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Abstract. In this paper, we investigate the properties of right orthogonal modules of
C , where C is a class of left R-modules. As an application, we investigate the proper-
ties of right orthogonal modules of Ding injective left R-modules, and present various
characterizations of semisimple and von Neumann regular rings and so on. Moreover,
we also consider another cohomology, strong Tate cohomology, which connects the usual
cohomology with the Ding cohomology.

1. Introduction

Throughout the paper, R is an associative ring with identity and all R-modules are

unitary. Denote by R-Mod (Mod-R, resp.) the category of left (right, resp.) R-modules.

As usual, pdR(M), idR(M) and fdR(M) stand for the projective, injective and flat di-

mensions of a left R-module M , respectively, and `D(R) (rD(R), resp.), wD(R) denote

the left (right, resp.) global dimension, weak global dimension of a ring R, respectively.

We also denote by M∗ and E(M) the character module HomZ(M, Q/Z) and the injective

envelope of a left R-module M respectively. For unexplained concepts and notations, we

refer the readers to [8, 11, 17, 19].

In [5, 16], Ding and coauthors introduced the notions of Gorenstein FP -injective and

strongly Gorenstein flat modules, and then Gillespie renamed strongly Gorenstein flat

modules as Ding projective modules, and Gorenstein FP -injective modules as Ding in-

jective modules in [11]. These two classes of modules over coherent rings possess many

nice properties analogous to Gorenstein projective and Gorenstein injective modules over

Noetherian rings (see [11, 19] for details). So it is very meaningful to continue studying

the properties of Ding homological algebra.

In Section 2, we first summarize the properties of right orthogonal modules of C , where

C is a class of left R-modules. As an application, we investigate the properties of right

orthogonal modules of Ding injective left R-modules, and present various characterizations
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of semisimple and von Neumann regular rings and so on. For example, a ring R is

semisimple if and only if every left R-module is DI-injective, if and only if P ⊗R N is

projective for any Ding injective left R-module N and any R-R-bimodule P which is

projective as a left and right R-module; and a commutative ring R is von Neumann

regular if and only if every R-module is DI-flat, if and only if N ⊗R F is flat for any Ding

injective R-module N and any flat R-module F . In Section 3, we continue to investigate

another derived functor, ŝExt, which connects the Ext functor with the DExt functor.

2. Right orthogonal modules of a class C of left R-modules

In this section, we always denote by C a class of left R-modules.

2.1. We first recall from [8, Definition 8.1.2] the notions of right C -resolution and right

C -dimension as follows.

Definition 2.1. Let M ∈ R-Mod. A right C -resolution of M is a HomR(−, C )-exact

complex

0 // M // C0 // C1 // · · ·
with each Ci ∈ C for i ≥ 0.

Definition 2.2. Let M ∈ R-Mod. One says that M has finite right C -dimension if there

is a right C -resolution of M of the form

0 // M // C0 // C1 // · · · // Cn−1 // Cn // 0 .

If n is the least non-negative integer with this property, then one sets right C -dim(M) = n.

Definition 2.3. Let Cn be a class of left R-modules with right C -dimension at most n.

(1) M ∈ R-Mod is called Cn-injective if Ext1
R(N, M) = 0 for any N ∈ Cn. M ∈ R-Mod

is called strongly C -injective if Exti
R(N, M) = 0 for any N ∈ C and all i ≥ 1.

(2) M ∈ Mod-R is called Cn-flat if TorR
1 (M, N) = 0 for any N ∈ Cn. M ∈ Mod-R is

called strongly C -flat if TorR
i (M, N) = 0 for any N ∈ C and all i ≥ 1.

In particular, if n = 0, then the C0-injective and C0-flat modules are called the C -

injective and C -flat modules, respectively.

For example, if C is the class of all injective modules, then the (strongly) C -injective

and (strongly) C -flat modules are exactly the (strongly) copure injective and (strongly)

copure flat modules, respectively (see [4, 6, 7, 15] for details), and if C is the class of all

Gorenstein injective modules (see [8, Definition 10.1.1]), then the (strongly) C -injective

modules are exactly the (strongly) GI-injective modules (see [10] for details). Recently,

Lei introduced the notion of FP -Gorenstein cotorsion modules which is just the class of

C -injective modules when C is the class of finitely presented Gorenstein flat R-modules

(see [13] for details).

We can easily obtain the following remarks from the above definition.
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Remark 2.4. (1) Let (Mi)i∈I be a family of left R-modules. Then
∏

i∈I Mi is Cn-injective

if and only if each Mi is Cn-injective.

(2) Let (Mi)i∈I be a family of right R-modules. Then
⊕

i∈I Mi is Cn-flat if and only if

each Mi is Cn-flat.

(3) The class of Cn-injective left R-modules and the class of Cn-flat right R-modules

are closed under extensions, respectively.

Lemma 2.5. Let M ∈ Mod-R. Then M is Cn-flat if and only if M∗ is Cn-injective, and

M is strongly C -flat if and only if M∗ is strongly C -injective.

Proof. It follows from the isomorphisms: Exti
R(N, M∗) ∼= TorR

i (M, N)∗ for all i ≥ 1. �

Next we give some characterizations of Cn-injective modules and Cn-flat modules. In

what follows, we write I for the class of all injective left R-modules.

Proposition 2.6. Let M ∈ R -Mod. If I ⊆ Cn, then the following are equivalent:

(1) M is Cn-injective;

(2) For every exact sequence 0 // M // E
g

// L // 0 with E ∈ Cn, g : E → L is a

Cn-precover of L;

(3) E(M)→ E(M)/M is a Cn-precover;

(4) M is a kernel of a Cn-precover f : A→ B with A injective;

(5) The functor HomR(−, M) is exact with respect to each exact sequence

0 // A
u // B

v // C // 0

with C ∈ Cn.

