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Abstract

Let F denote the class of all functions univalent in the unit disk ∆ ≡ {ζ ∈ C : |ζ| < 1}
and convex in the direction of the real axis. The paper deals with the subclass F (n) of these
functions f which satisfy the property f(εz) = εf(z) for all z ∈ ∆, where ε = e2πi/n. The
functions of this subclass are called n-fold symmetric. For F (n), where n is odd positive
integer, the following sets:

∩
f∈F(n) f(∆) - the Koebe set and

∪
f∈F(n) f(∆) - the covering set,

are discussed. As corollaries, we derive the Koebe and the covering constants for F (n).

1. Introduction

Let F denote the class of all functions f which are univalent in ∆ ≡ {ζ ∈ C : |ζ| < 1},
convex in the direction of the real axis and normalized by f(0) = f ′(0) − 1 = 0. Recall that
an analytic function f is said to be convex in the direction of the real axis if the intersection
of f(∆) with each horizontal line is either a connected set or empty.

For a given subclass A of F the following sets:
∩

f∈A f(∆) and
∪

f∈A f(∆) are called the
Koebe set for A and the covering set for A. We denote them by KA and LA respectively.
The radius of the largest disk with center at the origin contained in KA is called the Koebe
constant for A. Analogously, the radius of the smallest disk with center at the origin that
contains LA is called the covering constant for A.

In the class F we consider functions which satisfy the property of n-fold symmetry:

f(εz) = εf(z) for all z ∈ ∆ ,

where ε = e2πi/n. The subclass of F consisting of n-fold symmetric functions is denoted by
F (n). By the definition, for every f ∈ F (n) a set f(∆) is n-fold symmetric, which means that
f(∆) = εf(∆). In other words, f(∆) may be obtained as the union of rotations about a
multiple of 2π/n from a set f(∆) ∩ {w : argw ∈ [0, 2π/n]}. From this reason the following
notation is useful:

Λ0 =

{
w : argw ∈

[
0,

2π

n

]}
, Λj = εjΛ0 , j = 1, 2, . . . , n− 1

and

Λ∗ =
{
w : argw ∈

[π
2
− π

n
,
π

2

]}
.

The main aim of the paper is to find the Koebe set and the covering set for the class F (n)

when n is an odd positive integer. Similar problems in related classes were discussed, for
instance, in [1], [2], [5] and in the papers of the authors [3], [4].
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At the beginning let us consider the general properties of the Koebe sets and the covering
sets for F (n).

In [4] we proved that

Theorem 1. The sets KF(n) and LF(n), for n ∈ N, are symmetric with respect to both axes of
the coordinate system.

Theorem 2. The sets KF(n) and LF(n), for n ∈ N, are n-fold symmetric.

To prove both the theorems it is enough to consider functions

(1) g(z) = f(z)

and

(2) h(z) = −f(−z) .

Obviously,

(3) f ∈ F (n) ⇔ g, h ∈ F (n) .

Moreover, if D = f(∆) then g(∆) = D, h(∆) = −D.
Taking (3) into account it is clear that the coordinate axes are the lines of symmetry for

both the sets KF(n) and LF(n) for all n ∈ N. Furthermore,

Lemma 1. Each straight line εj/4 ·{ζ = t , t ∈ R}, j = 0, 1, . . . , 4n−1 is the line of symmetry
of KF(n) and LF(n) for every positive odd integer n .

Proof.
Let n be a positive odd integer and let D be one of the two sets: KF(n) or LF(n) .

Since D is symmetric with respect to the real axis and the positive real half-axis contains
one side of the sector Λ0, each rotation of the real axis about a multiple of 2π/n is the line of
symmetry of D. Because of the equality

{ζ = t , t ∈ R} · ε1/2 = {ζ = t , t ∈ R} · ε(n+1)/2 ,

our claim is true for all even j, j = 0, 1, . . . , 4n− 1.
Let n = 4k + 1, k ≥ 1. The bisector of Λ(n−1)/4 divides this sector into two subsectors:

{w : argw ∈ [π/2 − π/2n, π/2 + π/2n]} and {w : argw ∈ [π/2 + π/2n, π/2 + 3π/2n]}. Hence
the imaginary axis is the bisector of the former. For this reason each rotation of the imaginary
axis about a multiple of 2π/n is the line of symmetry of D. Moreover,

{ζ = it , t ∈ R} · ε1/2 = {ζ = it , t ∈ R} · ε(n+1)/2 .

Hence our claim is valid also for all odd j, j = 0, 1, . . . , 4n− 1.
If n = 4k + 3, k ≥ 0 then the bisector of Λ(n−3)/4 divides this sector into two subsectors:

{w : argw ∈ [π/2 − 3π/2n, π/2 − π/2n]} and {w : argw ∈ [π/2 − π/2n, π/2 + π/2n]}. The
imaginary axis is the bisector of the latter. Similar argument to the one for n = 4k + 1
completes the proof for this choice of n. �
Theorem 3. The sets KF(n) and LF(n), for positive odd integers n, are 2n-fold symmetric.

