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Abstract. In this paper, a further investigation for the Apostol-Bernoulli and

Apostol-Euler polynomials is performed, and a new formula of products of the
Apostol-Bernoulli and Apostol-Euler polynomials is established by applying

the generating function methods and some summation transform techniques.

It turns out that some known results are obtained as special cases.

1. Introduction

The classical Bernoulli polynomials Bn(x) and Euler polynomials En(x) are usu-
ally defined by means of the following generating functions:

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π),

2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!
(|t| < π). (1.1)

In particular, the rational numbers Bn = Bn(0) and integers En = 2nEn(1/2)
are called the classical Bernoulli numbers and Euler numbers, respectively. These
numbers and polynomials appear in many different areas of mathematics including
combinatorics, number theory, special functions, and analysis. Numerous interest-
ing properties for them can be found in many books; see, for example, [12, 41, 42].

Some analogues of the classical Bernoulli and Euler polynomials are the Apostol-
Bernoulli polynomials Bn(x;λ) and Apostol-Euler polynomials En(x;λ) given by
means of the following generating functions (see, e.g., [25, 26, 27]):

text

λet − 1
=
∞∑
n=0

Bn(x;λ)
tn

n!
(|t| < 2π if λ = 1; |t| < | log λ| otherwise), (1.2)

2ext

λet + 1
=
∞∑
n=0

En(x;λ)
tn

n!
(|t| < π if λ = 1; |t| < | log(−λ)| otherwise). (1.3)

Moreover, Bn(λ) = Bn(0;λ) and En(λ) = 2nEn(1/2;λ) are called the Apostol-
Bernoulli numbers and Apostol-Euler numbers, respectively. Obviously Bn(x;λ)
and En(x;λ) reduce to Bn(x) and En(x) when λ = 1. It is worth of mentioning
that the Apostol-Bernoulli polynomials were firstly introduced by Apostol [3] (see
also Srivastava [46] for a systematic study) in order to evaluate the value of the
Hurwitz-Lerch zeta function. Since the Apostol-Bernoulli and Apostol-Euler poly-
nomials and numbers appeared, some arithmetic properties for them have been
well investigated by many authors. For example, in 1998, Srivastava and Todorov
[45] gave the close formula for the Apostol-Bernoulli polynomials in terms of the

2000 Mathematics Subject Classification. 11B68; 05A19.
Keywords. Apostol-Bernoulli polynomials and numbers; Apostol-Euler polynomials and num-

bers; Combinatorial identities.