Proof. (1) ⇒ (2). Assume that M is Cn-injective. For every exact sequence 0 → M →
E

g→ L → 0 with E ∈ Cn, by applying the functor HomR(N,−) with N ∈ Cn, we

have an exact sequence HomR(N, E)
g∗ // HomR(N, L) // Ext1

R(N, M) . By hypothesis,

Ext1
R(N, M) = 0, and hence g∗ is epic. So g : E → L is a Cn-precover of L.

(2) ⇒ (3) and (3) ⇒ (4) are trivial.

(4) ⇒ (1). By hypothesis, there is an exact sequence 0→M → A→ Imf → 0 with A

injective. Then for any N ∈ Cn, we have the following exact sequence

HomR(N, A) // HomR(N, Imf) // Ext1
R(N, M) // Ext1

R(N, A) = 0 .

On the other hand, since f : A→ B is a Cn-precover, HomR(N, A)→ HomR(N, Imf)→ 0

is exact. So Ext1
R(N, M) = 0 and hence M is Cn-injective.

(1) ⇒ (5) is easy by Definition 2.3.

(5) ⇒ (1). For any N ∈ Cn, there exists an exact sequence 0 → K → P → N → 0

with P projective, which induces an exact sequence

HomR(P, M) // HomR(K, M) // Ext1
R(N, M) // Ext1

R(P, M) = 0 .
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Meanwhile, HomR(P, M) // HomR(K, M) // 0 is exact by (5). Hence Ext1
R(N, M) = 0

for any N ∈ Cn. Thus M is Cn-injective. �

Proposition 2.7. Let M ∈ Mod-R. Then the following are equivalent:

(1) M is Cn-flat;

(2) M ∈⊥N , where N = {N∗|N ∈ Cn} and ⊥N = {A|Ext1
R(A, B) = 0 for all B ∈

N };
(3) The functor M ⊗R − is exact with respect to each exact sequence 0 → A → B →

C → 0 with C ∈ Cn.

Proof. (1) ⇔ (2) follows from the isomorphism: TorR
1 (M, N)∗ ∼= Ext1

R(M, N∗).

(1) ⇒ (3). Let M be Cn-flat. Then for any exact sequence 0→ A→ B → C → 0 with

C ∈ Cn, we have the following exact sequence

0 = TorR
1 (M, C) // M ⊗R A // M ⊗R B // M ⊗R C // 0 ,

as desired.

(3) ⇒ (1). For any N ∈ Cn, there is an exact sequence 0→ K → P → N → 0 with P

projective. This induces the following exact sequence

0 // TorR
1 (M, N) // M ⊗R K // M ⊗R P // M ⊗R N // 0 .

Meanwhile, 0 // M ⊗R K // M ⊗R P // M ⊗R N // 0 is exact by (3). Therefore,

TorR
1 (M, N) = 0 for any N ∈ Cn, and hence M is Cn-flat. �

Lemma 2.8. Let I ⊆ C .

(1) If M ∈ R -Mod is strongly C -injective, then Ext1
R(N, M) = 0 for any N ∈ R -Mod

with finite right C -dimension;

(2) If M ∈ Mod-R is strongly C -flat, then TorR
1 (M, N) = 0 for any N ∈ R -Mod with

finite right C -dimension.

Proof. (1) Assume that right C -dim(N) = n <∞, then there exists a HomR(−, C )-exact

complex

0 // N // C0 // C1 // · · · // Cn // 0

such that each Ci is in C . Since M is strongly C -injective, it follows that

Ext1
R(N, M) ∼= Extn+1

R (Cn, M) = 0.

(2) If M ∈ Mod-R is strongly C -flat, then M∗ is strongly C -injective by Lemma 2.5.

Hence Ext1
R(N, M∗) = 0 for any N ∈ R -Mod with finite right C -dimension by (1), which

implies TorR
1 (M, N) = 0, as desired. �

We denote by G I the class of all Gorenstein injective left R-modules. Then we have

Proposition 2.9. Let C = I or G I . Then M ∈ R -Mod is injective if and only if M

is strongly C -injective and right C - dim(M) <∞.
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Proof. ⇒ is trivial.

⇐. We consider an exact sequence 0 // M // E // V // 0 with E injective. Note

that right C -dim(V ) <∞ since right C -dim(M) <∞. By Lemma 2.8, Ext1
R(V, M) = 0.

So the above sequence splits. It follows that M is injective as a direct summand of E. �

Proposition 2.10. Let M ∈ R -Mod and m a non-negative integer.

(1) If Exti
R(N, M) = 0 for any 1 ≤ i ≤ m+1 and any N ∈ Cn, then every k-th cosyzygy

of M is Cn-injective for 0 ≤ k ≤ m.

(2) If TorR
i (M, N) = 0 for any 1 ≤ i ≤ m + 1 and any N ∈ Cn, then every k-th syzygy

of M is Cn-flat for 0 ≤ k ≤ m.

Proof. (1) Let V k be the k-th cosyzygy of M . Then we have the following exact sequence

0 // M // E0 // E1 // · · · // Ek−1 // V k // 0

with each Ei injective. This implies that Ext1
R(N, V k) ∼= Extk+1

R (N, M) for any N ∈ Cn.

Note that Extk+1
R (N, M) = 0 by hypothesis, so Ext1

R(N, V k) = 0, which means that V k is

Cn-injective.

The proof of (2) is similar to that of (1) and hence we omit it here. �

2.2. We recall from [11, Definition 3.2] that a left R-module M is said to be Ding injective

if there exists an exact sequence of injective left R-modules

· · · // I1
// I0

// I0 // I1 // · · · with M = Ker(I0 → I1)

which remains exact after applying HomR(E,−) for any FP -injective left R-module E.