Proof.
Let D be one of the two sets: KF(n) or LF(n) . Let w0 = |w0|eiφ0 be an arbitrary point belonging
to the boundary of D such that argφ0 ∈ [0, π/2n].
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It is sufficient to apply Lemma 1. Firstly, the symmetric point to w0 with respect to the
straight line ε1/4 · {ζ = t , t ∈ R} is w1 = |w0|ei(π/n−φ0). Secondly, the symmetric point to
w0 with respect to the real axis is w2 = |w0|e−iφ0 . Both points w1, w2 also belong to the
boundary of D. Consequently,

w1 = ε1/2 · w2 ,

which results in

D = ε1/2 ·D . �
Remark 1. On the basis of this lemma, we can observe that in order to find sets K and L,
it is enough to determine their boundaries only in the sector of the measure π/2n.

2. Extremal polygons and functions

Let n be a fixed positive odd integer, n ≥ 5, and let K denote the Koebe set for F (n).
We denote by W , the family of n-fold symmetric polygons W convex in the direction of the

real axis and which have 2n sides and interior angles π + π/n and π − 3π/n alternately.
Suppose that w∗ ∈ ∂K ∩ Λ∗, where ∂K stands for the boundary of K. According to

Theorem 1, −w∗ ∈ ∂K. Consider the straight horizontal line containing a segment I =
{−λw∗ + (1 − λ)w∗ : λ ∈ (0, 1)}. There are two possibilities: the intersection of this line with
K is either I or the empty set. Assume now that I ⊂ K. We shall see that the second case
holds only if Rew∗ = 0.

Since K is n-fold symmetric, all points w∗ · εj, j = 0, 1, . . . , n− 1 belong to ∂K. On the one
hand, w∗ ∈ Λ∗ means that w∗ has the greatest imaginary part among points w∗ · εj. On the
other hand, w∗ ∈ ∂K means that there exists f∗ ∈ F (n) such that w∗ ∈ ∂f∗(∆).

From the convexity of f∗ in the direction of the real axis, at least one of the two horizontal
rays emanating from w∗ is disjoint from f∗(∆). Since {w∗ − t : t ≥ 0} ∩ K = I, it is a ray
l = {w∗ + t : t ≥ 0} is disjoint from f∗(∆). Taking into account the n-fold symmetry of f∗, all
rays l · εj, j = 0, 1, . . . , n− 1 are disjoint from f∗(∆).

Observe that the point w∗ · ε(n+1)/2 has the lowest imaginary part among points w∗ · εj,
j = 0, 1, . . . , n − 1. Only if argw∗ = π/2, this point is one of two points with the same
imaginary part. The convexity in the direction of the real axis of f∗ implies that one of two
horizontal rays emanating from w∗ · ε(n+1)/2 is also disjoint from f∗(∆). If this ray is of the
form k1 = {w∗ · ε(n+1)/2 + t : t ≥ 0}, then (k1 · εj) ∩ f∗(∆) = ∅ and, conseqeuntly, f∗(∆)
is included in a polygon of the family W . Indeed, the rays l and k1 · ε(n−1)/2 form a sector
with the vertex in w∗ and the opening angle π + π/n. From the n-fold symmetry of f∗ we
obtain the polygon mentioned above. The conjugate angle to this opening angle is the vertex
angle of the polygon at w∗. It is easy to check that the angle of the polygon between l · ε and
k1 · ε(n+1)/2 has the measure π − 3π/n.

But there is another possibility, i.e. k2 ∩ f∗(∆) = ∅, where k2 = {w∗ · ε(n+1)/2 − t : t ≥ 0}.
If argw∗ = π/2 the set C \ {k2 · εj, j = 0, 1, . . . , n− 1} consists of two parts: an unbounded

part and a bounded one which is a regular n-gon, see Figure 1. A regular polygon is convex
and it can be treated as the generalization of a set of the family W . Every second side of this
generalized polygon has the length 0.

If argw∗ ∈ [π/2−π/n, π/2) then the set C\{l ·εj, k2 ·εj, j = 0, 1, . . . , n−1} is not bounded
and it is not convex in the direction of the real axis. Since w∗ ·ε ∈ ∂f∗(∆), one of two horizontal
rays emanating from this point is also disjoint from f∗(∆). If m1 = {w∗ · ε + t : t ≥ 0} has no
common points with f∗(∆) then w∗ /∈ ∂f∗(∆), because Im(w∗ε) < Imw∗ and Re(w∗ε) < Rew∗,



4 LEOPOLD KOCZAN AND PAWE L ZAPRAWA

a contradiction. For this reason m2 ∩ f∗(∆) = ∅, where m2 = {w∗ · ε − t : t ≥ 0}. Hence
(m2 · εj) ∩ f∗(∆) = ∅.

