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Abstract. We study the Gauss map G of surfaces of revolution in the

3-dimensional Euclidean space E3 with respect to the so called Cheng-Yau

operator � acting on the functions defined on the surfaces. As a result,

we establish the classification theorem that the only surfaces of revolution

with Gauss map G satisfying �G = AG for some 3× 3 matrix A are the

planes, right circular cones, circular cylinders and spheres.

1. Introduction

The theory of Gauss map of a surface in a Euclidean space and a pseudo-

Euclidean space is always one of interesting topics and it has been investi-

gated from the various viewpoints by many differential geometers ([2, 3, 8,

9, 10, 6, 11, 13, 14, 15, 16, 18, 19, 20, 21]).
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Let M be a surface of the Euclidean 3-space E3. The map G : M →

S2 ⊂ E3 which sends each point of M to the unit normal vector to M at the

point is called the Gauss map of the surface M, where S2 is the unit sphere

in E3 centered at the origin. It is well known that M has constant mean

curvature if and only if ∆G = ||dG||2G, where ∆ is the Laplace operator on

M corresponding to the induced metric on M from E3 ([23]). Surfaces whose

Gauss map is an eigenfunction of Laplacian, that is, ∆G = λG for some

constant λ ∈ R, are the planes, circular cylinders and spheres ([6]).

Generalizing this equation, F. Dillen, J. Pas and L. Verstraelen ([11]) stud-

ied surfaces of revolution in a Euclidean 3-space E3 such that its Gauss map

G satisfies the condition

(1.1) ∆G = AG, A ∈ R3×3.

As a result, they proved ([11])

Proposition 1.1. Among the surfaces of revolution in E3, the only ones

whose Gauss map satisfies (1.1) are the planes, the spheres and the circular

cylinders.

Baikoussis and Blair also studied ruled surfaces in E3 and proved ([2])

Proposition 1.2. Among the ruled surfaces in E3, the only ones whose

Gauss map satisfies (1.1) are the planes and the circular cylinders.

Generalized slant cylindrical surfaces (GSCS’s) are natural extended no-

tion of surfaces of revolution ([17]). Surfaces of revolution, cylindrical sur-

faces and tubes along a plane curve are special cases of GSCS’s. In [19], the

first author and B. Song proved that among the GSCS’s in E3, the only ones
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whose Gauss map satisfies (1.1) are the planes, the spheres and the circular

cylinders.

The so-called Cheng-Yau operator � (or, L1) is a natural extension of the

Laplace operator ∆ (cf. [1], [7]). Hence, following the condition (1.1), it is

natural to ask as follows.

Question 1.3. Among the surfaces of revolution in a Euclidean 3-space E3,

which one satisfy the following condition?

(1.2) �G = AG, A ∈ R3×3.

In this paper, we give a complete answer to the above question.

Throughout this paper, we assume that all objects are smooth and con-

nected, unless otherwise mentioned.

2. Cheng-Yau operator and Lemmas

Let M be an oriented surface in E3 with Gauss map G. We denote by S

the shape operator of M with respect to the Gauss map G. For each k = 0, 1,

we put P0 = I, P1 = tr(S)I − S, where I is the identity operator acting on

the tangent bundle of M. Let us define an operator Lk : C∞(M)→ C∞(M)

by Lk(f) = −tr(Pk ◦ ∇2f), where ∇2f : χ(M) → χ(M) denotes the self-

adjoint linear operator metrically equivalent to the hessian of f . Then, up to

signature, Lk is the linearized operator of the first variation of the (k+ 1)-th

mean curvature arising from normal variations of the surface. Note that the

operator L0 is nothing but the Laplace operator acting on M , i.e., L0 = ∆

and L1 = � is called the Cheng-Yau operator introduced in [7].

Now, we state a useful lemma as follows ([1]).
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Lemma 2.1. Let M be an oriented surface in E3 with Gaussian curvature

K and mean curvature H. Then, the Gauss map G of M satisfies

(2.1) �G = ∇K + 2HKG,

where ∇K denotes the gradient of K.

Now, using Lemma 2.1 we give some examples of surfaces with Gauss map

satisfying (1.2).