In Subsection 2.1, we have introduced the notions of Cn-injective and Cn-flat modules

and discussed some of the basic properties. In particular, when C is the class of all Ding

injective left R-modules, the (strongly) C -injective and the (strongly) C -flat modules are

called the (strongly) DI-injective and the (strongly) DI-flat modules respectively. In the

following, inspired by [6, 10], we will investigate the properties of DI-injective and DI-flat

modules and then give new descriptions of some classical rings in terms of DI-injective

and DI-flat modules.

Clearly, every injective (flat, resp.) left (right, resp.) R-module is DI-injective (DI-

flat, resp.). However, DI-injective (DI-flat, resp.) R-modules need not be injective (flat,

resp.) as shown by the proposition 2.12.

Now we first give the following lemma, which will be used in the next proposition. In

what follows, let DidR(M) and GfdR(M) denote respectively the Ding injective dimension

and Gorenstein flat dimension of an R-module M (see [19, Definitions 2.3 and 2.4]).

Lemma 2.11. Let R be a left coherent ring, M a left R-module with DidR(M) <∞ and

n a non-negative integer. Then the following are equivalent:

(1) DidR(M) ≤ n;

(2) Exti
R(E,M) = 0 for any FP -injective left R-module E and any i ≥ n + 1;
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(3) For every exact sequence 0 // M // E0 // · · · // En−1 // V n // 0 with each

Ei Ding injective, V n is Ding injective.

Proof. (1) ⇒ (2). Since DidR(M) ≤ n, there exists an exact sequence

0 // M // Ẽ0 // Ẽ1 // · · · // Ẽn // 0

with each Ẽj Ding injective. Let V 1 = Coker(M → Ẽ0), and V i = Coker(Ẽi−2 → Ẽi−1)

for any 2 ≤ i ≤ n. Then

Exti
R(E,M) ∼= Exti−1

R (E, V 1) ∼= · · · ∼= Exti−n
R (E, Ẽn) = 0

for any FP -injective left R-module E and any i ≥ n + 1 by [16, Lemma 2.3].

(2) ⇒ (3). For every exact sequence 0 // M // E0 // · · · // En−1 // V n // 0 with

each Ei Ding injective, let V 0 = M , V 1 = Coker(M → E0) and V j = Coker(Ej−2 →
Ej−1) for any 2 ≤ j ≤ n, then every sequence 0 // V j // Ej // V j+1 // 0 is exact

for any 0 ≤ j ≤ n− 1. Let E be an FP -injective left R-module. By the exactness of the

following sequence

Exti
R(E,Ej) // Exti

R(E, V j+1) // Exti+1
R (E, V j) // Exti+1

R (E,Ej) ,

in which Exti
R(E,Ej) = 0 = Exti+1

R (E,Ej) by [16, Lemma 2.3], we have Exti
R(E, V n) ∼=

Exti+1
R (E, V n−1) ∼= · · · ∼= Exti+n

R (E,M) = 0 for any i ≥ 1. Moreover, since DidR(M) <

∞, DidR(V n) <∞, and hence there exists an exact sequence

0 // V n // E ′0 // E ′1 // · · · // E ′m // 0

with each E ′i Ding injective. Let V ′0 = V n, V ′1 = Coker(V n → E ′0) and V ′i =

Coker(E ′i−2 → E ′i−1) for any 2 ≤ i ≤ m. Then Ext1
R(E, V ′m−1) ∼= Ext2

R(E, V ′m−2) ∼=
· · · ∼= Extm

R (E, V n) = 0, which implies V ′m−1 is Ding injective by [16, Proposition 2.6].

Similarly, V ′m−2, · · · , V ′1 are also Ding injective. So V n is Ding injective by [16, Propo-

sition 2.6] again.

(3) ⇒ (1) is obvious. �

Proposition 2.12. Let R be a left coherent ring.

(1) A left R-module M is injective if and only if M is DI-injective and DidR(M) ≤ 1.

(2) A right R-module M is flat if and only if M is DI-flat and GfdR(M) ≤ 1.

Proof. (1) follows from Lemma 2.11 and the proof of Proposition 2.9.

(2) ⇒ follows from the fact that every flat module is Gorenstein flat and DI-flat.

⇐. For any DI-flat right R-module M , by Lemma 2.5, M∗ is DI-injective. Moreover,

since Gfd(M) ≤ 1, Did(M∗) ≤ 1 by a direct application of [16, Lemma 2.8]. Thus M∗ is

injective by (1). This implies M is flat by [17, Proposition 3.54]. �
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Recall from [3] that an n-FC ring is a left and right coherent ring R with FP -injective

dimension at most n as a left and right R-module for an integer n ≥ 0. A ring R is called

Ding-Chen if it is an n-FC ring for some n ≥ 0 (see [11]).

Proposition 2.13. Let R be an n-FC and left perfect ring, and M a left R-module. Then

the following are equivalent:

(1) M is strongly DI-injective;

(2) Ext1
R(N, M) = 0 for all left R-modules N ;

(3) Exti
R(N, M) = 0 for all left R-modules N and all i ≥ 1.

Proof. (1) ⇒ (2). Let N be a left R-module. By [16, Lemma 3.1], all modules have Ding

injective dimension at most n over an n-FC and left perfect ring. So there exists an exact

sequence

0 // N // E0 // E1 // · · · // En // 0

with each Ei Ding injective. Thus Ext1
R(N, M) ∼= Extn+1

R (En, M) = 0 since M is strongly

DI-injective.

(2) ⇒ (3). Let N be a left R-module and Ki−1 the (i − 1)st syzygy of N . Then we

have the following exact sequence

0 // Ki−1
// Pi−2

// · · · // P0
// N // 0

with each Pj projective. Thus Exti
R(N, M) ∼= Ext1

R(Ki−1, M) = 0 by (2).

(3) ⇒ (1). By (3), M is injective. Note that every injective module is strongly DI-

injective. So M is strongly DI-injective. �

Similarly, we have

Proposition 2.14. Let R be an n-FC and right perfect ring, and M a right R-module.