In this way we obtain 3n rays emanating from n points: w∗ · εj, j = 0, 1, . . . , n − 1. Let
us take three rays starting from w∗. These rays are: l = {w∗ + t : t ≥ 0}, k2ε

−(n+1)/2 =
{w∗ − t · ε−(n+1)/2 : t ≥ 0} and m2ε

−1 = {w∗ − t · ε−1 : t ≥ 0}. The angles between them and
the positive real half-axis are equal to: 0, −π/n, π − 2π/n. It means that l lies in the sector
with the vertex in w∗ and with the sides k2ε

−(n+1)/2 and m2ε
−1. The opening angle of this

sector is equal to π − 3π/n.
Consequently, f∗(∆) is included in a polygon generated by k2ε

j and m2ε
j, j = 0, 1, . . . , n−1.

This polygon belongs to the family W . Two examples of members of W are shown in Figure
2.
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Figure 1. Extremal n-gon for n = 5.
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Figure 2. Extremal polygons for n = 5.
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From now on, we assume that all members of W are open sets.
Let

(4) fα(z) =

∫ z

0

(1 − ζne−inα)
1
n (1 + ζne−inα/3)−

3
ndζ , α ∈

[
−3π

n
,
3π

n

]
,

(5) gα(z) =

∫ z

0

(1 − ζne−inα)
1
n (1 − ζne−i(nα/3+5π/3))−

3
ndζ , α ∈

[
−2π

n
,
4π

n

]
.

We choose the principal branch of n-th root. Since the exponential function is periodic, in the
above definitions we restrict the range of variability of α to the intervals of length 6π/n. The
choice of these intervals depends on the properties of fα and gα. Some additional information
will be given in Remark 2.

The definition of the family W may be extended for n = 3. In this case the sets belonging
to W may be treated as generalized polygons. The measure of the angles is equal to 4π/3
and 0 alternately. These sets have the shape of an unbounded three-pointed star, see Figure
3. Moreover, for n = 3 the functions gα map ∆ onto these generalized polygons.

Lemma 2. All functions fα, α ∈
[
−3π

n
, 3π

n

]
, belong to F (n) for n = 4k + 1, k ≥ 1.

Lemma 3. All functions gα, α ∈
[
−2π

n
, 4π

n

]
, belong to F (n) for n = 4k + 3, k ≥ 0.

Proof of Lemma 2.
At the beginning we shall show that the functions fα, α ∈ [−3π/n, 3π/n] are univalent.
Observe that

(6) f ′
α(z) = p(z) · h(z)

z
,

where

p(z) =

(
1 − zne−ia

1 + zne−ib

)1/n

3

2

1

0

-1

-2

3

-3

210-1-2

3

2

1

0
3

-1

-2

2

-3

10-1-2

Figure 3. Extremal polygons for n = 3.
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and
h(z) =

z

(1 + zne−ib)2/n

with a = nα, b = nα/3.
A Möbius function p1(z) = (1−ze−ia)/(1+ze−ib) , a, b ∈ R satisfies the condition Re eiβp1(z) >

0 with some β ∈ R; hence, for all n ∈ N the inequality Re eiβp(z) = Re eiβp1(z
n)1/n > 0 holds

with the same β. A function h1(z) = z/(1 + ze−ib)2, b ∈ R is starlike, so is h(z) = n
√

h1(zn).
Combining these two facts with (6) we conclude that

Re eiβp(z) = Re eiβ
zf ′

α(z)

h(z)
> 0 ,

which means that fα is close-to-convex and consequently univalent.
Next, we claim that each polygon fα(∆) is a set which is convex in the direction of the real

axis. It is sufficient to discuss the argument of the tangent line to ∂fα(∆). Observe that

(7) arg

(
∂

∂φ

(
fα(eiφ)

))
= arg

(
f ′
α(eiφ)ieiφ

)
=

1

n
arg

(
1 + ei(π+nφ−nα)

)
− 3

n
arg

(
1 + ei(nφ−nα/3)

)
+

π

2
+ φ .

Let φ ∈ [α/3 − π/n, α). Then π + nφ− nα as well as nφ− nα/3 are in [−π, π) and from (7)
we get

(8) arg

(
∂

∂φ

(
fα(eiφ)

))
=

1

2n
(π + nφ− nα) − 3

2n

(
nφ− n

α

3

)
+

π

2
+ φ =

π

2
+

π

2n
.

The above means that the tangent for φ in (α/3 − π/n, α) has the constant argument
π/2+π/2n. Since fα(∆) is a polygon with angles measuring π+π/n and π−3π/n alternately,
the argument of the tangent line takes values π/2 + π/2n + 2jπ/n and π/2 − π/2n + 2jπ/n,
j = 1, 2, . . . , n alternately. What is more, putting j = k in π/2 +π/2n+ 2jπ/n, we obtain the
argument equal to π and putting j = 3k + 1 in π/2 − π/2n + 2jπ/n, we obtain the argument
equal to 2π. Hence two of the sides of fα(∆) are horizontal; consequently fα ∈ F (n). �
The proof of Lemma 3 is similar.