1



2 YUAN HE

Gaussian hypergeometric function and the Stirling numbers of the second kind.
Following the work of Srivastava and Todorov, Luo [27] obtained the close formula
for the Apostol-Euler polynomials in a similar technique. After that, Srivastava
[46] and Luo [31] found some elegant formulae between the Apostol-Bernoulli and
Apostol-Euler polynomials and the Hurwitz-Lerch zeta function, respectively, and
the later also obtained some series representations of the Apostol-Euler polynomials
of higher order in terms of the generalized Hurwitz-Lerch zeta function. Further,
Luo [29, 38] established some multiplication formulas for the Apostol-Bernoulli and
Apostol-Euler polynomials. And Luo [30] also showed the Fourier expansions for
the Apostol-Bernoulli and Apostol-Euler polynomials by applying the Lipschitz
summation formula and derived some explicit formulae at rational arguments for
these polynomials in terms of the Hurwitz zeta function; see also Bayad [5], Navas,
Francisco and Varona [40] for further consideration on the work of Luo [30]. In [43],
Özarslan presented and studied a unified family of polynomials which involves the
Apostol-Bernoulli and Apostol-Euler polynomials. Tremblay, Gaboury and Fugere
[52] introduced and investigated a new class of generalized Apostol-Bernoulli poly-
nomials and obtained a generalization of the Srivastava-Pintér addition theorem.
Choi, Jang and Srivastava [11] gave an explicit representation of the generalized
Bernoulli polynomials in terms of a generalization for the Hurwitz-Lerch zeta func-
tion. Garg, Jain and Srivastava [13] investigated some relationships between the
generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions. Luo
[33] introduced and investigated the λ-Stirling numbers of the second kind, in par-
ticular, he gave an explicit relationship between the generalized Apostol-Bernoulli
and Apostol-Euler polynomials in terms of the λ-Stirling numbers of the second
kind. Boyadzhiev [6] derived some relationships between the Apostol-Bernoulli
polynomials, the classical Eulerian polynomials and the derivative polynomials for
the cotangent functions. Kim and Hu [20] obtained the sums of products of any
number of the Apostol-Bernoulli numbers which is a more generalization of the fa-
mous Euler’s formula on the classical Bernoulli numbers. More recently, Srivastava
and Choi [51] revised, enlarged and updated version of their earlier book entitled
”Series Associated with the Zeta and Related Functions” (Kluwer Academic Pub-
lishers, Dordrecht, Boston and London, 2001). In this new book, the authors gave a
systematic collection of various families of series associated with the Riemann and
Hurwitz Zeta functions, as well as with many other higher transcendental functions,
which are closely related to these functions. In particular, the historical account,
vast new literatures and many fundamental properties for the Apostol-type poly-
nomials and numbers have been well introduced. For another elegant results and
nice methods related to the Apostol-Bernoulli and Apostol-Euler polynomials and
numbers, one is referred to [4, 9, 19, 23, 24, 34, 35, 37, 39, 48, 49, 50, 54].

In his classical book [41], Nielsen presented three formulae of products of the clas-
sical Bernoulli and Euler polynomials Bm(x)Bn(x), Em(x)En(x) and Bm(x)En(x).
In 1959, Carlitz [7] rediscovered the expression of Bm(x)Bn(x), by virtue of which
he established a reciprocity formula for Rademacher’s Dedekind sums in [8]; see
also [22] for another application to dealt with the discrete mean square of Dirichlet
L-function at integral arguments. More recently, the author and Zhang [14] es-
tablished three similar ones associated with the Nielsen’s formulae on the classical
Bernoulli and Euler polynomials to give the brief proofs of some extensions of the
famous Miki’s and Woodcock’s identities on the Bernoulli numbers stated in [44].
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We also mention [16, 17, 18, 53] for further discoveries of the Nielsen’s formula on
the classical Bernoulli polynomials following the work of Agoh and Dilcher [1, 2] on
the classical Bernoulli numbers.

In the present paper, we will be concerned with some formulae of products of the
Apostol-Bernoulli and Apostol-Euler polynomials. The idea stems from the expres-
sions of Bm(x;λ)Bn(y;µ), Em(x;λ)En(y;µ) and Em(x;λ)Bn(y;µ) described in [15].
By making use of the generating function methods and some summation transform
techniques, we establish a new formula of products of the Apostol-Bernoulli and
Apostol-Euler polynomials, as follows.

Theorem 1.1. Let m and n be any non-negative integers. Then

1
2

m∑
k=0

(
m

k

)
(−1)m−kEm−k(y − x;

1
λ

)
En+k+1(y;λµ)
n+ k + 1

+
1

n+ 1

n+1∑
k=0

(
n+ 1
k

)
Bn+1−k(y − x;µ)

Em+k+1(x;λµ)
m+ k + 1

= n!
m∑
k=0

(
m

k

)
Em−k(x;λ)(−1)kk!

Bn+k+2(y;µ)
(n+ k + 2)!

+ (−1)m+1 2
1 + λµ

· m! · n!Bm+n+2(y − x;µ)
(m+ n+ 2)!