Then the following are equivalent:

(1) M is strongly DI-flat;

(2) TorR
1 (M, N) = 0 for all left R-modules N ;

(3) TorR
i (M, N) = 0 for all left R-modules N and all i ≥ 1.

Now we give some new descriptions of semisimple rings in terms of DI-injective mod-

ules.

Theorem 2.15. The following are equivalent:

(1) Every left R-module is DI-injective;

(2) Every left R-module is strongly DI-injective;

(3) Every Ding injective left R-module is projective;

(4) Every Ding projective left R-module is injective;

(5) R is semisimple.
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Proof. (1) ⇒ (3). Let M be a Ding injective left R-module. For any left R-module N , it

is DI-injective by (1), and hence Ext1
R(M, N) = 0. This implies that M is projective.

(3)⇒ (2). Let M be a left R-module. Then Exti
R(N, M) = 0 for any Ding injective left

R-module N and any i ≥ 1 since N is projective by (3). This implies that M is strongly

DI-injective.

(2)⇒ (1) follows from the fact that every strongly DI-injective module is DI-injective.

(4) ⇒ (5). Let N be any left R-module. Note that every projective left R-module is

Ding projective. Hence every projective left R-module is injective by (4). Thus, by [1,

Theorem 31.9], R is a quasi-Frobenius ring. By [5, Proposition 2.16], N is Ding projective.

By (4) again, N is injective, that is, every left R-module is injective. Thus R is semisimple.

(5) ⇒ (4) is trivial.

(3) ⇒ (5). Note that if R is a quasi-Frobenius ring, then every R-module is Ding

injective by [16, Proposition 4.5]. The rest of proof is similar to that of (4)⇒(5), so we

omit it here.

(5)⇒(3) is trivial. �

We next give some new descriptions of von Neumann regular rings in terms of DI-flat

modules.

Theorem 2.16. Let R be a commutative ring. Then the following are equivalent:

(1) Every R-module is DI-flat;

(2) Every R-module is strongly DI-flat;

(3) Every Ding injective R-module is flat;

(4) Every cotorsion R-module is DI-injective;

(5) Every pure injective R-module is DI-injective;

(6) R is von Neumann regular.

Proof. (1) ⇒ (2) is easy.

(2) ⇒ (3). Let N be any Ding injective R-module. For any R-module M , by (2), M is

strongly DI-flat. So TorR
1 (M, N) = 0, and hence N is flat by [17, Theorem 7.2].

(3) ⇒ (4). Let M be a cotorsion R-module. For any Ding injective R-module N , N is

flat by hypothesis, and hence Ext1
R(N, M) = 0. So M is DI-injective, as desired.

(4) ⇒ (5) follows from the fact that every pure injective R-module is cotorsion.

(5) ⇒ (3). Let N be a Ding injective R-module. For any R-module M , M∗ is pure

injective by [8, Proposition 5.3.7]. So M∗ is DI-injective by (5). Thus Ext1
R(N, M∗) = 0.

Since TorR
i (N, M)∗ ∼= Exti

R(N, M∗) for any i ≥ 1, we have TorR
1 (N, M) = 0. Thus N is

flat.

(3) ⇒ (2). Let M be an R-module, then TorR
i (M, N) = 0 for any Ding injective R-

module N and any i ≥ 1 since N is flat by (3). This implies that M is strongly DI-flat.

(2) ⇒ (1) follows from the fact that every strongly DI-flat module is DI-flat.
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(3) ⇒ (6). By (3), every injective R-module is flat. This shows that R is an IF ring

and hence R is an FC ring by [2, Corollary 3.14]. In particular, R is coherent. Let M

be an R-module, then M is Gorenstein flat by [3, Theorem 6], and hence M∗ is Ding

injective by [11, Proposition 3.11]. By (3), M∗ is flat, and thus M is FP -injective by [9,

Theorem 2.2]. Finally, by [18, Proposition 3.6], R is von Neumann regular.

(6) ⇒ (1) is trivial by [17, Theorem 4.9]. �

Definition 2.17. The left DI-injective dimension, `.DI-idR(M), of a left R-module M

is defined to be the smallest non-negative integer n such that Extn+1
R (N, M) = 0 for any

Ding injective left R-module N . The left global DI-injective dimension, `.DI-iD(R), of

a ring R is defined as

`.DI-iD(R) = sup{`.DI-idR(M)|M is any left R-module}.

Similarly, we can define the right global DI-injective dimension r.DI-iD(R) of a ring R.

If R is commutative, we drop r and `.

The right DI-flat dimension, r.DI-fdR(M), of a right R-module M is defined to be the

smallest non-negative integer n such that TorR
n+1(M, N) = 0 for any Ding injective left

R-module N . The right global DI-flat dimension, r.DI-fD(R), of a ring R is defined as

r.DI-fD(R) = sup{r.DI-fdR(M)|M is any right R-module}.

Similarly, we can define the left global DI-flat dimension `.DI-fD(R) of a ring R. If R

is commutative, we also drop r and `.

Remark 2.18. (1) Note that the left DI-injective dimension, `.DI-idR(M), of a left R-

module M is equivalent to the largest positive integer n such that Extn
R(N, M) 6= 0 for

some Ding injective left R-module N .

(2) r.DI-fdR(M) = `.DI-idR(M∗) for a right R-module M .

(3) By Theorems 2.15 and 2.16, we have

(i) The global DI-injective dimension of a ring measures how far away a ring is from

being semisimple, i.e. a ring R is semisimple if and only if `.DI-iD(R) = 0;

(ii) The global DI-flat dimension of a ring measures how far away a commutative ring

is from being von Neumann regular, i.e. a commutative ring R is von Neumann regular

if and only if DI-fD(R) = 0.

