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Abstract

Motivated by the recent work of H. Liu and S.Y. Xu, we prove a generalized
Banach fixed point theorem for the setting of cone rectangular Banach algebra
valued metric spaces without assuming the normality of the underlying cone. Our
work generalizes Some recent results in cone rectangular Banach algebra valued
metric spaces. An example to illustrate the main result is also presented.
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1 Introduction

The concept of metric spaces was introduced in 1906, by the French mathematician
M. Fréchet [3]. A metric is just a function (which satisfies some properties) that
takes values in the set of real numbers with its usual ordering. In 1934, the Serbian
mathematician -D. Kurepa in [7, 8], generalized the notion of a metric space, by
allowing the metric to take values in more general ordered sets. These abstract
spaces he introduced were also considered by several other authors (see [9,15,16] and
the references therein). In [4] L.G. Huang and X. Zhang introduced and studied cone
metric spaces. These are spaces where the metric function takes values in a normal
cone of a Real Banach space. They proved the Banach fixed point theorem for such
spaces. Very recently in [10], H. Liu and S. Xu have considered cone metric spaces
where the underlying cone is contained in a real unital Banach algebra and proved
a generalized Banach fixed point theorem on such spaces with the assumption that
the underlying cone is normal.

Branciari in [2], introduced a class of generalized metric spaces, called rectangular
metric spaces, which are obtained by replacing the standard triangular inequality
in a metric space by a rectangular inequality, i.e. an inequality that involves four
(distinct) points, and proved the Banach fixed point theorem for such spaces. Azam
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et al. in [1], introduced the notion of cone rectangular metric spaces and proved
the Banach fixed point theorem for such spaces.

In this article, we consider cone rectangular Banach algebra valued metric spaces,
i.e., spaces where the metric function actually takes values in a cone contained in a
real unital Banach algebra. We prove a generalized Banach fixed point theorem for
such spaces without assuming the normality of cone. Our results generalize and
improve the result of Branciari [2], Huang and Zhang [4], Azam et al. [1] and H.
Liu and S. Xu [10]. An example is also given which illustrates the main result.

2 Preliminaries

First we recall some well-known definitions which will be needed in the sequel.

Definition 1. Let A be a real Banach algebra, i.e., A is a real Banach space with a
product that satisfies

1. x(yz) = (xy)z;

2. x(y + z) = xy + xz;

3. α(xy) = (αx)y = x(αy);

4. ‖xy‖ ≤ ‖x‖‖y‖,
for all x, y, z ∈ A, α ∈ R.

The Banach algebra A is said to be unital if there exists an element e ∈ A such
that ex = xe = x for all x ∈ A. The element e is called the unit. An x ∈ A is said
to be invertible if there is a y ∈ A such that xy = yx = e. The inverse of x, if it
exists, is unique and will be denoted by x−1. For more details, see [14].

Proposition 1. [14] Let A be a Banach algebra with a unit e and x ∈ A. If the
spectral radius ρ(x) of x is less than 1, i.e.,

ρ(x) = lim
n→∞

‖xn‖1/n = inf
n∈N
‖xn‖1/n < 1,

then e− x is invertible and

(e− x)−1 =
∞∑
i=0

xi.

Let A be a unital Banach algebra. A non-empty closed set P ⊂ A is said to be
a cone (see [10,11]) if

1. e ∈ P
2. P + P ⊂ P ,

3. αP ⊂ P for all α ≥ 0,

4. P 2 ⊂ P
5. P ∩ (−P ) = {θ}, where θ is the zero of the unital Banach algebra A.
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Clearly θ ∈ P . Given a cone P ⊂ A one can define a partial order � on A by
x � y if and only if y− x ∈ P. The notation x� y will stand for y− x ∈ P 0, where
P 0 denotes the interior of P.

The cone P is called normal if there exists a number K > 0 such that for all
a, b ∈ A,

a � b implies ‖a‖ ≤ K‖b‖.

The least positive value of K satisfying the above inequality is called the normal
constant (see [4]). Note that, for any normal cone P we have K ≥ 1 (see [13]).

Henceforth, we will assume that the real Banach algebra A is unital and that
the cone P ⊂ A is a solid cone. i.e. P 0 6= ∅.

Lemma 1. [6] Let P ⊂ A be a solid cone and a, b, c ∈ P.
(a) If a � b and b� c then a� c.

(b) If a� b and b� c then a� c.

(c) If θ � u� c for each c ∈ P 0 then u = θ.

(d) If c ∈ P 0 and an → θ then there exist n0 ∈ N such that, for all n > n0 we
have an � c.