Remark 2. A polygon fα(∆) has vertices in points fα(eiα) · εj and fα(ei(α/3+π/n)) · εj, j =
0, 1, . . . , n−1. These vertices correspond to angles measuring π+π/n and π−3π/n respectively.
It is worth pointing out some particular cases of polygons belonging to W. For α = −3π/2n
and α = 3π/2n they become regular n-gons and for α = −3π/n, α = 0 and α = 3π/n these
sets are n-pointed stars symmetric with respect to the real axes. The functions f−3π/n, f0
and f3π/n have real coefficients. In all other cases coefficients are nonreal. These particular
functions are as follows:

f−3π/2n(z) =

∫ z

0

(1 + iζn)−
2
ndζ , f3π/2n(z) =

∫ z

0

(1 − iζn)−
2
ndζ ,

f0(z) =

∫ z

0

(1 − ζn)
1
n (1 + ζn)−

3
ndζ , f−3π/n(z) = f3π/n(z) =

∫ z

0

(1 + ζn)
1
n (1 − ζn)−

3
ndζ .

Likewise, for α = −π/2n and α = 5π/2n the sets gα(∆) are regular n-gons, and for α =
−2π/n, α = π/n and α = 4π/n these sets are n-pointed stars. These functions gα which map
∆ on n-pointed stars have real coefficients.
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Let n = 4k + 1, k ≥ 1 be fixed. Let us denote by Wα a set fα(∆) for a fixed α ∈
[−3π/n, 3π/n].

Observe that the following equalities hold:

f ′
−α(z) = f ′

α(z) for α ∈
[
−3π

n
,
3π

n

]
and

f ′
3π
2n

−γ
(−z) = f ′

3π
2n

+γ
(z) for γ ∈

[
0,

3π

2n

]
,

which means that

f−α(z) = fα(z) for α ∈
[
−3π

n
,
3π

n

]
and

−f 3π
2n

−γ(−z) = f 3π
2n

+γ(z) for γ ∈
[
0,

3π

2n

]
.

Consequently,

W−α = Wα and −W 3π
2n

−γ = W 3π
2n

+γ .

For this reason a polygon W as well as W and −W belong to the family W . From the geometric
construction of polygons in W it follows that the ratio of lengths of any two adjacent sides of
a polygon varies from 0 to infinity as α is changing in [−3π/n, 3π/n]; in each case a polygon
is convex in the direction of the real axis. Multiplying sets Wα, α ∈ [−3π/n, 3π/n] by λ > 0
we obtain all members of the set W .

We have proved one part of the following lemma (the second one can be proved analogously)

Lemma 4.

1. W = {λ · fα(∆), λ > 0, α ∈ [−3π/n, 3π/n]} for n = 4k + 1, k ≥ 1 ,
2. W = {λ · gα(∆), λ > 0, α ∈ [−2π/n, 4π/n]} for n = 4k + 3, k ≥ 0 .

3. Koebe sets for F (n)

Let us define

F (α) ≡ fα(eiα) , α ∈
[
−3π

n
,
3π

n

]
and

G(α) ≡ gα(eiα) , α ∈
[
−2π

n
,
4π

n

]
.

From (4) and (5)

F (α) = eiα
∫ 1

0

(1 − tn)
1
n (1 + tne2inα/3)−

3
ndt

and

G(α) = eiα
∫ 1

0

(1 − tn)
1
n (1 − tnei(2nα/3−5π/3))−

3
ndt .
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It can be easily checked that

argF (α) = α for α ∈
{
−3π

n
,−3π

2n
, 0,

3π

2n
,
3π

n

}
,(9)

argG(α) = α for α ∈
{
−2π

n
,− π

2n
,
π

n
,
5π

2n
,
4π

n

}
.(10)

Theorem 4. The Koebe set KF(n), for a fixed n = 4k + 1, k ∈ N, is a bounded and 2n-fold
symmetric domain such that

(11) ∂KF(n) ∩
{
w : argw ∈

[
− π

2n
,
π

2n

]}
= F ([−αF , αF ]) ,

where αF is the only solution of the equation

(12) argF (α) =
π

2n

in [0, 3π/2n].

Proof.
Let K denote the Koebe set for F (n).

Let us consider a polygon Vα = fα(∆) belonging to W , such that one of its vertices, let
say v∗, lies in Λ∗ (its argument is in [π/2 − π/n, π/2]) and the interior angle at v∗ has the
measure π(1 + 1/n). Suppose additionaly that w∗ is a point of the boundary of K such that
argw∗ = arg v∗ and |w∗| < |v∗|. We denote the quotient w∗/v∗ = |w∗|/|v∗| by λ. Hence λ < 1.