Examples.

(1) Flat surfaces. In this case, we have �G = 0, and hence flat surfaces

satisfy �G = AG for some 3× 3 matrix A. Note that the matrix A must be

singular.

(2) Spheres: (x − a)2 + (y − b)2 + (z − c)2 = r2. In this case, we have

G = 1
r
(x − a, y − b, z − c) so the sphere satisfies �G = AG with A = −1

r3 I,

where I denotes the identity matrix.

3. Gauss map of surfaces of revolution

We consider a unit speed plane curve C : (x(s), 0, z(s)) with x(s) > 0 in

the xz plane which is defined on an interval I. By rotating the curve C

around z-axis, we get a surface of revolution M , which is parametrized by

(3.1) X(s, t) = (x(s) cos t, x(s) sin t, z(s)).

The adapted frame field {e1, e2, G} on the surface of revolution M are

given by

(3.2)

e1 = Xs = (x′(s) cos t, x′(s) sin t, z′(s)),

e2 =
1

x
Xt = (− sin t, cos t, 0),

G = e1 × e2 = (−z′ cos t,−z′ sin t, x′).
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The principal curvatures k1, k2 of M with respect to the Gauss map G are

respectively ([12])

(3.3)

k1 = 〈S(e1), e1〉 = x′z′′ − x′′z′ = κ,

k2 = 〈S(e2), e2〉 =
z′

x
,

where S and κ denote the shape operator of M and the plane curvature of

the plane curve C, respectively.

Since the parametrization (x(s), 0, z(s)) of the plane curve C is of unit

speed, there exists a smooth function θ = θ(s) such that x′ = cos θ and

z′ = sin θ. Then, the Gaussian curvature K and the mean curvature H of M

are, respectively, given by

(3.4)
K = k1k2 =

θ′(s) sin θ

x
,

2H = k1 + k2 = θ′(s) +
sin θ

x
.

Hence, the gradient ∇K of the Gaussian curvature K of M is given by

(3.5) ∇K = K ′(s)e1,

where

(3.6) K ′(s) =
1

x2
{xθ′′(s) sin θ + xθ′(s)2 cos θ − θ′(s) cos θ sin θ}.

We now suppose that the Gauss map G of the surface of revolution M

satisfies for a 3× 3 matrix A = (aij)

(3.7) �G = AG.

Recall that the Gauss map G is given by

(3.8) G(s, t) = (− sin θ cos t,− sin θ sin t, cos θ).
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Then, it follows from (2.1), (3.4) and (3.5) that

(3.9)
{K ′(s) cos θ − 2KH sin θ} cos t

= −a11 sin θ cos t− a12 sin θ sin t+ a13 cos θ,

(3.10)
{K ′(s) cos θ − 2KH sin θ} sin t

= −a21 sin θ cos t− a22 sin θ sin t+ a23 cos θ

and

(3.11) K ′(s) sin θ + 2KH cos θ = −a31 sin θ cos t− a32 sin θ sin t+ a33 cos θ.

First, we suppose that the set J = {s ∈ I|θ′(s) 6= 0} is nonempty. Then

θ(I) contains an interval, hence we get from (3.9)-(3.11) that a12 = a13 =

a21 = a23 = a31 = a32 = 0 and a11 = a22. Thus we obtain A = diag(λ, λ, µ),

(3.12) K ′(s) cos θ − 2KH sin θ = −λ sin θ,

and

(3.13) K ′(s) sin θ + 2KH cos θ = µ cos θ.

Note that (3.12) and (3.13) are equivalent to the following:

(3.14) K ′(s) = a cos θ sin θ,

and

(3.15) 2KH = −a sin2 θ + µ,

where we put a = µ− λ.

We prove the following lemma, which plays a crucial role in the proof of

our main theorem.
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Lemma 3.1. Let M be a surface of revolution given by (3.1) with nonempty

set J = {s ∈ I|θ′(s) 6= 0}. Suppose that the Gauss map G of M satisfies

�G = AG for some 3× 3 matrix A. Then A is of the form λI, where I is an

identity matrix.