Lemma 2.19. Let M be a left R-module with `.DI-idR(M) < ∞ and n a non-negative

integer. Then the following are equivalent:

(1) `.DI-idR(M) ≤ n;

(2) Extn+i
R (N, M) = 0 for all Ding injective left R-modules N and all i ≥ 1;

(3) For every exact sequence

0 // M // E0 // E1 // · · · // En−1 // V n // 0

with each Ei injective, V n is strongly DI-injective;
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(4) There exists an exact sequence

0 // M // Ẽ0 // · · · // Ẽn−1 // Ẽn // 0

with each Ẽi strongly DI-injective.

Proof. (1) ⇒ (2) and (3) ⇒ (4) are trivial.

(2) ⇒ (3). For an exact sequence

0 // M // E0 // E1 // · · · // En−1 // V n // 0

with each Ei injective, we have Exti
R(N, V n) ∼= Exti+n

R (N, M) = 0. Thus V n is strongly

DI-injective.

(4) ⇒ (1). For every exact sequence

0 // M // Ẽ0 // · · · // Ẽn−1 // Ẽn // 0

with each Ẽi strongly DI-injective, we have Extn+1
R (N, M) ∼= Ext1

R(N, Ẽn) = 0 where N

is Ding injective. So `.DI-idR(M) ≤ n. �

Lemma 2.20. Let R be a ring. Then

(1) `.DI-iD(R) = sup{pdR(M) |M is any Ding injective left R-module};
(2) r.DI-fD(R) = sup{fdR(M) |M is any Ding injective right R-module}.

Proof. (1) Assume that sup{pdR(M) | M is any Ding injective left R-module} = m. We

first show that `.DI-iD(R) ≤ m. If m =∞, then we have completed the proof. So we may

assume that m < ∞. Let M be a left R-module. For any Ding injective left R-module

N , since pdR(N) ≤ m, it follows that Extm+1
R (N, M) = 0, and hence `.DI-idR(M) ≤ m.

Therefore, `.DI-iD(R) ≤ m.

Conversely, we show that m ≤ `.DI-iD(R). If `.DI-iD(R) = ∞, then we have com-

pleted the proof. So we assume that `.DI-iD(R) = n <∞. For any left R-module M , we

have `.DI-idR(M) ≤ n. Let N be a Ding injective left R-module. Then Extn+1
R (N, M) = 0

by Lemma 2.19, which implies pdR(N) ≤ n, and hence m ≤ n.

The proof of (2) is similar to that of (1) and thus we omit it here. �

Remark 2.21. By Lemma 2.20, we have `.DI-iD(R) ≤ `D(R) and r.DI-fD(R) ≤
wD(R).

In fact, we have

Proposition 2.22. Let M be a left R-module. If idR(M) < ∞, then `.DI-idR(M) =

idR(M). Consequently, if `D(R) <∞, then `.DI-iD(R) = `D(R).

Proof. Clearly, `.DI-idR(M) ≤ idR(M). Conversely, suppose that idR(M) = m < ∞.

Then we have Extm
R (N, M) 6= 0 for some left R-module N . For the R-module N , we have
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an exact sequence 0 // N
f

// E // V // 0 with E injective, which induces the following

exact sequence

Extm
R (E,M)

Extm

R (f,M)
// Extm

R (N, M) // Extm+1
R (V, M) .

Note that Extm+1
R (V, M) = 0 since idR(M) = m. So Extm

R (f, M) is an epimorphism.

Thus Extm
R (N, M) 6= 0 implies Extm

R (E,M) 6= 0, which means `.DI-idR(M) ≥ m, as

desired. �

Theorem 2.23. Let R be a ring and n a non-negative integer. Then the following are

equivalent:

(1) `.DI-iD(R) ≤ n;

(2) pdR(M) ≤ n for any Ding injective left R-module M ;

(3) pdR(M) ≤ n for any left R-module M with DidR(M) <∞.

Proof. (1) ⇒ (2) and (3) ⇒ (1) follow immediately from Lemma 2.20.

(2) ⇒ (3). Let M be a left R-module with DidR(M) < ∞, we may assume that

DidR(M) = m <∞. Then there exists an exact sequence 0→ M → Ẽ0 → Ẽ1 → · · · →
Ẽm → 0 with each Ẽi Ding injective. By (2), pdR(Ẽi) ≤ n. Consequently, pdR(M) ≤ n,

as desired. �

Now we give some characterizations of the inequality `.DI-iD(R) ≤ 1.

Proposition 2.24. The following are equivalent:

(1) `.DI-iD(R) ≤ 1;

(2) All Ding injective left R-modules are of projective dimension at most 1;

(3) For any strongly DI-injective left R-module M , each quotient module of M is

strongly DI-injective;

(4) For any injective left R-module E, each quotient module of E is strongly DI-

injective;

(5) For any DI-injective left R-module M , each quotient module of M is DI-injective;

(6) For any injective left R-module E, each quotient module of E is DI-injective.

Proof. (1) ⇔ (2) is trivial by Theorem 2.23.

(3) ⇒ (4) follows from the fact that every injective module is strongly DI-injective.

(4)⇒ (3). Let M be a strongly DI-injective left R-module and V a quotient module of

M . Then we have an exact sequence 0→ K → M → V → 0. Choose an exact sequence
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0→ K → E → N → 0 with E injective and consider the following push-out diagram:

0

��

0

��
0 // K //

��

M //

��

V // 0

0 // E //

��

Q //

��

V // 0

N

��

N

��
0 0

Then N is strongly DI-injective by (4). Moreover, since M is strongly DI-injective, Q

is strongly DI-injective by Remark 2.4. Finally, for any Ding injective left R-module Ẽ

and any i ≥ 1, we have the exact sequence Exti
R(Ẽ, Q) → Exti

R(Ẽ, V ) → Exti+1
R (Ẽ, E).

