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Abstract. The neighborhood graph G′ of a graph G has the same vertex set as G
and two vertices are adjacent in G′ if and only if they have a common neighbor in
G. We study the diameter diam(G′) of the neighborhood graph G′ in terms of the
diameter of G. We show that if G is a connected non-bipartite graph of diameter d,
then dd/2e ≤ diam(G′) ≤ d and the bounds are best possible for every d ≥ 1. If G
is a connected bipartite graph, then G′ has 2 components. We also present results
on the diameter of components of G′, if G′ is the neighborhood graph of a connected
bipartite graph.
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1 Introduction

One interesting problem of a discrete mathematics model used in biology is a
food web. Each organism depends for food on one or more other organisms.
In an ecosystem the vertices of a graph represent the species in the community
and there is a directed edge from a vertex w to a vertex v if and only if w is a
prey of v. Predator-prey relationships are often modeled by undirected graphs
called competition graphs, where we have an edge between the species u and v
if and only if u and v have a common prey. Food webs and competition graphs
were studied for example in the recent work of Cozzens [6]. In this paper we
consider competition graphs, which arise from undirected base graphs; and they
are called neighborhood graphs.

Let G be an undirected graph with the vertex set V (G) and with the edge
set E(G). The neighborhood graph G′ of a graph G has the same vertex set as
G, so we have V (G) = V (G′), and two vertices u, v are adjacent in G′ if and
only if they have at least one common neighbor in G (if and only if there exists
a path of length 2 between u and v in G).

A path of length n is a sequence of n edges which connects a sequence of
n + 1 distinct vertices. The distance dG(u, v) between two vertices u and v in
a graph G is the number of edges in a shortest path connecting them. The
eccentricity ecG(v) of a vertex v in G is the greatest distance between v and any
other vertex of G. The diameter diam(G) of G is the maximum eccentricity
among the vertices of G. If G consists of components G1, G2, . . . , Gp, then the
diameter of the component Gi, i = 1, 2, . . . , p, is defined as the greatest distance
between all pairs of vertices in Gi. The i-th neighborhood Ni(v) of a vertex

1



v in G is the set of vertices at distance i from v. N0(v) = {v} and N1(v) is
often denoted by N(v). A graph is bipartite if its vertices can be divided into
2 disjoint sets, such that no 2 vertices in the same set are adjacent. A tree is a
graph which contains no cycles.

Let us mention a few works, which consider neighborhood graphs. Boland,
Brigham and Dutton [4, 5] studied the connection between neighborhood graphs
and the embedding number. Brigham and Dutton [7] studied graphs G such
that the neighborhood graph of G is isomorphic to the complement of G. Schier-
meyer, Sonntag and Teichert [9] considered the Hamiltonicity of neighborhood
graphs. Two recent papers [2] and [3] present results on the energy of neigh-
borhood graphs. The diameter of a graph is the most common of the classical
distance parameters. In this paper we consider the diameter of connected neigh-
borhood graphs and the diameter of the components of disconnected neighbor-
hood graphs.

2 Results

It is known that if G is a connected graph, then the neighborhood graph G′

of G has at most 2 components (see [2, 9]). Moreover, G′ is connected if and
only if G is a connected non-bipartite graph. Thus the neighborhood graph of a
connected bipartite graph has exactly 2 components. Evidently, neighborhood
graphs of disconnected graphs are also disconnected.

We first consider connected non-bipartite graphs G. The neighborhood
graph of the complete graph is the same graph, hence if diam(G) = 1, then
diam(G′) = 1 too. We present a lower bound on the diameter of the neighbor-
hood graph of G if diam(G) ≥ 2.

Theorem 2.1 Let G be a connected non-bipartite graph of diameter d where
d ≥ 2. Then diam(G′) ≥ dd/2e.

Proof. Let G be a connected non-bipartite graph of diameter d ≥ 2, and let
v, v′ be two vertices of G, such that dG(v, v′) = d. Let Ni(v) be the i-th
neighborhood of v in G, i = 0, 1, . . . , d. No vertex of Ni(v) can be adjacent to a
vertex of Nj(v) in G′ for |i− j| > 2, since such vertices do not have a common
neighbor in G. On the other hand, every vertex in Ni(v) is of distance 2 to
some vertex of Ni−2(v) in G, i = 2, 3, . . . , d, therefore any vertex in Ni(v) is
adjacent to some vertex of Ni−2(v) in G′. Thus for any vertex u ∈ Ni(v), where
i is even, we have dG′(v, u) = i/2. If w ∈ Ni(v), where i is odd, say i = 2p + 1,
then dG′(v, w) > p, hence dG′(v, w) ≥ p + 1 = (i + 1)/2. Then for v′ ∈ Nd(v)
we obtain dG′(v, v′) ≥ dd/2e, which implies diam(G′) ≥ dd/2e. 2

We give a construction, which shows that the bound given in Theorem 2.1
is best possible for every d ≥ 2.