Proof. The above discussions show that A is a diagonal matrix of the form

A = diag(λ, λ, µ) for some constants λ and µ. We put a = µ − λ. Then, it

follows from (3.4), (3.6), (3.14) and (3.15) that

(3.16) xθ′′(s) sin θ + xθ′(s)2 cos θ − θ′(s) cos θ sin θ = ax2 cos θ sin θ

and

(3.17) xθ′(s)2 sin θ + θ′(s) sin2 θ = (−a sin2 θ + µ)x2.

By differentiating the both sides of (3.17) with respect to s, we get

(3.18)
θ′′(s) sin2 θ + 2xθ′(s)θ′′(s) sin θ + xθ′(s)3 cos θ + 3θ′(s)2 sin θ cos θ

+ 2ax2θ′(s) sin θ cos θ = 2x cos θ(−a sin2 θ + µ).

If we substitute θ′′(s) in (3.16) into (3.18), then we have

(3.19)

− x2θ′(s)3 cos θ + 4xθ′(s)2 cos θ sin θ + {cos θ sin2 θ + 4ax3 cos θ sin θ}θ′(s)

+ 3ax2 cos θ sin2 θ − 2µx2 cos θ = 0.

Let us substitute θ′(s)2 in (3.17) into (3.19). Then we obtain

(3.20)
5xθ′(s)2 cos θ sin θ + {cos θ sin2 θ + 5ax3 cos θ sin θ − µx3 cot θ}θ′(s)

+ 3ax2 cos θ sin2 θ − 2µx2 cos θ = 0.

Once more, we substitute θ′(s)2 in (3.17) into (3.20). Then we get

(3.21) θ′(s) =
γx2

αx3 + β
,
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where we put

(3.22)
α(s) = −5a sin2 θ(s) + µ, β(s) = 4 sin3 θ(s),

γ(s) = −2a sin3 θ(s) + 3µ sin θ(s).

Now, we replace θ′(s) in (3.17) with that in (3.21). Then we have

(3.23) a6x
6 + a3x

3 + a0 = 0,

where we use the following notations:

(3.24)
a6(θ) = 25a3 cos6 θ + 5a2(15λ− 8µ) cos4 θ

+ a(5a− µ)(4µ− 15λ) cos2 θ + λ(5a− µ)2,

(3.25) a3(θ) = 26a2 sin7 θ − 19aµ sin5 θ − 4µ2 sin3 θ

and

(3.26) a0(θ) = −8a sin8 θ + 4µ sin6 θ.

Let us differentiate (3.23) with respect to s. Here, we denote by ȧi(θ) the

derivative of ai(θ) with respect to θ, i = 0, 3, 6. Using x′ = cos θ and θ′(s)

given by (3.21), we get

(3.27) b6x
6 + b3x

3 + b0 = 0,

where we denote

(3.28) b6(θ) = 6α cos θa6(θ) + γȧ6(θ),

(3.29) b3(θ) = 3α cos θa3(θ) + 6β cos θa6(θ) + γȧ3(θ)

and

(3.30) b0(θ) = 3β cos θa3(θ) + γȧ0(θ).
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If we compute bi(θ) for i = 0, 3, 6, then we have

(3.31) b6(θ) = {1050a4 sin8 θ +
6∑

i=0

pi(λ, µ) sini θ} cos θ,

(3.32) b3(θ) = {−214a3 sin9 θ +
7∑

i=0

qi(λ, µ) sini θ} cos θ

and

(3.33) b0(θ) = {440a2 sin10 θ +
8∑

i=0

ri(λ, µ) sini θ} cos θ,

where pi(λ, µ), qi(λ, µ) and ri(λ, µ) are respectively some polynomials in λ

and µ.

Eliminating x6, it follows from (3.23) and (3.27) that

(3.34) c3x
3 + c0 = 0,

where

(3.35) c3 = a3b6 − b3a6, c0 = a0b6 − b0a6.