Since Exti
R(Ẽ, Q) = 0 = Exti+1

R (Ẽ, E), we have Exti
R(Ẽ, V ) = 0 for any i ≥ 1, and hence

V is strongly DI-injective.

(1)⇒ (4). Let E be an injective left R-module and V ′ a quotient module of E. For any

Ding injective left R-module Ẽ and any i ≥ 1, the exact sequence 0→ K ′ → E → V ′ → 0

induces the exact sequence Exti
R(Ẽ, E) → Exti

R(Ẽ, V ′) → Exti+1
R (Ẽ,K ′). Note that

Exti
R(Ẽ, E) = 0 since E is injective and Exti+1

R (Ẽ,K ′) = 0 by (1). So Exti
R(Ẽ, V ′) = 0

and hence V ′ is strongly DI-injective.

(4) ⇒ (1). Let M be a left R-module. Then there exists an exact sequence 0→M →
E → E/M → 0 with E injective. By (4), E/M is strongly DI-injective, and by Lemma

2.19, `.DI-idR(M) ≤ 1. Therefore, `.DI-iD(R) ≤ 1.

(2) ⇒ (5). Let N be a quotient module of a DI-injective left R-module M . Then

we have an exact sequence 0 → L → M → N → 0, which induces the exact se-

quence Ext1
R(Ẽ,M) → Ext1

R(Ẽ, N) → Ext2
R(Ẽ, L) with Ẽ Ding injective. Note that

Ext1
R(Ẽ,M) = 0 since M is DI-injective and Ext2

R(Ẽ, L) = 0 since pdR(Ẽ) ≤ 1 by (2). It

follows that Ext1
R(Ẽ, N) = 0, and hence N is DI-injective.

(5) ⇒ (6) is trivial.

(6)⇒ (2). Let M be a left R-module. Then there is an exact sequence 0→M → E →
V → 0 with E injective, which implies the exact sequence Ext1

R(Ẽ, V )→ Ext2
R(Ẽ,M)→

Ext2
R(Ẽ, E) with Ẽ Ding injective. By (6), V is DI-injective and hence Ext1

R(Ẽ, V ) =

0. Moreover, Ext2
R(Ẽ, E) = 0. Thus Ext2

R(Ẽ,M) = 0, which implies pdR(Ẽ) ≤ 1, as

desired. �

Now we give a characterization of left hereditary rings in terms of DI-injective left

R-modules.

Proposition 2.25. A ring R is left hereditary if and only if `.DI-iD(R) ≤ 1 and every

DI-injective left R-module is injective.
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Proof. ⇒. Since R is a left hereditary ring, `D(R) ≤ 1. By Remark 2.21, `.DI-iD(R) ≤ 1.

So it suffices to show that every DI-injective left R-module is injective. Let M be a DI-

injective left R-module. For any left R-module N , we have an exact sequence 0 →
N → E → V → 0 with E injective, which induces the exact sequence Ext1

R(E,M) →
Ext1

R(N, M) → Ext2
R(V, M). Note that Ext1

R(E,M) = 0 since E is injective and Ding

injective, and Ext2
R(V, M) = 0 since R is left hereditary. Thus Ext1

R(N, M) = 0, which

implies that M is injective, as desired.

⇐. Let M be any left R-module, and consider an exact sequence 0→M → E → L→ 0

with E injective. Since `.DI-iD(R) ≤ 1, L is DI-injective by Proposition 2.24. So L is

injective by hypothesis, and hence idR(M) ≤ 1. Therefore, R is left hereditary. �

It is well-known that a left coherent ring R is left semihereditary if and only if wD(R) ≤
1. With a similar argument as in Proposition 2.25, we have

Proposition 2.26. Let R be a left coherent ring. Then R is left semihereditary if and

only if r.DI-fD(R) ≤ 1 and every DI-flat right R-module is flat.

We conclude this section with the following applications.

Theorem 2.27. Let R be a ring and n a non-negative integer. Then `.DI-iD(R) ≤ n

if and only if pdR(P ⊗R N) ≤ n for any Ding injective left R-module N and any R-R-

bimodule P which is projective as a left and right R-module.

Proof. ⇒. Let N be any Ding injective left R-module. Since `.DI-iD(R) ≤ n, by Theorem

2.23, pdR(N) ≤ n. So we have the following exact sequence

0 // Pn
// · · · // P1

// P0
// N // 0

with each Pi projective. Applying the functor P ⊗R − to it, we have the following exact

sequence

0 // P ⊗R Pn
// · · · // P ⊗R P1

// P ⊗R P0
// P ⊗R N // 0 .

Note that each P ⊗R Pi is projective by [14, Chapter V, Corollary 3.3]. So pdR(P ⊗R N) ≤
n.

⇐. Let P = R. Then pdR(N) ≤ n for any Ding injective left R-module N . This

implies that `.DI-iD(R) ≤ n by Lemma 2.20. �

By Theorems 2.15 and 2.27, we obtain the following result.

Corollary 2.28. A ring R is semisimple if and only if P ⊗R N is projective for any Ding

injective left R-module N and any R-R-bimodule P which is projective as a left and right

R-module.

Similarly, we have
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Theorem 2.29. Let R be a ring and n a non-negative integer. Then r.DI-fD(R) ≤ n

if and only if fdR(N ⊗R F ) ≤ n for any Ding injective right R-module N and any R-R-

bimodule F which is flat as a left and right R-module.

Proof. Note that F ′⊗R F is a flat right R-module for any flat right R-module F ′ and any

R-R-bimodule F which is flat as a right R-module. The rest of proof is similar to that of

Theorem 2.27. �

By Theorems 2.16 and 2.29, we obtain the following result.

Corollary 2.30. Let R be a commutative ring. Then R is von Neumann regular if and

only if N ⊗R F is flat for any Ding injective R-module N and any flat R-module F .