(e) If θ � an � bn for each n and an → a, bn → b then a � b.

Lemma 2. Let P ⊂ A be a cone.

(a) If a, b ∈ A, c ∈ P and a � b, then ca � cb.
(b) If a, k ∈ P are such that ρ(k) < 1 and a � ka then, a = θ.

(c) If k ∈ P and ρ(k) < 1, then for any fixed m ∈ N we have ρ(km) < 1.

Proof. (a) Since b− a ∈ P , it follows that c(b− a) ∈ P . i.e. ca � cb.
(b) Since a, k ∈ P and a � ka we have θ � (k − e)a, i.e., (k − e)a ∈ P. Since

ρ(k) < 1, by Proposition 1, (e− k)−1 exists and (e− k)−1 ∈ P . Multiplication
by (e− k)−1 yields −a ∈ P . Since P ∩ (−P ) = {θ}, it follows that a = θ.

(c) Since ρ(k) < 1 and m ∈ N is fixed, it follows that ρ(km) = lim
n→∞

‖(km)n‖
1
n =

lim
n→∞

‖(kn)m‖
1
n ≤ lim

n→∞

(
‖kn‖

1
n

)m
=
(

lim
n→∞

‖kn‖
1
n

)m
= (ρ(k))m < 1.

Definition 2. [1] Let X be a nonempty set, E be a real Banach space. The map
d : X ×X → E, is called a cone rectangular metric on X if

(i) θ � d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x,w) + d(w, z) + d(z, y) for all x, y ∈ X and for all distinct points
w, z ∈ X \ {x, y} (The Rectangular Property).

The pair (X, d) is called a cone rectangular metric space. If E is a real unital
Banach algebra and P ⊂ E is a cone, then we say that the pair (X, d) is a cone
rectangular Banach algebra valued metric space.

The following are some examples of cone rectangular Banach algebra valued
metric spaces.
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Example 1. Let A = R2 and define a norm on A by ‖(x1, x2)‖ = |x1|+ |x2|. Let the
multiplication be defined by

(x1, x2)(y1, y2) = (x1y1, x1y2 + x2y1).

Then A is a real unital Banach algebra with unit e = (1, 0). Let P = {(x1, x2) ∈
R2 : x1, x2 ≥ 0}. Then P is a normal cone in A, with normal constant K = 1.
Let X = ∆, where ∆ is the diagonal of N0 × N0 and N0 = N ∪ {0}. Define
d : X ×X → A by

d(x, y) =


(0, 0) if x = y;
(1/n, 1/n) if x, y ∈ {(0, 0), (n, n)}, x 6= y
(1, 1) if x, y ∈ ∆ \ {(0, 0)}, x 6= y.

Then (X, d) is a cone rectangular Banach algebra valued metric spaces.

Example 2. [12] Let A = C1
R[0, 1] and define a norm on A by ‖x‖ = ‖x‖∞ + ‖x′‖∞

for x ∈ A. Define multiplication in A as just pointwise multiplication. Then A is a
real unital Banach algebra with unit e = 1. The set P = {x ∈ A : x ≥ 0} is a cone
in A. Moreover P is not normal (See [13]).
Let X = N. Define d : X ×X → A by

d(x, y) =


0 if x = y;
3et if x, y ∈ {1, 2} and x 6= y.
et otherwise.

Then (X, d) is a cone rectangular Banach algebra valued metric spaces.

For x ∈ X and c � θ, define B(x, c) = {y : d(x, y) � c} ⊂ X. The collection
B = {B(x, c) : x ∈ X, c � θ} being a subbasis generates a topology on X, say Γ.
Clearly B ⊂ Γ. We will henceforth view (X,Γ) as a topological space.

The following definitions are adapted from [1].

Definition 3. A sequence {xn} in the cone rectangular metric space X is said to be
Cauchy, if given c � θ, there exists n0 ∈ N which is independent of p, such that
d(xn, xn+p)� c for all n ≥ n0.

Definition 4. A sequence {xn} in the cone rectangular metric space X is said to
converge weakly to x ∈ X, if given c � θ, there exists an n0 ∈ N such that
d(xn, x)� c for all n ≥ n0, i.e., xn ∈ B(x, c) for all n ≥ n0. We will denote {xn}
converging weakly to x by xn � x as n→∞.

Definition 5. A cone rectangular metric space X is said to be weakly complete if
every Cauchy sequence in the space converges weakly.