Due to (3.24)-(3.26) and (3.31)-(3.33)3), we may compute c3 and c0 as follows:

(3.36) c3 = {32650a6 sin15 θ +
13∑

j=0

p3j(λ, µ) sinj θ} cos θ,

and

(3.37) c0 = {−19400a5 sin16 θ +
14∑

j=0

p0j(λ, µ) sinj θ} cos θ,

where each pij(λ, µ)(i = 0, 3) is a polynomial in λ and µ.

Let us replace x3 in (3.23) with x3 = −c0/c3 given in (3.34). Then we have

(3.38) a6c
2
0 − a3c0c3 + a0c

2
3 = 0.
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Using (3.31)-(3.33), (3.36) and (3.37), we may compute the leading terms of

those in (3.38) as follows:

(3.39)

a6c
2
0 = −25(19400)2a13 sin40 θ + lower degree terms in sin θ,

a3c0c3 = 26(19400)(32650)a13 sin40 θ + lower degree terms in sin θ,

a0c
2
3 = 8(32650)2a13 sin40 θ + lower degree terms in sin θ.

Hence we obtain

(3.40)
a6c

2
0 − a3c0c3 + a0c

2
3 = −17349480000a13 sin40 θ

+ lower degree terms in sin θ.

Since θ(I) contains an interval, together with (3.38), (3.40) shows that a

must be zero. Thus we have µ = λ and hence A = λI. This completes the

proof. �

4. Main Theorems and Corollaries

Finally, we prove the main theorem as follows.

Theorem 4.1. Let M be a surface of revolution. Then the Gauss map G of

M satisfies �G = AG for some 3× 3 matrix A if and only if M is an open

part of the following surfaces:

1) a plane,

2) a right circular cone,

3) a circular cylinder,

4) a sphere.

Proof. We consider a surface of revolution M obtained by rotating the unit

speed plane curve C : (x(s), 0, z(s)) with x(s) > 0 around z-axis which is

defined on an interval I.



CHENG-YAU OPERATOR AND GAUSS MAP OF SURFACES OF REVOLUTION 11

Suppose that the Gauss map G of M satisfies �G = AG for some 3×3 ma-

trix A. For a function θ = θ(s) satisfying (x′(s), z′(s)) = (cos θ(s), sin θ(s)),

let us put J = {s ∈ I|θ′(s) 6= 0}.

We divide by two cases.

Case 1. Suppose that J is nonempty. Then, as in the proof of Lemma 3.1

we have A = diag(λ, λ, µ) with a = λ − µ. Furthermore, Lemma 3.1 shows

that a = 0 that is, λ = µ. Hence it follows from (3.14) and (3.15) that

the Gaussian curvature K is constant and the mean curvature H satisfies

2KH = λ.

If λ 6= 0, then both of K and H are nonzero constant. Hence it follows

from a well-known theorem (cf. [22]) that M is an open part of a sphere.

Using (3.17) and (3.21) with a = 0, it can be directly shown that θ′(s) is

constant and x(s) = r sin θ for a positive constant r. This shows that the

profile curve C is an open part of a half circle centered on the rotation axis

of M . Thus, M is an open portion of a round sphere.

If λ = 0, then K is constant with 2KH = 0. Suppose that K 6= 0. Then

we have H = 0. But catenoids are the only minimal nonflat surfaces of rev-

olution, of which Gaussian curvature K are nonconstant. This contradiction

shows that K = 0. Thus M is a flat surfaces of revolution. Therefore, M is

an open part of a plane, a right circular cone or a circular cylinder.

Case 2. Suppose that J is empty. Then the profile curve C of M is a straight

line. Thus, M is an open part of a plane, a right circular cone or a circular

cylinder.

The converse is obvious from (2.1). �

Combining the results of [11, 19], the following characterization theorems

can be obtained.
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Corollary 4.2. Let M be a surface of revolution. Then the following are

equivalent.

1) M is an open part of a round sphere.

2) The Gauss map G of M satisfies �G = AG for some nonsingular 3 × 3

matrix A.

Corollary 4.3. Let M be a surface of revolution. Then the following are

equivalent.

1) M is an open part of a right circular cone.

2) The Gauss map G of M satisfies �G = AG for some 3× 3 matrix A, but

not satisfies ∆G = AG for any 3× 3 matrix A.
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