COVERING PROBLEMS FOR FUNCTIONS n-FOLD SYMMETRIC AND CONVEX IN THE DIRECTION OF THE REAL AXIS II.

LEOPOLD KOCZAN AND PAWEŁ ZAPRAWA

Abstract

Let \mathcal{F} denote the class of all functions univalent in the unit disk $\Delta \equiv\{\zeta \in \mathbb{C}:|\zeta|<1\}$ and convex in the direction of the real axis. The paper deals with the subclass $\mathcal{F}^{(n)}$ of these functions f which satisfy the property $f(\varepsilon z)=\varepsilon f(z)$ for all $z \in \Delta$, where $\varepsilon=e^{2 \pi i / n}$. The functions of this subclass are called n-fold symmetric. For $\mathcal{F}^{(n)}$, where n is odd positive integer, the following sets: $\bigcap_{f \in \mathcal{F}(n)} f(\Delta)$ - the Koebe set and $\bigcup_{f \in \mathcal{F}(n)} f(\Delta)$ - the covering set, are discussed. As corollaries, we derive the Koebe and the covering constants for $\mathcal{F}^{(n)}$.

1. Introduction

Let \mathcal{F} denote the class of all functions f which are univalent in $\Delta \equiv\{\zeta \in \mathbb{C}:|\zeta|<1\}$, convex in the direction of the real axis and normalized by $f(0)=f^{\prime}(0)-1=0$. Recall that an analytic function f is said to be convex in the direction of the real axis if the intersection of $f(\Delta)$ with each horizontal line is either a connected set or empty.

For a given subclass A of \mathcal{F} the following sets: $\bigcap_{f \in A} f(\Delta)$ and $\bigcup_{f \in A} f(\Delta)$ are called the Koebe set for A and the covering set for A. We denote them by K_{A} and L_{A} respectively. The radius of the largest disk with center at the origin contained in K_{A} is called the Koebe constant for A. Analogously, the radius of the smallest disk with center at the origin that contains L_{A} is called the covering constant for A.

In the class \mathcal{F} we consider functions which satisfy the property of n-fold symmetry:

$$
f(\varepsilon z)=\varepsilon f(z) \quad \text { for all } \quad z \in \Delta,
$$

where $\varepsilon=e^{2 \pi i / n}$. The subclass of \mathcal{F} consisting of n-fold symmetric functions is denoted by $\mathcal{F}^{(n)}$. By the definition, for every $f \in \mathcal{F}^{(n)}$ a set $f(\Delta)$ is n-fold symmetric, which means that $f(\Delta)=\varepsilon f(\Delta)$. In other words, $f(\Delta)$ may be obtained as the union of rotations about a multiple of $2 \pi / n$ from a set $f(\Delta) \cap\{w: \arg w \in[0,2 \pi / n]\}$. From this reason the following notation is useful:

$$
\Lambda_{0}=\left\{w: \arg w \in\left[0, \frac{2 \pi}{n}\right]\right\} \quad, \quad \Lambda_{j}=\varepsilon^{j} \Lambda_{0}, j=1,2, \ldots, n-1
$$

and

$$
\Lambda^{*}=\left\{w: \arg w \in\left[\frac{\pi}{2}-\frac{\pi}{n}, \frac{\pi}{2}\right]\right\}
$$

The main aim of the paper is to find the Koebe set and the covering set for the class $\mathcal{F}^{(n)}$ when n is an odd positive integer. Similar problems in related classes were discussed, for instance, in [1], [2], [5] and in the papers of the authors [3], [4].

At the beginning let us consider the general properties of the Koebe sets and the covering sets for $\mathcal{F}^{(n)}$.

In [4] we proved that
Theorem 1. The sets $K_{\mathcal{F}^{(n)}}$ and $L_{\mathcal{F}^{(n)}}$, for $n \in \mathbb{N}$, are symmetric with respect to both axes of the coordinate system.