. (1.4)

It is interesting to point out that the Theorem 1.1 is very analogous to the ex-
pressions of Bm(x;λ)Bn(y;µ) and Em(x;λ)En(y;µ). Meanwhile, the Theorem 1.1
above can be also used to give the expression of Em(x;λ)Bn(y;µ). For example,
since the Apostol-Bernoulli and Apostol-Euler polynomials satisfy the differential
relations ∂

∂xBn(x;λ) = nBn−1(x;λ) and ∂
∂xEn(x;λ) = nEn−1(x;λ) for positive inte-

ger n (see, e.g., [26]), by substituting x + y for x in Theorem 1.1 and then taking
differences with respect to y, we obtain

1
2

m∑
k=0

(
m

k

)
(−1)m−kEm−k(−x;

1
λ

)En+k(y;λµ)

+
1

n+ 1

n+1∑
k=0

(
n+ 1
k

)
Bn+1−k(−x;µ)Em+k(x+ y;λµ)

=
1

n+ 1

m∑
k=0

(
m
k

)(
n+k+1
n+1

) (−1)k
(
Em−k(x+ y;λ)Bn+k+1(y;µ)

+ (m− k)Em−k−1(x+ y;λ)
Bn+k+2(y;µ)
n+ k + 2

)
. (1.5)

It is easy to see that for any non-negative integers k,m, n,

m− k
n+ k + 2

·
(
m
k

)(
n+k+1
n+1

) =

(
m
k+1

)(
n+k+2
n+1

) . (1.6)
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Hence, the right hand side of (1.5) can be rewritten in the following way:

1
n+ 1

( m∑
k=0

(
m
k

)(
n+k+1
n+1

) (−1)kEm−k(x+ y;λ)Bn+k+1(y;µ)−
m∑
k=1

(
m
k

)(
n+k+1
n+1

)
× (−1)kEm−k(x+ y;λ)Bn+k+1(y;µ)

)
=
Em(x+ y;λ)Bn+1(y;µ)

n+ 1
. (1.7)

Thus, combining (1.5) and (1.7) and then replacing x by x− y gives that for non-
negative integer m and positive integer n (see, e.g., [15, 16, 53]),

Em(x;λ)Bn(y;µ) =
n

2

m∑
k=0

(
m

k

)
(−1)m−kEm−k(y − x;

1
λ

)En+k−1(y;λµ)

+
n∑
k=0

(
n

k

)
Bn−k(y − x;µ)Em+k(x;λµ). (1.8)

It is worthy noticing that since E0(x;λ) = 2/(1 + λ) (see, e.g., [26]) then the case
m = 0 in the formula (1.8) arises that for positive integer n,

2Bn(y;µ) = λnEn−1(y;λµ) + (1 + λ)
n∑
k=0

(
n

k

)
Bk(y − x;µ)En−k(x;λµ). (1.9)

So by setting x = y and λ = µ = 1 in (1.9), in light of B1 = −1/2, we get

Bn(x) =
n∑
k=0

(k 6=1)

(
n

k

)
BkEn−k(x) (n ≥ 1), (1.10)

which was derived by Cheon [10] who made use of some fairly standard techniques
based upon series rearrangement. In other words, the formula (1.9) can be regarded
as a generalization of the Cheon’s formula. For the generalization of (1.10) in the
other directions, one is referred to [21, 28, 47]. On the other hand, setting m = 0
in Theorem 1.1, we obtain that for non-negative integer n,

2
Bn+2(y;µ)
n+ 2

− 2
1 + λ

1 + λµ
· Bn+2(y − x;µ)

n+ 2

= λEn+1(y;λµ) + (1 + λ)
n+1∑
k=0

(
n+ 1
k

)
Bn+1−k(y − x;µ)

Ek+1(x;λµ)
k + 1

. (1.11)

If substituting x + y for x in (1.11) and then taking differences with respect to y,
one can reobtain the formula (1.9) by replacing x by x− y.