Since w∗ ∈ ∂K, there exists f∗ ∈ F (n) such that

(13) f∗(∆) ⊂ λVα ( Vα = fα(∆) .

Therefore, f∗ ≺ fα and 1 = f ′
∗(0) ≤ f ′

α(0) = 1. Consequently f∗ = fα, which contradicts (13).
It means that v∗ = w∗, or in other words, w∗ coincides with some vertex of fα(∆). Hence w∗
is equal to fα(eiα) rotated about a multiple of 2π/n, namely about 2π/n · (n− 1)/4. However,
it is true only for those α, for which w∗ = F (α) · ε(n−1)/4 is in Λ∗.

Observe that for α ∈ [−3π/n, 3π/n] we have

F (−α) = F (α) ,

that is,

argF (−α) = − argF (α) .

From this and (9),(12) it follows that{
F (α) · ε(n−1)/4 : α ∈ [−αF , αF ]

}
is the boundary of the Koebe set for F (n) in Λ∗. Combining this with Theorem 3 the equality
(11) follows.

Finally, we claim that αF is the only solution of (12) in [0, 3π/2n]. On the contrary, assume
that there exist two different numbers α1, α2 ∈ [0, 3π/2n] such that

argF (α1) = argF (α2) ,

or equivalently,

arg fα1(e
iα1) = arg fα2(e

iα2) .
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The sets Wα1 = fα1(∆), Wα2 = fα2(∆) are polygons of the family W . This and the definition
of W (or Lemma 4) result in

Wα1 ⊂ Wα2 or Wα2 ⊂ Wα1 .

The normalization of fα1 and fα2 leads to Wα1 = Wα2 . Hence α1 = α2, a contradiction. This
means that (12) has only one solution in the set [0, 3π/2n]. �

The above proof gives more. Namely, F is starlike for α ∈ [−3π/2n, 3π/2n]. Moreover,

argF

(
α +

3π

n

)
= argF (α) +

3π

n
.

It implies that F is starlike for α ∈ [−π, π].
Furthermore, it is not difficult to see that there do not exist two different points in the set

∂KF(n) ∩ Λ∗ with the same imaginary part. For contrary suppose that it is not the case, ie.
there exist v1 and v2 such that v1 ̸= v2, v1, v2 ∈ ∂KF(n) ∩ Λ∗ and Im v1 = Im v2.

With use of an argument similar to those in the proof of previous theorem we can see that
there exist two polygons V1, V2 ∈ W with vertices v1, v2 respectively. The angles at these
vertices have the same measure. Hence the sides of these polygons are pairwise parallel and
if Re v1 < Re v2 then V1 ⊂ V2. This means that there exist f1, f2 ∈ F (n) that f1(∆) = V1,
f2(∆) = V2 and f1 ≺ f2. But the normalization of f1 and f2 is the same, hence f1 = f2; a
contradiction.

Theorem 5. The Koebe set KF(n), for a fixed n = 4k + 3, k ≥ 0 is a bounded and 2n-fold
symmetric domain such that

(14) ∂KF(n) ∩
{
w : argw ∈

[
π

2n
,
3π

2n

]}
= G

([
αG,

2π

n
− αG

])
,

where αG is the only solution of the equation

(15) argG (α) =
π

2n

in [−π/2n, π/n].

Proof.
A consideration similar to the above shows that αG is the only solution of the equation (15)
in [−π/2n, π/n].

Suppose that w∗ ∈ ∂K ∩ Λ∗. The analogous argument to this in the proof of Theorem 4
yields that K is contained in some polygon W of the family W .

Let g∗ be a function from F (n) for which w∗ ∈ ∂g∗(∆). We have g∗(∆) ⊂ W = gα(∆) for
some α ∈ [−π/2n, 5π/n]. For this reason g∗ ≺ gα, but taking into account the normalization
of both functions we obtain g∗ = gα. Hence w∗ = gα(eiα) · ε(n−3)/4, but only if w∗ ∈ Λ∗.

For α ∈ [−π/2n, π/n],

G

(
2π

n
− α

)
= εG (α) ,

and so

argG

(
2π

n
− α

)
=

2π

n
− argG (α) .
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From this, (10) and (15), we conclude that{
G(α) · ε(n−3)/4 : α ∈

[
αG,

2π

n
− αG

]}
is the boundary of the Koebe set for F (n) in Λ∗. Theorem 3 concludes the proof of our theorem.
�

Now we can derive the Koebe constant for F (n).

Theorem 6. For a fixed positive odd integer n, n ≥ 3 and for every function f ∈ F (n) the
disk ∆rn, where rn = B(1/n, 1/2n + 1/2)/n n

√
4, is included in f(∆). The number rn cannot

be increased.

The symbol B stands for the Beta and ∆r, r > 0 means ∆r = {ζ ∈ C : |ζ| < r}.
Proof.
According to Theorems 4 and 5, the Koebe constant is equal to

min {|F (α)| : α ∈ [−αF , αF ]} for n = 4k + 1 ,

or

min

{
|G(α)| : α ∈

[
αG,

2π

n
− αG

]}
for n = 4k + 3 .