Theorem 2. The sets $K_{\mathcal{F}^{(n)}}$ and $L_{\mathcal{F}^{(n)}}$, for $n \in \mathbb{N}$, are n-fold symmetric.
To prove both the theorems it is enough to consider functions

$$
\begin{equation*}
g(z)=\overline{f(\bar{z})} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z)=-f(-z) \tag{2}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
f \in \mathcal{F}^{(n)} \Leftrightarrow g, h \in \mathcal{F}^{(n)} . \tag{3}
\end{equation*}
$$

Moreover, if $D=f(\Delta)$ then $g(\Delta)=\bar{D}, h(\Delta)=-D$.
Taking (3) into account it is clear that the coordinate axes are the lines of symmetry for both the sets $K_{\mathcal{F}(n)}$ and $L_{\mathcal{F}^{(n)}}$ for all $n \in \mathbb{N}$. Furthermore,
Lemma 1. Each straight line $\varepsilon^{j / 4} \cdot\{\zeta=t, t \in R\}, j=0,1, \ldots, 4 n-1$ is the line of symmetry of $K_{\mathcal{F}(n)}$ and $L_{\mathcal{F}(n)}$ for every positive odd integer n.

Proof.

Let n be a positive odd integer and let D be one of the two sets: $K_{\mathcal{F}^{(n)}}$ or $L_{\mathcal{F}^{(n)}}$.
Since D is symmetric with respect to the real axis and the positive real half-axis contains one side of the sector Λ_{0}, each rotation of the real axis about a multiple of $2 \pi / n$ is the line of symmetry of D. Because of the equality

$$
\{\zeta=t, t \in R\} \cdot \varepsilon^{1 / 2}=\{\zeta=t, t \in R\} \cdot \varepsilon^{(n+1) / 2}
$$

our claim is true for all even $j, j=0,1, \ldots, 4 n-1$.
Let $n=4 k+1, k \geq 1$. The bisector of $\Lambda_{(n-1) / 4}$ divides this sector into two subsectors: $\{w: \arg w \in[\pi / 2-\pi / 2 n, \pi / 2+\pi / 2 n]\}$ and $\{w: \arg w \in[\pi / 2+\pi / 2 n, \pi / 2+3 \pi / 2 n]\}$. Hence the imaginary axis is the bisector of the former. For this reason each rotation of the imaginary axis about a multiple of $2 \pi / n$ is the line of symmetry of D. Moreover,

$$
\{\zeta=i t, t \in R\} \cdot \varepsilon^{1 / 2}=\{\zeta=i t, t \in R\} \cdot \varepsilon^{(n+1) / 2}
$$

Hence our claim is valid also for all odd $j, j=0,1, \ldots, 4 n-1$.
If $n=4 k+3, k \geq 0$ then the bisector of $\Lambda_{(n-3) / 4}$ divides this sector into two subsectors: $\{w: \arg w \in[\pi / 2-3 \pi / 2 n, \pi / 2-\pi / 2 n]\}$ and $\{w: \arg w \in[\pi / 2-\pi / 2 n, \pi / 2+\pi / 2 n]\}$. The imaginary axis is the bisector of the latter. Similar argument to the one for $n=4 k+1$ completes the proof for this choice of n.

Theorem 3. The sets $K_{\mathcal{F}^{(n)}}$ and $L_{\mathcal{F}^{(n)}}$, for positive odd integers n, are $2 n$-fold symmetric.
Proof.
Let D be one of the two sets: $K_{\mathcal{F}^{(n)}}$ or $L_{\mathcal{F}^{(n)}}$. Let $w_{0}=\left|w_{0}\right| e^{i \varphi_{0}}$ be an arbitrary point belonging to the boundary of D such that $\arg \varphi_{0} \in[0, \pi / 2 n]$.