2. The proof of Theorem 1.1

In this section, we shall give the detailed proof of Theorem 1.1. Our proof
depends on the following identity:

1
λeu + 1

· 1
µev − 1

=
(

λeu

λeu + 1
+

1
µev − 1

)
1

λµeu+v + 1
. (2.1)
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Multiplying the two sides of the above identity by 2e(x−y)u+y(u+v)/(u + v), we
obtain

1
u+ v

· 2exu

λeu + 1
· eyv

µev − 1

=
1

u+ v
· λe

(1+x−y)u

λeu + 1
· 2ey(u+v)

λµeu+v + 1
+

1
u+ v

· e
(y−x)v

µev − 1
· 2ex(u+v)

λµeu+v + 1
. (2.2)

Since B0(x;λ) = 1 when λ = 1 and B0(x;λ) = 0 when λ 6= 1 (see, e.g., [26]), so we
denote by δ1,λ the Kronecker symbol given by δ1,λ = 0 or 1 according to λ = 1 or
λ 6= 1, we have B0(x;λ) = δ1,λ. It follows from (2.2) and E0(x;λ) = 2/(1 + λ) that

1
u+ v

· 2exu

λeu + 1
· eyv

µev − 1

=
1
2
· 1
u+ v

· 2λe(1+x−y)u

λeu + 1

(
2ey(u+v)

λµeu+v + 1
− 2

1 + λµ

)
+

2
1 + λµ

· 1
u+ v

· λe
(1+x−y)u

λeu + 1

+
1

u+ v

(
e(y−x)v

µev − 1
− δ1,µ

v

)(
2ex(u+v)

λµeu+v + 1
− 2

1 + λµ

)
+

2
1 + λµ

· 1
u+ v

· e
(y−x)v

µev − 1

+
1

u+ v
· δ1,µ
v

(
2ex(u+v)

λµeu+v + 1
− 2

1 + λµ

)
. (2.3)

Noticing that the generating function of the Apostol-Bernoulli and Apostol-Euler
polynomials arises

exu

λeu − 1
− δ1,λ

u
=
∞∑
m=0

Bm+1(x;λ)
m+ 1

· u
m

m!
, (2.4)

and
1
u

(
2exu

λeu + 1
− 2

1 + λ

)
=
∞∑
m=0

Em+1(x;λ)
m+ 1

· u
m

m!
, (2.5)

respectively. More generally, the Taylor’s theorem gives

1
u+ v

(
2ex(u+v)

λeu+v + 1
− 2

1 + λ

)
=

∞∑
n=0

∂n

∂un

{
1
u

(
2exu

λeu + 1
− 2

1 + λ

)}
vn

n!

=
∞∑
m=0

∞∑
n=0

Em+n+1(x;λ)
m+ n+ 1

· u
m

m!
· v

n

n!
. (2.6)

Hence, applying (2.4) and (2.6) to (2.3) yields

1
u+ v

{
2exu

λeu + 1
· eyv

µev − 1
− 2

1 + λµ

(
λe(1+x−y)u

λeu + 1
+
e(y−x)v

µev − 1

)}
=

1
2

( ∞∑
m=0

λEm(1 + x− y;λ)
um

m!

)( ∞∑
m=0

∞∑
n=0

Em+n+1(y;λµ)
m+ n+ 1

· u
m

m!
· v

n

n!

)

+
( ∞∑
n=0

Bn+1(y − x;µ)
n+ 1

· v
n

n!

)( ∞∑
m=0

∞∑
n=0

Em+n+1(x;λµ)
m+ n+ 1

· u
m

m!
· v

n

n!

)

+
δ1,µ
v

( ∞∑
m=0

∞∑
n=0

Em+n+1(x;λµ)
m+ n+ 1

· u
m

m!
· v

n

n!

)
. (2.7)
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Since the Apostol-Euler polynomials satisfy the symmetric distribution λEn(1 −
x;λ) = (−1)nEn(x; 1

λ ) for non-negative integer n (see, e.g., [26]), so by applying the
familiar Cauchy product to (2.7), we obtain

1
u+ v

{
2exu

λeu + 1
· eyv

µev − 1
− 2

1 + λµ

(
λe(1+x−y)u

λeu + 1
+
e(y−x)v

µev − 1

)}
=

1
2

∞∑
m=0

∞∑
n=0

[ m∑
k=0

(
m

k

)
(−1)m−kEm−k(y − x;

1
λ

)
En+k+1(y;λµ)
n+ k + 1

]
um

m!
· v

n

n!