Remark 1. For a general topological space Y , one says that a sequence {xn} in Y
converges to x if and only if given any open set U containing x, there exists an
n0 ∈ N such that xn ∈ U , for all n ≥ n0. Observe that for our purposes, we only
consider a weaker form of convergence. This is because we demand the existence of
an n0 ∈ N not for all, but only for certain open sets containing x, namely, sets of
the form B(x, c).
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Note that, the limit of a weakly convergent sequence may not be unique (see [5]).
The following lemma is a minor variant of Lemma 1.10 from [5].

Lemma 3. Let (xn) be a Cauchy sequence in a cone rectangular metric space X
such that xn 6= xm whenever n 6= m. If x, y 6∈ {xn : n ∈ N} and (xn) converges
weakly to both x and y, then x = y.

Proof. Since xn � x, y, given θ � c, there exists n0 ∈ N such that d(x, xn) �
c
3 , d(xm, xm+1)� c

3 and d(xk, y)� c
3 , for all m,n, k ≥ n0. Thus

d(x, y) ≤ d(x, xn0) + d(xn0 , xn0+1) + d(xn0+1, y)� c.

An application of part (c) of Lemma 1 completes the proof.

3 The Main Result

In this section, we prove a generalized Banach fixed point theorem for weakly
complete cone rectangular Banach algebra valued metric spaces.

Theorem 4. Let (X, d) be a weakly complete cone rectangular Banach algebra valued
metric space and T : X → X be a map such that:

d(Tx, Ty) � kM(x, y) for all x, y ∈ X, (1)

where M(x, y) ∈ {d(x, y), d(x, Tx), d(y, Ty)} and k ∈ P with ρ(k) < 1. Then T
has a unique fixed point x∗ ∈ X. Moreover, for any x0 ∈ X the iterative sequence
{Tnx0} converges to x∗.

Proof. First we show that the mapping T has at most one fixed point. Suppose u
and v are two fixed points of T, i.e., Tu = u, Tv = v. Then by (1) we have

d(u, v) = d(Tu, Tv) � kM(u, v), (2)

where M(u, v) ∈ {d(u, v), d(u, Tu), d(v, Tv)} = {d(u, v)}. Therefore, by (2) we have
d(u, v) � kd(u, v) which together with part (b) of Lemma 2 yields d(u, v) = θ, i.e.,
u = v. Thus, the fixed point of T , if exists, is unique.

For proving the existence of fixed point, fix an element x0 ∈ X and consider the
sequence {xn} in X defined by xn = Tnx0 for all n ∈ N. For notational convenience,
let dn = d(xn, xn+1) for all n ≥ 0. It follows from inequality (1) that for n ≥ 1,

dn = d(xn, xn+1) = d(Txn−1, Txn)

� kM(xn−1, xn), (3)

where

M(xn−1, xn) ∈ {d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn)}
= {d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}
= {dn−1, dn}.
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If M(xn−1, xn) = dn then from (3) we have dn � kdn. Since ρ(k) < 1, it follows
from part (b) of Lemma 2 that xn = xn+1, i.e., Tnx0 is a fixed point of T . Thus,
we can assume that for each n ∈ N, M(xn−1, xn) = dn−1. Therefore, by (3) we have

dn � kdn−1 � · · · � knd0. (4)

Now we can assume that the terms of the sequence {xn} are distinct. For otherwise,
i.e., suppose xm = xn for some m > n, it follows that

d(xn, xn+1) = d(xm, xm+1) � km−nd(xn, xn+1).

From parts (b) and (c) of Lemma 2, it follows that d(xn, xn+1) = 0, i.e. Tnx0 is
a fixed point of T . Thus, in further discussion we assume that xn 6= xm for all
n,m ∈ N with n 6= m.

Consider d(xn, xn+2) for all n ∈ N. We have

d(xn, xn+2) = d(Txn−1, Txn+1) � kM(xn−1, xn+1), (5)

where

M(xn−1, xn+1) ∈ {d(xn−1, xn+1), d(xn−1, Txn−1), d(xn+1, Txn+1)}
= {d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)}
= {d(xn−1, xn+1), dn−1, dn+1}.

If M(xn−1, xn+1) = d(xn−1, xn+1) then M(xn−1, xn+1) � d(xn−1, xn)+d(xn, xn+2)+
d(xn+2, xn+1) and by (5) we have

d(xn, xn+2) � k[d(xn−1, xn) + d(xn, xn+2) + d(xn+2, xn+1)]

= k[dn−1 + d(xn, xn+2) + dn+1].

Using (4) we obtain d(xn, xn+2) � (e− k)−1kn[e+ k2]d0.
If M(xn−1, xn+1) = dn−1 then using (4) and (5) we obtain

d(xn, xn+2) � knd0 � (e− k)−1kn[e+ k2]d0.