3. ŝExt functors over Ding-Chen rings

In [19], Yang introduced the notion of Ding derived functor Dexti
R(−,−) (or DExti

R(−,−))

and studied its homological properties. In this section we continue to investigate another

derived functor, ŝExt, which connects the Ext functor with the DExt functor.

As what Iacob has done in [12], we first introduce the following related notions.

Definition 3.1. A strongly totally acyclic complex of injective left R-modules is an exact

complex of injective left R-modules

I = · · · // I1

d1 // I0

d0 // I0
d0

// I1
d1

// · · ·

such that the complex HomR(E, I) is exact for any FP -injective left R-module E.

Note that M ∈ R-Mod is Ding injective if and only if there is a strongly totally acyclic

complex I of injective left R-modules such that M ∼= Ker(I0 → I1). Moreover, if there is

a strongly totally acyclic complex I of injective left R-modules, then each kernel, cokernel

and image in I are Ding injective.

Definition 3.2. Let M ∈ R -Mod. A strongly Tate injective resolution of M is a diagram

M // E
u // T , where E is a deleted injective resolution of M and T is a strongly totally

acyclic complex of injective left R-modules and u is a morphism of complexes such that

un is isomorphic for n� 0.

For example, if M ∈ R-Mod with idR(M) < ∞, then the zero complex is a strongly

Tate injective resolution of M , and if M ∈ R-Mod is a Ding injective module such that

there is a HomR(Q,−)-exact exact complex I = · · · // I1
// I0

// I0 // · · · with Q

any FP -injective left R-module and M ∼= Ker(I0 → I0), then I is a strongly Tate injective

resolution of M , in this case n = 0.

Lemma 3.3. Let R be a Ding-Chen ring and M ∈ R -Mod. Then DidR(M) <∞ if and

only if M has a strongly Tate injective resolution.
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Proof. It follows from [19, Proposition 3.9] and Definition 3.2. �

Definition 3.4. If M ∈ R -Mod has a strongly Tate injective resolution M → E → T,

then we define ŝExt
i

R(N, M) = Hi(HomR(N, T)) for any N ∈ R -Mod and any i ∈ Z, and

call it strong Tate cohomology of M with coefficient in N .

We first claim that the above definition doesn’t depend on the choice of strongly Tate

injective resolutions of M . Indeed, assume that M // E
u // T and M // E′

v // T′

are two strongly Tate injective resolutions of M such that un′ is isomorphic for n′ � 0 and

vn′′ is isomorphic for n′′ � 0. Let n = max{n′, n′′}. If i > n, then Hi(HomR(N, T)) ∼=
Exti

R(N, M) ∼= Hi(HomR(N, T′)). If i ≤ n, we consider an exact sequence 0 → N →
PE(N) → V 0 → 0 with PE(N) an FP -injective preenvelope of N , then we have the

following exact sequence of complexes

0 // HomR(V 0, T) // HomR(PE(N), T) // HomR(N, T) // 0 ,

which induces a long exact sequence of R-modules

· · · −→ Hi(HomR(PE(N), T)) −→ Hi(HomR(N, T))

−→ Hi+1(HomR(V 0, T)) −→ Hi+1(HomR(PE(N), T)) −→ · · · .

By Definition 3.1, we have Hi(HomR(PE(N), T)) = 0, and hence Hi(HomR(N, T)) ∼=
Hi+1(HomR(V 0, T)). Repeating this process, we may find V j such that Hi(HomR(N, T)) ∼=
Hi+j+1(HomR(V j, T)) and i + j + 1 > n. Hence Hi(HomR(N, T)) ∼= Exti+j+1

R (V j, M).

Similarly, we also have Hi(HomR(N, T′)) ∼= Exti+j+1
R (V j, M).

Proposition 3.5. Let R be a Ding-Chen ring and M ∈ R -Mod with DidR(M) < ∞.

For an exact sequence 0 // A // B // C // 0 of left R-modules, we have the following

exact sequence

· · · −→ ŝExt
i−1

R (A, M) −→ ŝExt
i

R(C, M) −→ ŝExt
i

R(B, M)

−→ ŝExt
i

R(A, M) −→ ŝExt
i+1

R (C, M) −→ · · ·

with i ∈ Z.

Proof. By Lemma 3.3, M has a strongly Tate injective resolution M // E
u // T . Since

each term of T is injective, we have the following exact sequence of complexes 0 →
HomR(C, T)→ HomR(B, T)→ HomR(A, T)→ 0, which induces a long exact sequence

· · · −→ Hi−1(HomR(A, T)) −→ Hi(HomR(C, T)) −→ Hi(HomR(B, T))

−→ Hi(HomR(A, T)) −→ Hi+1(HomR(C, T)) −→ · · · ,

as required. �

The following theorem shows the case of vanishing of strong Tate cohomology.
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Theorem 3.6. Let R be a Ding-Chen ring and M ∈ R -Mod with DidR(M) = n < ∞.

The following are equivalent:

(1) idR(M) ≤ n;

(2) idR(M) <∞;

(3) ŝExt
i

R(N, M) = 0 for any N ∈ R -Mod and any i ∈ Z;

(4) ŝExt
i

R(R/I,M) = 0 for any left ideal I of R and any i ∈ Z.

Proof. (1) ⇒ (2) and (3) ⇒ (4) are trivial.

(2) ⇒ (3). Since idR(M) <∞, we may take a strongly Tate injective resolution of M

to be the zero complex, and thus ŝExt
i

R(N, M) = 0 for any N ∈ R-Mod and any i ∈ Z.