+
∞∑
m=0

∞∑
n=0

[ n∑
k=0

(
n

k

)
Bn+1−k(y − x;µ)

n+ 1− k
· Em+k+1(x;λµ)

m+ k + 1

]
um

m!
· v

n

n!

+
δ1,µ
v

∞∑
m=0

∞∑
n=0

Em+n+1(x;λµ)
m+ n+ 1

· u
m

m!
· v

n

n!
. (2.8)

We are now in the position to deal with the last summation of the right hand side
of (2.8). We have

δ1,µ
v

∞∑
m=0

∞∑
n=0

Em+n+1(x;λµ)
m+ n+ 1

· u
m

m!
· v

n

n!

= δ1,µ

∞∑
m=0

∞∑
n=0

Em+n+2(x;λµ)
m+ n+ 2

· u
m

m!
· vn

(n+ 1)!
+
δ1,µ
v

∞∑
m=0

Em+1(x;λµ)
m+ 1

· u
m

m!

= δ1,µ

∞∑
m=0

∞∑
n=0

Em+n+2(x;λµ)
(m+ n+ 2)(n+ 1)

· u
m

m!
· v

n

n!
+
δ1,µ
uv

(
2exu

λµeu + 1
− 2

1 + λµ

)

= δ1,µ

∞∑
m=0

∞∑
n=0

Em+n+2(x;λµ)
(m+ n+ 2)(n+ 1)

· u
m

m!
· v

n

n!

+
δ1,µ
u+ v

{
u+ v

uv
· 2exu

λµeu + 1
− 2

1 + λµ

(
1
u

+
1
v

)}
. (2.9)

Observe that

2exu

λeu + 1
· eyv

µev − 1
− 2

1 + λµ

(
λe(1+x−y)u

λeu + 1
+
e(y−x)v

µev − 1

)
− δ1,µ

{
u+ v

uv
· 2exu

λµeu + 1
− 2

1 + λµ

(
1
u

+
1
v

)}
=

2exu

λeu + 1
· eyv

µev − 1
− 2

1 + λµ
· λe

(1+x−y)u

λeu + 1
− δ1,µ

u+ v

uv
· 2exu

λµeu + 1

+
2

1 + λµ
·

1
µe

(1+x−y)u

1
µe

u − 1
− 2

1 + λµ

×
( 1
µe

(1+x−y)u

1
µe

u − 1
−
δ1, 1µ
u

+
e(y−x)v

µev − 1
− δ1,µ

v

)
, (2.10)
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and

2e(1+x−y)u

1 + λµ

( 1
µ

1
µe

u − 1
− λ

λeu + 1

)
=

1
1 + λµ

· 2e(1+x−y)u

λeu + 1

( 1
µ (λeu + 1)

1
µe

u − 1
− λ
)

=
2exu

λeu + 1
·

1
µe

(1−y)u

1
µe

u − 1
. (2.11)

Applying (2.11) to (2.10) gives

2exu

λeu + 1
· eyv

µev − 1
− 2

1 + λµ

(
λe(1+x−y)u

λeu + 1
+
e(y−x)v

µev − 1

)
− δ1,µ

{
u+ v

uv
· 2exu

λµeu + 1
− 2

1 + λµ

(
1
u

+
1
v

)}
=

2exu

λeu + 1

( 1
µe

(1−y)u

1
µe

u − 1
−
δ1, 1µ
u

+
eyv

µev − 1
− δ1,µ

v

)

− 2
1 + λµ

( 1
µe

(1+x−y)u

1
µe

u − 1
−
δ1, 1µ
u

+
e(y−x)v

µev − 1
− δ1,µ

v

)
, (2.12)

which together with (2.8) and (2.9) yields

1
u+ v

· 2exu

λeu + 1

( 1
µe

(1−y)u

1
µe

u − 1
−
δ1, 1µ
u

+
eyv

µev − 1
− δ1,µ

v

)

− 1
u+ v

· 2
1 + λµ

( 1
µe

(1+x−y)u

1
µe

u − 1
−
δ1, 1µ
u

+
e(y−x)v

µev − 1
− δ1,µ

v

)

=
1
2

∞∑
m=0

∞∑
n=0

[ m∑
k=0

(
m

k

)
(−1)m−kEm−k(y − x;

1
λ

)
En+k+1(y;λµ)
n+ k + 1

]
um

m!
· v

n

n!