It is sufficient to apply Lemma 1. Firstly, the symmetric point to w_{0} with respect to the straight line $\varepsilon^{1 / 4} \cdot\{\zeta=t, t \in R\}$ is $w_{1}=\left|w_{0}\right| e^{i\left(\pi / n-\varphi_{0}\right)}$. Secondly, the symmetric point to w_{0} with respect to the real axis is $w_{2}=\left|w_{0}\right| e^{-i \varphi_{0}}$. Both points w_{1}, w_{2} also belong to the boundary of D. Consequently,

$$
w_{1}=\varepsilon^{1 / 2} \cdot w_{2}
$$

which results in

$$
D=\varepsilon^{1 / 2} \cdot D .
$$

Remark 1. On the basis of this lemma, we can observe that in order to find sets K and L, it is enough to determine their boundaries only in the sector of the measure $\pi / 2 n$.

2. Extremal polygons and functions

Let n be a fixed positive odd integer, $n \geq 5$, and let K denote the Koebe set for $\mathcal{F}^{(n)}$.
We denote by \mathcal{W}, the family of n-fold symmetric polygons W convex in the direction of the real axis and which have $2 n$ sides and interior angles $\pi+\pi / n$ and $\pi-3 \pi / n$ alternately.

Suppose that $w_{*} \in \partial K \cap \Lambda^{*}$, where ∂K stands for the boundary of K. According to Theorem 1, $-\overline{w_{*}} \in \partial K$. Consider the straight horizontal line containing a segment $I=$ $\left\{-\lambda \overline{w_{*}}+(1-\lambda) w_{*}: \lambda \in(0,1)\right\}$. There are two possibilities: the intersection of this line with K is either I or the empty set. Assume now that $I \subset K$. We shall see that the second case holds only if $\operatorname{Re} w_{*}=0$.

Since K is n-fold symmetric, all points $w_{*} \cdot \varepsilon^{j}, j=0,1, \ldots, n-1$ belong to ∂K. On the one hand, $w_{*} \in \Lambda^{*}$ means that w_{*} has the greatest imaginary part among points $w_{*} \cdot \varepsilon^{j}$. On the other hand, $w_{*} \in \partial K$ means that there exists $f_{*} \in \mathcal{F}^{(n)}$ such that $w_{*} \in \partial f_{*}(\Delta)$.

From the convexity of f_{*} in the direction of the real axis, at least one of the two horizontal rays emanating from w_{*} is disjoint from $f_{*}(\Delta)$. Since $\left\{w_{*}-t: t \geq 0\right\} \cap K=I$, it is a ray $l=\left\{w_{*}+t: t \geq 0\right\}$ is disjoint from $f_{*}(\Delta)$. Taking into account the n-fold symmetry of f_{*}, all rays $l \cdot \varepsilon^{j}, j=0,1, \ldots, n-1$ are disjoint from $f_{*}(\Delta)$.

Observe that the point $w_{*} \cdot \varepsilon^{(n+1) / 2}$ has the lowest imaginary part among points $w_{*} \cdot \varepsilon^{j}$, $j=0,1, \ldots, n-1$. Only if $\arg w_{*}=\pi / 2$, this point is one of two points with the same imaginary part. The convexity in the direction of the real axis of f_{*} implies that one of two horizontal rays emanating from $w_{*} \cdot \varepsilon^{(n+1) / 2}$ is also disjoint from $f_{*}(\Delta)$. If this ray is of the form $k_{1}=\left\{w_{*} \cdot \varepsilon^{(n+1) / 2}+t: t \geq 0\right\}$, then $\left(k_{1} \cdot \varepsilon^{j}\right) \cap f_{*}(\Delta)=\emptyset$ and, conseqeuntly, $f_{*}(\Delta)$ is included in a polygon of the family \mathcal{W}. Indeed, the rays l and $k_{1} \cdot \varepsilon^{(n-1) / 2}$ form a sector with the vertex in w_{*} and the opening angle $\pi+\pi / n$. From the n-fold symmetry of f_{*} we obtain the polygon mentioned above. The conjugate angle to this opening angle is the vertex angle of the polygon at w_{*}. It is easy to check that the angle of the polygon between $l \cdot \varepsilon$ and $k_{1} \cdot \varepsilon^{(n+1) / 2}$ has the measure $\pi-3 \pi / n$.