But

|F (α)|2 ≥
(∫ 1

0

(1 − tn)
1
n Re(1 + tne2inα/3)−

3
ndt

)2

and the integrand in this expression is nonnegative; thus

|F (α)| ≥
∫ 1

0

(1 − tn)
1
n Re qF (α, t)dt , qF (α, t) = (1 + tne2inα/3)−

3
n .

Likewise,

|G(α)| ≥
∫ 1

0

(1 − tn)
1
n Re qG(α, t)dt , qG(α, t) = (1 − tnei(2nα/3−5π/3))−

3
n .

It is easy to check that for n ≥ 3 the functions p(z) = (1 ± tnz)−3/n are convex in ∆ and
they have real coefficients. This means that

(16) Re(1 ± tnz)−
3
n ≥ (1 + tn)−

3
n .

Applying (16) for both qF and qG, we get

|F (α)| ≥ q0 and |G(α)| ≥ q0 ,

where

(17) q0 =

∫ 1

0

(1 − tn)
1
n (1 + tn)−

3
ndt .

This results in

min {|F (α)| : α ∈ [−αF , αF ]} = |F (0)|
and

min

{
|G(α)| : α ∈

[
αG,

2π

n
− αG

]}
=

∣∣∣G(π
n

)∣∣∣ .
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Figure 4. Koebe domain (solid line) and Koebe disk (dashed line) for F (3) and F (5).

Moreover, substituting tn = tan2(x/2) in (17) we get

q0 =
2

n n
√

4

∫ π/2

0

(sinx)
2
n
−1(cosx)

1
n dx =

1

n n
√

4
B

(
1

n
,

1

2n
+

1

2

)
. �

Corollary 1. For a fixed positive odd integer n, n ≥ 3 the Koebe constant for F (n) is equal
to rn = B(1/n, 1/2n + 1/2)/n n

√
4 .

The Koebe sets and the Koebe disks for n = 3 and n = 5 are shown in Figure 4.

Remark 3. The results established in Theorem 4 and in Corollary 1 are actually valid also
for n = 1. They were obtained by Z lotkiewicz and Reade in [6].

One can check that for n = 1 the function F takes the form

F (α) = eiα
∫ 1

0

1 − t

(1 + te2iα/3)3
dt =

e2iα/3

4 cos(α/3)
.

The equation (12) gives αF = 3π/4; thus the boundary of the Koebe set in the upper half-plane
can be written as follows

u =
cos(2α/3)

4 cos(α/3)
, v =

1

2
sin(α/3) , α ∈

[
−3π

4
,
3π

4

]
.

This fact we can rewrite in a different way

KF = {w ∈ C : 8|w| (|w| + |Rew|) < 1} .

The extremal functions fα given by (4) are of the form

fα(z) =
z + Bz2

(1 + ze−iα/3)2
, B = i sin(α/3)e−2iα/3

and
gα(z) = −fα(−z) ,

where α ∈ [−3π/4, 3π/4]. The image set fα(∆) for a fixed α ∈ (−3π/4, 3π/4) coincides with
the plane with a horizontal ray excluded. For α = −3π/4, 3π/4, the sets fα(∆) are half-planes.



12 LEOPOLD KOCZAN AND PAWE L ZAPRAWA

Moreover, r1 = B(1, 1)/4 = 1/4.

4. Covering domains for F (n)

Theorem 7. The covering set LF(n) for odd n ≥ 5 is a bounded and 2n-fold symmetric domain
such that

(18) ∂LF(n) ∩
{
w : argw ∈

[
0,

π

2n

]}
= H

([
0,

π

2n

])
.

In the proof of this theorem we need the following lemma.

Lemma 5. Let n ≥ 5 be a fixed odd integer. If f ∈ F (n) and w ∈ f(∆) ∩ Λ∗ then f(∆)
contains a polygon W ∈ W such that W has one of its vertices at w and the interior angle at
w has the measure π − 3π/n.

Proof.

Let f ∈ F (n) and w ∈ f(∆) ∩ Λ∗, i.e. argw ∈ [π/2 − π/n, π/2]. Because of the n-fold
symmetry of f every point w · εj, j = 0, 1, . . . , n− 1 belongs to f(∆).

It can be easily checked that

max
{

Im
(
w · εj

)
, j = 0, 1, . . . , n− 1

}
= Im (w)

and

min
{

Im
(
w · εj

)
, j = 0, 1, . . . , n− 1

}
= Im

(
w · ε2k+1

)
.

Let w1 = w · ε and w2 = w · ε2k. The point w1 has the second biggest imaginary part among
points w,w · ε, . . . , w · εn−1. Likewise, w2 has the second lowest imaginary part among those
points.

Let, moreover, l1 and l2 stand for two horizontal rays emanating from w1 and w2: l1 =
{w1 + t : t ≥ 0}, l2 = {w2 + t : t ≥ 0} respectively.

