∪̇J then vk ∈
F[uj , ua + ua], where vk ∈ {ek, uk} depending on k ∈ I or k ∈ J .
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(2) Given i, j ∈ I such that j ∈ i ? a for some a ∈ J∪̇J then ej ∈ F[ei, ua + ua].

Proposition 3.1. Suppose L admits a ?-multiplicative basis B and I and J have respec-
tively all of their elements J-connected, then any nonzero ideal I of L with a multiplicative
basis inherited from B such that I " S satisfies I = L.

Proof. Since I " S we can take some j0 ∈ J such that

(3) 0 6= uj0 ∈ I.

We know that J has all of their elements J-connected. From here, given any k ∈ J , we
can consider a J-connection

(4) {j0, j2, ..., jn} ⊂ J∪̇J

from j0 to k.
We know

φ({j0}, j2) 6= ∅
and so for any k1 ∈ φ({j0}, j2) we have k1 ∈ j0 ? j2. Taking now into account Equation
(3) and the ?-multiplicativity of B we get

0 6= uk1 ∈ F[uj0 , ul2 ] ⊂ I

if k1 ∈ J or
0 6= ek1 ∈ F[uj0 , ul2 ] ⊂ I

if k1 ∈ I, for l2 = {j2, j2} ∩ J .
Since k ∈ J , necessarily φ({j0}, j2) ∩ J 6= ∅ and we have

(5) 0 6=
⊕

j∈φ({j0},j2)∩J

Fuj ⊂ I.

Since
φ(φ({j0}, j2), j3) 6= ∅.

we can argue as above, taking into account Equation (5), to get

0 6=
⊕

j∈φ(φ({j0},j2),j3)∩J

Fuj ⊂ I.

By reiterating this process with the J-connection (4) we obtain

0 6=
⊕

j∈φ(φ(···(φ(j0,j2),··· ),jn−1),jn)∩J

Fuj ⊂ I.

Since k ∈ φ(φ(· · · (φ(j0, j2), · · · ), jn−1), jn) ∩ J we conclude uk ∈ I and so

(6) V =
⊕
j∈J

Fuj ⊂ I.

Taking now into account that S ⊂ [S, V ] + [V, V ], Equation (6) allows us to assert

(7) S ⊂ I.

Finally, since L = S ⊕ V , Equations (6) and (7) give us I = L. �

Proposition 3.2. Suppose L admits a ?-multiplicative basis B and I has all of its elements
J-connected, then any nonzero ideal I of L with a multiplicative basis inherited from B
such that I ⊂ S satisfies I = S.
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Proof. Taking into account I ⊂ S we can fix some i0 ∈ I satisfying

0 6= ei0 ∈ S.

Since I has of of its elements J-connected, we can argue from i0 with the ?-multiplicativity
of B as it is done in Proposition 3.1 from j0, to get S ⊂ I and then I = S. �

Theorem 3.1. Suppose L admits a ?-multiplicative basis B. Then L is B-simple if and
only if I and J have respectively all of their elements J-connected.

Proof. Suppose L is B-simple. If S 6= {0} and we take i ∈ I , we have that the linear space⊕
k∈I:k∼J i

Fek is an ideal of L with a multiplicative basis inherited from B. Indeed, we have

[L,
⊕

k∈I:k∼J i

Fek] + [
⊕

k∈I:k∼J i

Fek,S] ⊂ [L,S] = 0

and

[
⊕

k∈I:k∼J i

Fek, uj ] ⊂
⊕

k∈I:k∼J i

Fek

for any j ∈ J because given any h ∈
⊕

k∈I:k∼J i

Fek such that 0 6= [ek, uj ] = el we have

el ∈ ek ? uj and so {k, j} is a J-connection from k to l. By the symmetry and transitivity
of ∼J in I we get el ∈

⊕
k∈I:k∼J i

Fek. Hence [ek, ul] ⊂
⊕

k∈I:k∼J i

Fek as desired. We

conclude
⊕

k∈I:k∼J i

Fek is an ideal of L with a multiplicative basis inherited from B and so,

by B-simplicity, necessarily
⊕

k∈I:k∼J i

Fek = S. Consequently any couple of indexes in I

are J-connected.

Consider now any j ∈ J and the linear subspace

S ⊕ (
⊕

l∈J:l∼Jj

Ful).

A similar argument to the above one gives us that this linear subspace is actually an ideal of
Lwhich admits a multiplicative basis inherited from B. From here, S⊕(

⊕
l∈J:l∼Jj

Ful) = L

which implies in particular
⊕

l∈J:l∼Jj

Ful =
⊕
m∈J

Fum and so we get that any couple of

indexes in J are also J-connected.

Conversely, consider I a nonzero ideal of L admitting a multiplicative basis inherited
by the one of L. We have two possibilities for I, either I * S or I ⊂ S. In the first one,
Proposition 3.1 gives us I = L, while in the second one Proposition 3.2 shows I = S. We
have proved L is B-simple. �
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