Construction 2.1 Let P be the path of length d ≥ 2. We can write P =
u0u1 . . . ud. The graph G is constructed from the path P by adding p new ver-
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tices v1, v2, . . . , vp, p ≥ 1, where vi, i = 1, 2, . . . , p, is adjacent to the vertices
udd/2e−1, udd/2e, udd/2e+1. Thus we have
V (G) = {u0, u1, . . . , ud, v1, v2, . . . , vp},
E(G) = {u0u1, u1u2 . . . , ud−1ud}∪{viudd/2e−1, viudd/2e, viudd/2e+1 | i = 1, 2, . . . , p}.

It is easy to see that diam(G) = d. The graph G′ has the following edge set:

E(G′) = {u0u2, u1u3 . . . , ud−2ud} ∪ {udd/2e−1udd/2e, udd/2eudd/2e+1}
∪ {vivj | i, j = 1, 2, . . . , p; i 6= j}
∪ {viuj | i = 1, 2, . . . , p; j = dd/2e − 2, dd/2e − 1, . . . , dd/2e+ 2 if d ≥ 4;

j = 0, 1, 2, 3 if d = 3; j = 0, 1, 2 if d = 2}.

It can be checked that the diameter of G′ is dd/2e and the diametral path is
u0u2 . . . udd/2e−1udd/2eudd/2e−2 . . . u1 if dd/2e is odd, and it is u0u2 . . . udd/2eudd/2e−1

udd/2e−3 . . . u1 if dd/2e is even.

Now we show that if G is not bipartite, then the diameter of the neighbor-
hood graph of G cannot exceed the diameter of G.

Theorem 2.2 Let G be a connected non-bipartite graph. Then diam(G′) ≤
diam(G).

Proof. Let G be a connected non-bipartite graph of diameter d where d ≥ 1.
We prove that diam(G′) ≤ d. Let v be any vertex of G and let ecG(v) = p.
Clearly p ≤ d. We show that ecG′(v) ≤ d.

Let Ni(v) be the i-th neighborhood of v in G, i = 0, 1, . . . , p. Any vertex in
Ni(v) is adjacent to some vertices of Ni−2(v) in G′, i = 2, 3, . . . , p, therefore we
have dG′(v, v′) = i/2 for any vertex v′ ∈ Ni(v), where i is even and i ≤ p. Since
i/2 < d, we get dG′(v, v′) < d.

It can be checked that since G is not bipartite, it contains an odd cycle, and
there exists at least 2 vertices in the same neighborhood Ni(v), i ∈ {1, 2, . . . , p},
which are adjacent in G. Let U be the set of vertices, where u ∈ U if u is
adjacent to at least one vertex in the same neighborhood.

Let vi be any vertex in Ni(v), where i is odd. We show that dG′(v, vi) ≤ d.
Let u′ be a vertex of U such that dG(vi, u

′) ≤ dG(vi, u) for every u ∈ U , so the
vertex u′ is the closest to vi in G among the vertices of U . Let u0u1 . . . uk be the
shortest path between vi = u0 and u′ = uk in G. Clearly, for the length k of the
path, we have 0 ≤ k ≤ d. Note that, for k ≥ 1, if ul ∈ Nj(v), l = 0, 1, . . . k − 1,
then ul+1 is in Nj−1(v) or Nj+1(v), since ul /∈ U . Hence for ul ∈ Nj(v), if l is
even, 0 ≤ l ≤ k, then j is odd; and if l is odd, then j is even. We distinguish 2
cases:

(i) k is odd.
Then u0u2 . . . uk−1 is the path of length (k − 1)/2 in G′. If d is even, then
k ≤ d−1 and dG′(vi, uk−1) ≤ d/2−1. If d is odd, then k ≤ d and dG′(vi, uk−1) ≤
(d− 1)/2. We know that uk ∈ Nj(v), where j is even, and uk is in G adjacent
to a vertex, say w ∈ Nj(v). Thus dG′(uk−1, w) = 1 and w ∈ Nj(v) is of
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distance j/2 from v in G′. If d is even, then j ≤ d and dG′(w, v) ≤ d/2;
and if d is odd, then j ≤ d − 1 and dG′(w, v) ≤ (d − 1)/2. Consequently
dG′(vi, v) ≤ dG′(vi, uk−1) + dG′(uk−1, w) + dG′(w, v) ≤ d.

(ii) k is even.
Then u0u2 . . . uk is the path of length k/2 in G′. If d is even, then k ≤ d and
dG′(vi, uk) ≤ d/2. If d is odd, then k ≤ d − 1 and dG′(vi, uk) ≤ (d − 1)/2.
We know that u′ = uk ∈ Nj(v), where j is odd, and uk is in G adjacent to a
vertex, say w ∈ Nj(v). There must be a vertex in Nj−1(v), say w′, which is
adjacent to w in G. Since uk and w′ have a common neighbor in G, we obtain
dG′(uk, w′) = 1. Every vertex in Nj−1(v) is of distance (j−1)/2 from v in G′. If
d is even, then j ≤ d−1 and dG′(w′, v) ≤ d/2−1; and if d is odd, then j ≤ d and
dG′(w′, v) ≤ (d−1)/2. Thus dG′(vi, v) ≤ dG′(vi, uk)+dG′(uk, w′)+dG′(w′, v) ≤
d.