From the inequality Imw2 > Imw · ε2k+1 we conclude that the point w · ε2k+1 lies on the
opposite side of the straight line which contains l2 with respect to the origin. As a consequence,
w1 lies on the other side of the straight line including l2 ·ε−2k with respect to the origin. Hence,
two rays l1 and l2 · ε−2k have a common point, let say w0.

We shall show that w0 also belongs to f(∆). Suppose, contrary to our claim, that w0 /∈ f(∆).
The points w0, w1 lie on the ray l1 and w1 ∈ f(∆). Therefore, taking into account the convexity
in the direction of the real axis of f , a ray m1 = {w0 + t : t ≥ 0} is disjoint from f(∆).

Since w0, w belong to l2 ·ε−2k, the points w0 ·ε2k, w·ε2k belong to l2. Moreover, w0 ·ε2k /∈ f(∆)
and w2 ∈ f(∆). Consequently, m2 = {w0 ·ε2k + t : t ≥ 0} is disjoint from f(∆), and, generally,
m2ε

j ∩ f(∆) = ∅, j = 0, 1, . . . , n− 1.
We have proved that the rays m1 and m2ε

−2k with the common vertex w0 are disjoint from
f(∆). It means that the reflex sector with the vertex in w0 and these two rays as the sides
has no common points with f(∆). But w1 lies in this reflex sector; hence w1 /∈ f(∆), a
contradiction.

From the argument given above all points wεj, w0ε
j, j = 0, 1, . . . , n − 1 belong to f(∆).

Applying n-fold symmetry and the convexity of f in the direction of the real axis we can
see that a polygon W with succeeding vertices at points w,w0, wε, w0ε, . . . , wε

n−1, w0ε
n−1 is

contained in f(∆). It is easy to check that this polygon has the interior angles π − 3π/n and
π + π/n alternately. For this reason W is in W . �
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According to Lemmas 2 and 3, every function in F (n) mapping ∆ onto a polygon of the
family W has the form (4)-(5) with appropriately taken α. These functions may be written
in the form

(19) fβ(z) =

∫ z

0

(1 + ζne−3inβ)
1
n (1 − ζne−inβ)−

3
ndζ , β ∈

[
0,

2π

n

]
,

(20) gβ(z) =

∫ z

0

(1 + ζne−3inβ)
1
n (1 − ζne−inβ)−

3
ndζ , β ∈

[
π

n
,
3π

n

]
,

equivalent to (4)-(5).
In fact, the functions defined by (4) and (19) are connected by the relation β = α/3 + π/n

and the functions in (5) and (20) are connected by β = α/3 + 5π/3n.
Let us define

H(β) = fβ(eiβ) for β ∈
[
0,

2π

n

]
,

and

H(β) = gβ(eiβ) for β ∈
[
π

n
,
3π

n

]
.

Hence

H(β) ≡ eiβ
∫ 1

0

(1 + tne−2inβ)
1
n (1 − tn)−

3
ndt , β ∈ R .

Observe that

(21) argH(β) = β for β =
π

2n
· j , j = 0, 1, . . . , 4n− 1 .

Furthermore,

(22) H
(
β +

π

n

)
= ei

π
nH(β) .

Now we can prove Theorem 7.
Proof of Theorem 7.

Let L denote the covering set for F (n). We additionaly assume that n = 4k + 1, k ≥ 1. The
proof for the case n = 4k + 3, k ≥ 0 is almost similar.

Let us consider a polygon Wβ = fβ(∆) belonging to W , such that one of its vertices, let say
w∗, lies in Λ∗ and the interior angle at w∗ has the measure π(1 − 3/n). Suppose additionaly
that v∗ is a point of the boundary of L such that arg v∗ = argw∗ and |v∗| > |w∗|. We denote
the quotient v∗/w∗ = |v∗|/|w∗| by µ. Hence µ > 1.

Since v∗ ∈ ∂L, there exists f ∗ ∈ F (n) such that v∗ is a boundary point of f ∗(∆). From
Lemma 5

(23) f ∗(∆) ⊃ µWβ ) Wβ = fβ(∆) .

Therefore, fβ ≺ f ∗ and 1 = f ′
β(0) ≤ f ∗′(0) = 1. Consequently fβ = f ∗, which contradicts

(23). It means that w∗ = v∗, or in other words, v∗ coincides with some vertex of fβ(∆).
Hence v∗ is equal to fβ(eiβ) rotated about a multiple of 2π/n, namely about 2π/n · (n− 1)/4.
It is enough to take such β that v∗ = H(β) · ε(n−1)/4 is in Λ∗. From this we conclude that
β ∈ [0, π/2n]. �
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Theorem 8. For a fixed odd integer n ≥ 5 and for every function f ∈ F (n) the set f(∆) is
included in ∆Rn, where Rn = B(1/n, 1/2− 3/2n)/n n

√
4. The number Rn cannot be decreased.