If M(xn−1, xn+1) = dn+1 then using (4) and (5) we obtain

d(xn, xn+2) � kn+2d0 � (e− k)−1kn[e+ k2]d0.

Thus
d(xn, xn+2) � (e− k)−1kn[e+ k2]d0 for all n ∈ N. (6)

Now we shall show that the sequence {xn} is a Cauchy sequence. Then we
consider the value d(xn, xn+p) in two cases.
If p is odd, say 2m+ 1 then using (4) we have

d(xn, xn+2m+1) � d(xn+2m, xn+2m+1) + d(xn+2m−1, xn+2m) + d(xn, xn+2m−1)

= dn+2m + dn+2m−1 + d(xn, xn+2m−1)

� dn+2m + dn+2m−1 + dn+2m−2 + dn+2m−3 + · · ·+ dn

� kn+2md0 + kn+2m−1d0 + kn+2m−2d0 + · · ·+ knd0

�

( ∞∑
i=0

ki

)
knd0 = (e− k)−1knd0

� (e− k)−1(2k2 + e)knd0. (7)
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If p is even, say 2m, then using (4) and (6) we obtain

d(xn, xn+2m) � d(xn+2m−1, xn+2m) + d(xn+2m−1, xn+2m−2) + d(xn, xn+2m−2)

= dn+2m−1 + dn+2m−2 + d(xn, xn+2m−2)

� dn+2m−1 + dn+2m−2 + dn+2m−3 + · · ·+ dn+2 + d(xn, xn+2)

� kn+2m−1d0 + kn+2m−2d0 + kn+2m−3d0 + · · ·+ kn+2d0

+(e− k)−1kn[e+ k2]d0

�

( ∞∑
i=0

ki

)
kn+2d0 + (e− k)−1kn[e+ k2]d0

= (e− k)−1(2k2 + e)knd0. (8)

Since ρ(k) < 1 we have ‖kn‖ → 0, i.e., kn → θ, as n → ∞. Hence
(e− k)−1(2k2 + e)knd0 → θ, as n→∞. Now by parts (a) and (d) of Lemma 1 and
inequalities (6), (7) and (8), it follows that there exists n0 ∈ N which is independent
of p such that d(xn, xn+p)� c for all n > n0, and all p ∈ N. Thus {xn} is a Cauchy
sequence in X. By the weak completeness of X and Lemma 3, there exists a unique
x∗ ∈ X such that xn � x∗ as n→∞.

We shall now show that x∗ is a fixed point of T. Note that, if xn = x∗, xm = Tx∗

for some n,m ∈ N, then we can choose ` ∈ N such that xn 6= x∗, Tx∗ for all n ≥ `.
Observe that such an ` exists because the terms of the sequence {xn} are distinct.
For all n ≥ ` we have

d(x∗, Tx∗) � d(x∗, xn) + d(xn, xn+1) + d(xn+1, Tx
∗)

= d(x∗, xn) + dn + d(Txn, Tx
∗)

� d(x∗, xn) + knd0 + kM(xn, x
∗)

� d(x∗, xn) + knd0 + k{d(xn, x
∗) + d(xn, Txn) + d(x∗, Tx∗)}

� (e+ k)d(xn, x
∗) + (e+ k)knd0 + kd(x∗, Tx∗).

An application of part (a) of Lemma 2 yields, for all n ≥ `,

d(x∗, Tx∗) � (e− k)−1(e+ k)d(xn, x
∗) + (e− k)−1(e+ k)knd0.

� 2(e− k)−1{d(xn, x
∗) + knd0}. (9)

Fix c� θ. Since xn � x∗ and knd0 → θ as n→∞, it follows that for each m ∈ N,

there exists n1 ≥ ` such that d(xn1 , x
∗)+kn1d0 �

c

2m
. Letting n = n1 in inequality

(9) and an application of part (a) of Lemma 2 yields

d(x∗, Tx∗) � (e− k)−1c

m
.

for all m ∈ N. Since
(e− k)−1c

m
→ θ as m→∞, it follows from part (e) of Lemma

1 that d(x∗, Tx∗) = θ, i.e. x∗ is a fixed point of T.

Remark 2. Note that the hypothesis ρ(k) < 1 in Theorem 4 is better than the
assumption ‖k‖ < 1. Neither do we assume k ≺ e here.
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The following corollary is a generalization of the Banach fixed point theorem.