+
∞∑
m=0

∞∑
n=0

[ n∑
k=0

(
n

k

)
Bn+1−k(y − x;µ)

n+ 1− k
· Em+k+1(x;λµ)

m+ k + 1

]
um

m!
· v

n

n!

+ δ1,µ

∞∑
m=0

∞∑
n=0

Em+n+2(x;λµ)
(m+ n+ 2)(n+ 1)

· u
m

m!
· v

n

n!
. (2.13)

We next consider the left hand side of (2.13). Applying um =
∑m
k=0

(
m
k

)
(u +

v)k(−v)m−k and the symmetric distribution of the Apostol-Bernoulli polynomials
λBn(1− x;λ) = (−1)nBn(x; 1

λ ) for non-negative integer n (see, e.g., [26]) gives

λe(1−x)u

λeu − 1
− δ1,λ

u
=

∞∑
m=0

(−1)m+1Bm+1(x; 1
λ )

(m+ 1)!

m∑
k=0

(
m

k

)
(u+ v)k(−v)m−k

=
∞∑
k=0

∞∑
m=k

(−1)m+1Bm+1(x; 1
λ )

(m+ 1)!

(
m

k

)
(u+ v)k(−v)m−k

=
∞∑
k=0

∞∑
m=k+1

(−1)m+1Bm+1(x; 1
λ )

(m+ 1)!

(
m

k + 1

)
(u+ v)k+1(−v)m−(k+1)

+
∞∑
m=0

(−1)m+1Bm+1(x; 1
λ )

m+ 1
· (−v)m

m!
. (2.14)
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Combining (2.4) and (2.14) arises

1
u+ v

(
λe(1−x)u

λeu − 1
− δ1,λ

u
+

exv

1
λe

v − 1
−
δ1, 1λ
v

)
=
∞∑
k=0

∞∑
m=k+1

(−1)k
Bm+1(x; 1

λ )
(m+ 1)!

(
m

k + 1

)
(u+ v)kvm−(k+1)

=
∞∑
k=0

∞∑
m=k+1

(−1)k
Bm+1(x; 1

λ )
(m+ 1)!

(
m

k + 1

) k∑
n=0

(
k

n

)
unvm−(n+1)

=
∞∑
n=0

∞∑
k=n

∞∑
m=k+1

(−1)k
Bm+1(x; 1

λ )
(m+ 1)!

(
m

k + 1

)(
k

n

)
unvm−(n+1)

=
∞∑
n=0

∞∑
m=n+1

(−1)n
Bm+1(x; 1

λ )
(m+ 1)!

unvm−(n+1)

=
∞∑
n=0

∞∑
m=0

(−1)n
m! · n!Bm+n+2(x; 1

λ )
(m+ n+ 2)!

· u
n

n!
· v

m

m!
, (2.15)

which means

1
u+ v

(
λe(1−x)u

λeu − 1
− δ1,λ

u
+

exv

1
λe

v − 1
−
δ1, 1λ
v

)
=
∞∑
m=0

∞∑
n=0

(−1)m
m! · n!Bm+n+2(x; 1

λ )
(m+ n+ 2)!

· u
m

m!
· v

n

n!
. (2.16)

It follows from (1.3), (2.16) and the Cauchy product that

1
u+ v

· 2exu

λeu + 1

( 1
µe

(1−y)u

1
µe

u − 1
−
δ1, 1µ
u

+
eyv

µev − 1
− δ1,µ

v

)

− 1
u+ v

· 2
1 + λµ

( 1
µe

(1+x−y)u

1
µe

u − 1
−
δ1, 1µ
u

+
e(y−x)v

µev − 1
− δ1,µ

v

)

=
( ∞∑
m=0

Em(x;λ)
um

m!