But there is another possibility, i.e. $k_{2} \cap f_{*}(\Delta)=\emptyset$, where $k_{2}=\left\{w_{*} \cdot \varepsilon^{(n+1) / 2}-t: t \geq 0\right\}$.
If $\arg w_{*}=\pi / 2$ the set $\mathbb{C} \backslash\left\{k_{2} \cdot \varepsilon^{j}, j=0,1, \ldots, n-1\right\}$ consists of two parts: an unbounded part and a bounded one which is a regular n-gon, see Figure 1. A regular polygon is convex and it can be treated as the generalization of a set of the family \mathcal{W}. Every second side of this generalized polygon has the length 0 .

If $\arg w_{*} \in[\pi / 2-\pi / n, \pi / 2)$ then the set $\mathbb{C} \backslash\left\{l \cdot \varepsilon^{j}, k_{2} \cdot \varepsilon^{j}, j=0,1, \ldots, n-1\right\}$ is not bounded and it is not convex in the direction of the real axis. Since $w_{*} \cdot \varepsilon \in \partial f_{*}(\Delta)$, one of two horizontal rays emanating from this point is also disjoint from $f_{*}(\Delta)$. If $m_{1}=\left\{w_{*} \cdot \varepsilon+t: t \geq 0\right\}$ has no common points with $f_{*}(\Delta)$ then $w_{*} \notin \partial f_{*}(\Delta)$, because $\operatorname{Im}\left(w_{*} \varepsilon\right)<\operatorname{Im} w_{*}$ and $\operatorname{Re}\left(w_{*} \varepsilon\right)<\operatorname{Re} w_{*}$,
a contradiction. For this reason $m_{2} \cap f_{*}(\Delta)=\emptyset$, where $m_{2}=\left\{w_{*} \cdot \varepsilon-t: t \geq 0\right\}$. Hence $\left(m_{2} \cdot \varepsilon^{j}\right) \cap f_{*}(\Delta)=\emptyset$.

In this way we obtain $3 n$ rays emanating from n points: $w_{*} \cdot \varepsilon^{j}, j=0,1, \ldots, n-1$. Let us take three rays starting from w_{*}. These rays are: $l=\left\{w_{*}+t: t \geq 0\right\}, k_{2} \varepsilon^{-(n+1) / 2}=$ $\left\{w_{*}-t \cdot \varepsilon^{-(n+1) / 2}: t \geq 0\right\}$ and $m_{2} \varepsilon^{-1}=\left\{w_{*}-t \cdot \varepsilon^{-1}: t \geq 0\right\}$. The angles between them and the positive real half-axis are equal to: $0,-\pi / n, \pi-2 \pi / n$. It means that l lies in the sector with the vertex in w_{*} and with the sides $k_{2} \varepsilon^{-(n+1) / 2}$ and $m_{2} \varepsilon^{-1}$. The opening angle of this sector is equal to $\pi-3 \pi / n$.

Consequently, $f_{*}(\Delta)$ is included in a polygon generated by $k_{2} \varepsilon^{j}$ and $m_{2} \varepsilon^{j}, j=0,1, \ldots, n-1$. This polygon belongs to the family \mathcal{W}. Two examples of members of \mathcal{W} are shown in Figure 2.

Figure 1. Extremal n-gon for $n=5$.

Figure 2. Extremal polygons for $n=5$.