Proof.
We have

|H(β)| ≤
∫ 1

0

∣∣∣(1 + tne−2inβ)
1
n (1 − tn)−

3
n

∣∣∣ dt ≤ ∫ 1

0

(1 + tn)
1
n

(1 − tn)
3
n

dt = |H(0)| .

It can be shown that H(0) = B(1/n, 1/2 − 3/2n)/n n
√

4. �
Corollary 2. For a fixed odd integer n ≥ 5 the covering constant for F (n) is equal to Rn =
B(1/n, 1/2 − 3/2n)/n n

√
4.

The results presented above are valid for positive odd integers greater than or equal to 5.
In the last part of this section we turn to the case n = 3.

As it was said in Section 2 (see also Figure 3) for n = 3 and β ∈ [π/3, π] \ {π/2, 5π/6}
the functions given by (20) map ∆ onto the polygons with the interior angles 4π/3 and 0
alternately, and the vertices in points a · εj, ∞ · a · εj, j = 0, 1, 2 alternately, where a =
gβ(eiβ) = H(β). Both sides adjacent to every vertex in infinity are parallel. Hence gβ(∆) are
star-shaped sets with three unbounded strips. The strips have the direction π/3, π, 5π/3 if
β ∈ [π/3, π/2) ∪ (5π/6, π] and 0, 2π/3, 4π/3 if β ∈ (π/2, 5π/6). The thickness of the strips
is changing as β varies in β ∈ [π/3, π] \ {π/2, 5π/6}, but when β tends to π/2 or 5π/6 the
thickness of the strips tends to 0.

For β = π/2 and β = 5π/6 the functions

gπ
2
(z) =

∫ z

0

1

(1 − iζ3)2/3
dζ

and

g 5π
6

(z) =

∫ z

0

1

(1 + iζ3)2/3
dζ

map ∆ onto the equilateral triangles symmetric with respect to the imaginary axis. The first
triangle has one of its vertices in the point ic, the second one - in the point −ic, where

c =
B(1

3
, 1
6
)

3 3
√

4
= 1.76 . . . .

Let

Ω0 =

{
w : Rew ≥ 0, | Imw| < 1

2
c

}
.

Theorem 9. The covering domain LF(3) is an unbounded and 6-fold symmetric domain

LF(3) =
5∪

j=0

ej
π
3
i · Ω0 .

Proof.
Let L denote the covering set for F (n) and let L∗ stand for

∪5
j=0 e

jπi/3 · Ω0.

At the beginning we can see that L includes six-pointed star obtained as a union of gπ/2(∆)
and g5π/6(∆). We know that for β ∈ (π/2, 5π/6) each set gβ(∆) contains a part of a horizontal
strip between two rays emanating from a/ε and a, where a = H(β). From (21) it follows that
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Figure 5. Covering domains for F (3) and F (5).

the arguments of these points vary continuously from −π/6 to π/6 for the point a/ε and from
π/2 to 5π/6 for the point a. This and the symmetry of L with respect to the imaginary axis
result in L∗ ⊂ L.

Now we shall prove that L ⊂ L∗. On the contrary, assume that w0 /∈ L∗ but w0 ∈ L. It
means that there exists a function f0 ∈ F (3) such that w0 ∈ f0(∆). Without loss of generality
we can assume that argw0 ∈ (0, π/6) because of Lemma 1 and Remark 1.

From the 3-fold symmetry of f0 we know that w0ε, w0ε
2 ∈ f0(∆). Moreover,

Imw0 = |w0| sinφ0 < |w0| sin
(
φ0 +

2π

3

)
= Im(w0ε) ,

because φ0 = argw0 ∈ (0, π/6).
Observe that the point w1 = {w0 − t : t ≥ 0} ∩ (ε · {w0 − t : t ≥ 0}) also belongs

to f0(∆). If it were not the case, the points w1ε, w1ε
2 would not be in f0(∆) either. But

w1, w1ε
2 ∈ {w0 − t : t ≥ 0}. Combining w1, w1ε

2 /∈ f0(∆) with w0 ∈ f0(∆) yields that the
segment connecting w1 and w1ε

2 has no common points with f0(∆). From this and the 3-fold
symmetry, all three segments connecting w1, w1ε, w1ε

2 and, as a consequence, the equilateral
triangle T with vertices in these points, would be disjoint with f0(∆), a contradiction. This
means that w1, w1ε, w1ε

2 ∈ f0(∆), which results in

(24) T ⊂ f0(∆) .

But

(25) g 5π
6

(∆) ⊂ T and g 5π
6

(∆) ̸= T .

From (24) and (25), g5π/6 is subordinated to f , but g5π/6 and f have the same normalization,
a contradiction. It means that if w0 ∈ L then w0 ∈ L∗, which completes the proof. �

The covering domains for F (3) and F (5) are shown in Figure 5.
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