Since dG′(v, v′) ≤ d for every vertex v′ ∈ V (G′), we obtain ecG′(v) ≤ d. This
inequality holds for every vertex v, hence diam(G′) ≤ d. 2

Construction 2.2 shows that the bound presented in the previous theorem is
sharp.

Construction 2.2 Let T be a tree, such that every leaf of T is of distance d
(d ≥ 1) from the central vertex of T . We form G from T by connecting any two
leaves.

We show that diam(G) = diam(G′) = d. Let v be the central vertex of T
and let Ni(v) be the i-th neighborhood of v in T (and in G), i = 0, 1, . . . , d.
Since any two vertices of Nd(v) are adjacent in G, any pair of vertices of G,
say u and u′, is contained in a cycle of length at most 2d + 1 in G. Hence
dG(u, u′) ≤ d. We also know that for any vertex, say w, in Nd(v), we have
dG(v, w) = d. Thus the diameter of G is d. By Theorem 2.2, diam(G′) ≤ d. It
can be checked, that the distance between v and any vertex in N(v) is d in G′,
hence diam(G′) = d.

Note that one simple example of a graph G, for which diam(G) = diam(G′),
is the cycle C2d+1.

In the next theorem we consider the case when G is bipartite. It is known
that if G is bipartite, then G′ has exactly 2 components. We present a result
about the diameter of the components of G′ in terms of the diameter of G.

Theorem 2.3 Let G be a connected bipartite graph of diameter d where d ≥ 2,
and let G1, G2 be the components of G′ such that diam(G1) ≤ diam(G2).
(i) If d is odd, then diam(G1) = diam(G2) = (d− 1)/2.
(ii) If d is even, then d/2− 1 ≤ diam(G1) ≤ d/2 and diam(G2) = d/2.

Proof. Let G be a bipartite graph of diameter d ≥ 2. Let v0, vd be any two
vertices of distance d in G, and let v0v1 . . . vd be a shortest path between v0

and vd in G. Note that, if u, w are 2 vertices of G such that dG(u, w) = p,
then dG′(u, w) = p/2 if p is even. If p is odd, then there is no walk (or path)
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of even length between u and w in G (because bipartite graphs do not contain
odd cycles), therefore u and w are in different components in G′. Let H1 be the
component of G′ containing v1, and let H2 be the component of G′ containing
v0. We distinguish 2 cases:

(i) d is odd.
From the previous part of this proof it follows that any 2 vertices u, w of G are
either in different components in G′ or of even distance p in G. Then p ≤ d− 1
and u, w are of distance at most (d − 1)/2 in G′. It follows that diam(H1)
and diam(H2) are at most (d − 1)/2. We also know that each component of
G′ contains a pair of vertices of distance (d − 1)/2, dH1(v1, vd) = (d − 1)/2
and dH2(v0, vd−1) = (d− 1)/2, hence the diameter of both components of G′ is
exactly (d− 1)/2.

(ii) d is even.
Any 2 vertices, which are in the same component in G′ must be of even distance
p ≤ d in G, thus they are of distance at most d/2 in G′. Thus diam(H1) ≤ d/2
and diam(H2) ≤ d/2. Since there is a pair of vertices of distance d/2− 1 in H1

(dH1(v1, vd−1) = d/2−1), we have d/2−1 ≤ diam(H1) ≤ d/2. In H2 there exists
a pair of vertices of distance d/2 (dH2(v0, vd) = d/2), hence diam(H2) = d/2.
The proof is complete. 2

From Theorem 2.3 we know that if the diameter of a bipartite graph G is d,
where d is even, then one component of G′ has diameter d/2, and the diameter
of the other component of G′ is either d/2 − 1 or d/2. For example, if G is a
tree of an even diameter d ≥ 2, one component of G′ has diameter d/2 and the
other component has diameter d/2− 1. On the other hand, if G is the cycle of
length 2d, then diam(G) = d and the diameter of both components of G′ is d/2.

Finally, let us mention that one interesting open problem is to bound the
diameter of the derived graph of G in terms of the diameter of G. This problem
seems to be a very complicated one. Note that the derived graph of a graph
G has the same vertex set as G and two vertices are adjacent in the derived
graph if and only if they are of distance 2 in G. Derived graphs were studied
for example in [1] and [8].

References

[1] S. K. Ayyaswamy, S. Balachandran, K. Kannan, Bounds on the second
stage spectral radius of graphs, International Journal of Computational
and Mathematical Sciences 3 (2009), 424–427.
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