(4) ⇒ (1). We use induction on n = DidR(M) < ∞. If DidR(M) = 0, then

Ext1
R(R/I,M) ∼= ŝExt

1

R(R/I,M) = 0 for any left ideal I of R, which implies that M is

injective, i.e. idR(M) = 0. Now we assume that DidR(M) > 0, and let M // E
u // T

be a strongly Tate injective resolution of M and M ′ = Coker(M → E0). Then we

have an exact sequence 0 → M → E0 → M ′ → 0 with E0 injective. Moreover,

DidR(M ′) ≤ n − 1 and T[1] is a strongly Tate injective resolution of M ′. This implies

that ŝExt
i

R(N, M ′) ∼= ŝExt
i−1

R (N, M) for any N ∈ R-Mod and any i ∈ Z. In particular,

ŝExt
i

R(R/I,M ′) ∼= ŝExt
i−1

R (R/I,M) = 0 for any left ideal I of R and any i ∈ Z. This

implies idR(M ′) ≤ n− 1 by the induction hypothesis, and hence idR(M) ≤ n. �

We also have the following long exact sequence with respect to the usual cohomology,

Ding cohomology and strong Tate cohomology, which is similar to that in [12, Section 4]:

Lemma 3.7. Let R be a Ding-Chen ring and M ∈ R -Mod admit a strongly Tate injective

resolution. Then we have a long exact sequence

0 // DExt1
R(N, M) // Ext1

R(N, M) // ŝExt
1

R(N, M) // DExt2
R(N, M) // · · ·

for any N ∈ R -Mod.

Both this and the following proposition show that the strong Tate cohomology measures

the distance between the usual cohomology and the Ding cohomology.

Proposition 3.8. Let R be a Ding-Chen ring, M ∈ R -Mod with DidR(M) = n < ∞
and N ∈ R -Mod. If idR(M) < ∞, then the natural transformation DExti

R(N, M) →
Exti

R(N, M) is a natural isomorphism for any 0 ≤ i ≤ n, and Exti
R(N, M) = 0 for any

i > n.

Proof. If 0 < i ≤ n, then it follows from Theorem 3.6 and Lemma 3.7. Moreover,

DExt0
R(N, M) ∼= HomR(N, M) ∼= Ext0

R(N, M). So the assertion holds for 0 ≤ i ≤ n.

Furthermore, DExti
R(N, M) = 0 = ŝExt

i

R(N, M) whenever i > n, which implies that

Exti
R(N, M) = 0 for all i > n by the exact sequence of Lemma 3.7. �
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Lemma 3.9. Let N ∈ R -Mod with idR(N) <∞ and M ∈ R -Mod admit a strongly Tate

injective resolution M // E
u // T . Then ŝExt

i

R(N, M) = 0 for any i ∈ Z.

Proof. It suffices to prove that the complex HomR(N, T) is exact by Definition 3.4.

We use induction on n = idR(N) < ∞. If n = 0, then HomR(N, T) is exact. Now

we assume that n > 0, and consider an exact sequence 0 // N // E // N ′ // 0 with

E injective and thus idR(N ′) = n − 1. Then we have the following exact sequence of

complexes

0 // HomR(N ′, T) // HomR(E, T) // HomR(N, T) // 0 .

Note that the complex HomR(E, T) is exact and the complex HomR(N ′, T) is also exact

by the induction hypothesis, which implies that the complex HomR(N, T) is exact, as

desired. �

By this lemma, we can refine Proposition 3.8 as follows.

Proposition 3.10. Let R be a Ding-Chen ring, M ∈ R -Mod with DidR(M) = n < ∞
and N ∈ R -Mod. If idR(M) < ∞ or idR(N) < ∞, then the natural transforma-

tion DExti
R(N, M) → Exti

R(N, M) is a natural isomorphism for any 0 ≤ i ≤ n, and

Exti
R(N, M) = 0 for any i > n.

Acknowledgements

Both authors thank the anonymous referees for their very helpful suggestions to improve

the paper. The second author is sponsored by Project 11171325 and 11371186 NSFC.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematica
13, Springer-Verlag, New York, 1992.

[2] N. Ding and J. Chen, The flat dimensions of injective modules, Manuscripta Math. 78 (1993), 165-
177.

[3] N. Ding and J. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24
(1996), 2963-2980.

[4] N. Ding and J. Chen, On copure flat modules and flat resolvents, Comm. Algebra 24 (1996), 1071-
1081.

[5] N. Ding, Y. Li and L. Mao, Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86 (2009), 323-338.
[6] E. E. Enochs and O. M. G. Jenda, Copure injective modules, Quaest. Math. 14 (1991), 401-409.
[7] E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, flat resolvents and dimensions,

Comment. Math. Univ. Carolinae 34 (1993), 203-211.
[8] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, New York,

Berlin, 2000.
[9] D. J. Fieldhouse, Character modules, dimension and purity, Glasgow Math. J. 13 (1972), 144-146.

[10] Z. Gao, On GI-injective modules, Comm. Algebra 40 (2012), 3841-3858.



18 T. Zhao and Y. Xu

[11] J. Gillespie, Model structures on modules over Ding-Chen rings, Homology, Homotopy Appl. 12
(2010), no. 1, 61-73.

[12] A. Iacob, Generalized Tate cohomology, Tsukuba J. Math. 29 (2005), 389-404.
[13] R. Lei, FP -Gorenstein cotorsion modules, Bull. Malays. Math. Sci. Soc. (2) 37(2) (2014), 511-524.
[14] S. Maclane, Homology, Springer, New York, 1995.
[15] L. Mao and N. Ding, Relative copure injective and copure flat modules, J. Pure Appl. Algebra 208

(2007), 635-646.
[16] L. Mao and N. Ding, Gorenstein FP -injective and Gorenstein flat modules, J. Algebra Appl. 7

(2008), no. 4, 491-506.
[17] J. J. Rotman, An Introduction to Homological Algebra, Springer, New York, 2009.
[18] B. Stenström, Coherent rings and FP -injective modules, J. London Math. Soc. 2 (1970), 323-329.
[19] G. Yang, Homological properties of modules over Ding-Chen rings, J. Korean Math. Soc. 49 (2012),

no. 1, 31-47.