Corollary 5. Let (X, d) be a weakly complete cone rectangular Banach algebra valued
metric space and T : X → X be a mapping such that the following condition is
satisfied:

d(Tx, Ty) � kd(x, y) for all x, y ∈ X,

where k ∈ P with ρ(k) < 1. Then T has a unique fixed point x∗ ∈ X. Moreover, for
any x0 ∈ X the iterative sequence {Tnx0} converges to x∗.

Proof. Letting M(x, y) = d(x, y) for all x, y ∈ X in Theorem 4 yields the desired
result.

Remark 3. Setting A = R, P = [0,∞) with usual norm in Corollary 5 we obtain
the main result of [2], i.e., the theorem of Banach-Caccioppoli type on a class of
rectangular metric spaces.

Corollary 6. Let (X, d) be a weakly complete cone rectangular Banach algebra valued
metric space. Suppose T : X → X be such that for some n ∈ N,

d(Tnx, Tny) � kMn(x, y) for all x, y ∈ X, (10)

where Mn(x, y) ∈ {d(x, y), d(x, Tnx), d(y, Tny)} and k ∈ P with ρ(k) < 1. Then T
has a unique fixed point x∗ ∈ X.

Proof. From Theorem 4, Tn has a unique fixed point x∗ ∈ X. Note that TnTx∗ =
TTnx∗ = Tx∗. Thus Tx∗ is also a fixed point of Tn. By uniqueness of the fixed
point of Tn, it follows that Tx∗ = x∗. i.e. x∗ is a fixed point of T . Since any fixed
point of T is also a fixed point of Tn, it follows that x∗ is in fact the unique fixed
point of T .

In the following theorem the notion of weak completeness of X is replaced by
another condition.

Theorem 7. Let (X, d) be a cone rectangular Banach algebra valued metric space
and T : X → X be a mapping such that the following condition is satisfied:

d(Tx, Ty) � kM(x, y) for all x, y ∈ X, (11)

where M(x, y) ∈ {d(x, y), d(x, Tx), d(y, Ty)} and k ∈ P with ρ(k) < 1. If there
exists x∗ ∈ X such that d(x∗, Tx∗) � d(Tx∗, T 2x∗), then x∗ is the unique fixed point
x∗ ∈ X.

Proof. An argument as in Theorem 4 yields the uniqueness of the fixed point. For
the existence of a fixed point, let F (x) = d(x, Tx) for all x ∈ X. It follows that
F (x) ∈ P and by hypothesis

F (x∗) � F (Tx∗) (12)

If F (x∗) 6= θ, then by (11) we have

F (Tx∗) = d(Tx∗, TTx∗) � kM(x∗, Tx∗), (13)
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where

M(x∗, Tx∗) ∈ {d(x∗, Tx∗), d(x∗, Tx∗), d(Tx∗, TTx∗)} = {F (x∗), F (Tx∗)}.

If M(x∗, Tx∗) = F (Tx∗) then from (13) we have F (Tx∗) � kF (Tx∗), which
together with part (b) of Lemma 2 implies that F (Tx∗) = θ. It follows from (12)
that F (x∗) = θ, i.e. Tx∗ = x∗.

If M(x∗, Tx∗) = F (x∗) then from (13) we have F (Tx∗) � kF (x∗), which together
with (12) implies that F (x∗) � kF (x∗). An application of part (b) of Lemma 2,
yields F (x∗) = θ, i.e., Tx∗ = x∗. Thus, x∗ is the unique fixed point of T.

We conclude with the following example which is motivated by [10].

Example 3. Let the Banach algebra A with multiplication and the solid cone P ⊂ A
be as in Example 1. Let X = {(1, 1), (0, 2), (0, 3), (4, 4)}. For x = (x1, x2) and
y = (y1, y2) in X, we define a map d : X ×X → A by

d(x, y) =


0, if x = y;(
4, 11

2

)
, if x, y ∈ {(1, 1), (0, 2)}, x 6= y;(

1 + |x1 − y1|, 3
2 + |x2 − y2|

)
, otherwise.

Then (X, d) is a cone rectangular Banach algebra valued metric space. Let the map
T : X ×X → A be defined by

T (1, 1) = (0, 2); T (0, 2) = T (0, 3) = T (4, 4) = (0, 3).

Let k = (1/2, α), where α > 1. Clearly k ∈ P . It can be verified that

d(Tx, Ty) � (1/2, α) d(x, y) for all x, y ∈ X.

Moreover ρ((1/2, α)) < 1. ( see [10]). Thus the map T satisfies all the assumptions
of Theorem 4. Hence it has a unique fixed point, namely, (0, 3). Also note that
neither ‖k‖ < 1 nor k ≺ e.
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