)( ∞∑
m=0

∞∑
n=0

(−1)m
m! · n!Bm+n+2(y;µ)

(m+ n+ 2)!
· u

m

m!
· v

n

n!

)

− 2
1 + λµ

∞∑
m=0

∞∑
n=0

(−1)m
m! · n!Bm+n+2(y − x;µ)

(m+ n+ 2)!
· u

m

m!
· v

n

n!

=
∞∑
m=0

∞∑
n=0

[ m∑
k=0

(
m

k

)
Em−k(x;λ)(−1)kk! · n!

Bn+k+2(y;µ)
(n+ k + 2)!

]
um

m!
· v

n

n!

− 2
1 + λµ

∞∑
m=0

∞∑
n=0

(−1)m
m! · n!Bm+n+2(y − x;µ)

(m+ n+ 2)!
· u

m

m!
· v

n

n!
. (2.17)
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Equating (2.13) and (2.17) and comparing the coefficients of umvn/m! · n! yields

1
2

m∑
k=0

(
m

k

)
(−1)m−kEm−k(y − x;

1
λ

)
En+k+1(y;λµ)
n+ k + 1

+
n∑
k=0

(
n

k

)
Bn+1−k(y − x;µ)

n+ 1− k
· Em+k+1(x;λµ)

m+ k + 1
+ δ1,µ

Em+n+2(x;λµ)
(m+ n+ 2)(n+ 1)

= n!
m∑
k=0

(
m

k

)
Em−k(x;λ)(−1)kk!

Bn+k+2(y;µ)
(n+ k + 2)!

+ (−1)m+1 2
1 + λµ

· m! · n!Bm+n+2(y − x;µ)
(m+ n+ 2)!

, (2.18)

which together with B0(y−x;µ) = δ1,µ and 1
n+1−k

(
n
k

)
= 1

n+1

(
n+1
k

)
for non-negative

integers k and n gives the desired result. This concludes the proof of Theorem 1.1.
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[47] H.M. Srivastava, Á. Pintér, Remarks on some relationships between the Bernoulli and Euler
polynomials, Appl. Math. Letters, 17 (2004), 375–380.

[48] H.M. Srivastava, M. Garg, S. Choudhary, A new generalization of the Bernoulli and related

polynomials, Russian J. Math. Phys., 17 (2010), 251–261.
[49] H. M. Srivastava, M. Garg, S. Choudhary, Some new families of generalized Euler and Genoc-

chi polynomials, Taiwanese J. Math., 15 (2011), 283–305.

[50] H.M. Srivastava, B. Kurt, Y. Simsek, Some families of Genocchi type polynomials and their
interpolation functions, Integral Transforms Spec. Funct., 23 (2012), 919–938; see also Corri-

gendum, Integral Transforms Spec. Funct., 23 (2012), 939–940.
[51] H.M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals,

Elsevier Sci. Pub., Amsterdam, London and New York, 2012.

[52] R. Tremblay, S. Gaboury, B.-J. Fugere, A new class of generalized Apostol-Bernoulli polyno-
mials and some analogues of the Srivastava-Pinter addition theorem, Appl. Math. Letters, 24

(2011), 1888–1893.

[53] J.Z. Wang, New recurrence formulae for the Apostol-Bernoulli and Apostol-Euler polynomi-
als, Adv. Differ. Equ., 2013 (2013), Article ID 247.

[54] W. Wang, C. Jia, T. Wang, Some results on the Apostol-Bernoulli and Apostol-Euler poly-

nomials, Comput. Math. Appl., 55 (2008), 1322–1332.

Faculty of Science, Kunming University of Science and Technology, Kunming, Yun-
nan 650500, People’s Republic of China

E-mail address: hyyhe@aliyun.com,hyyhe@yahoo.com.cn