From now on, we assume that all members of \mathcal{W} are open sets.
Let

$$
\begin{gather*}
f_{\alpha}(z)=\int_{0}^{z}\left(1-\zeta^{n} e^{-i n \alpha}\right)^{\frac{1}{n}}\left(1+\zeta^{n} e^{-i n \alpha / 3}\right)^{-\frac{3}{n}} d \zeta \quad, \quad \alpha \in\left[-\frac{3 \pi}{n}, \frac{3 \pi}{n}\right], \tag{4}\\
g_{\alpha}(z)=\int_{0}^{z}\left(1-\zeta^{n} e^{-i n \alpha}\right)^{\frac{1}{n}}\left(1-\zeta^{n} e^{-i(n \alpha / 3+5 \pi / 3)}\right)^{-\frac{3}{n}} d \zeta \quad, \quad \alpha \in\left[-\frac{2 \pi}{n}, \frac{4 \pi}{n}\right] . \tag{5}
\end{gather*}
$$

We choose the principal branch of n-th root. Since the exponential function is periodic, in the above definitions we restrict the range of variability of α to the intervals of length $6 \pi / n$. The choice of these intervals depends on the properties of f_{α} and g_{α}. Some additional information will be given in Remark 2.

The definition of the family \mathcal{W} may be extended for $n=3$. In this case the sets belonging to \mathcal{W} may be treated as generalized polygons. The measure of the angles is equal to $4 \pi / 3$ and 0 alternately. These sets have the shape of an unbounded three-pointed star, see Figure 3. Moreover, for $n=3$ the functions g_{α} map Δ onto these generalized polygons.

Lemma 2. All functions $f_{\alpha}, \alpha \in\left[-\frac{3 \pi}{n}, \frac{3 \pi}{n}\right]$, belong to $\mathcal{F}^{(n)}$ for $n=4 k+1, k \geq 1$.
Lemma 3. All functions $g_{\alpha}, \alpha \in\left[-\frac{2 \pi}{n}, \frac{4 \pi}{n}\right]$, belong to $\mathcal{F}^{(n)}$ for $n=4 k+3, k \geq 0$.
Proof of Lemma 2.
At the beginning we shall show that the functions $f_{\alpha}, \alpha \in[-3 \pi / n, 3 \pi / n]$ are univalent. Observe that

$$
\begin{equation*}
f_{\alpha}^{\prime}(z)=p(z) \cdot \frac{h(z)}{z} \tag{6}
\end{equation*}
$$

where

$$
p(z)=\left(\frac{1-z^{n} e^{-i a}}{1+z^{n} e^{-i b}}\right)^{1 / n}
$$

Figure 3. Extremal polygons for $n=3$.
and

$$
h(z)=\frac{z}{\left(1+z^{n} e^{-i b}\right)^{2 / n}}
$$

with $a=n \alpha, b=n \alpha / 3$.
A Möbius function $p_{1}(z)=\left(1-z e^{-i a}\right) /\left(1+z e^{-i b}\right), a, b \in \mathbb{R}$ satisfies the condition $\operatorname{Re} e^{i \beta} p_{1}(z)>$ 0 with some $\beta \in \mathbb{R}$; hence, for all $n \in \mathbb{N}$ the inequality $\operatorname{Re} e^{i \beta} p(z)=\operatorname{Re} e^{i \beta} p_{1}\left(z^{n}\right)^{1 / n}>0$ holds with the same β. A function $h_{1}(z)=z /\left(1+z e^{-i b}\right)^{2}, b \in \mathbb{R}$ is starlike, so is $h(z)=\sqrt[n]{h_{1}\left(z^{n}\right)}$. Combining these two facts with (6) we conclude that

$$
\operatorname{Re} e^{i \beta} p(z)=\operatorname{Re} e^{i \beta} \frac{z f_{\alpha}^{\prime}(z)}{h(z)}>0
$$

which means that f_{α} is close-to-convex and consequently univalent.
Next, we claim that each polygon $f_{\alpha}(\Delta)$ is a set which is convex in the direction of the real axis. It is sufficient to discuss the argument of the tangent line to $\partial f_{\alpha}(\Delta)$. Observe that

$$
\begin{align*}
& \arg \left(\frac{\partial}{\partial \varphi}\left(f_{\alpha}\left(e^{i \varphi}\right)\right)\right)=\arg \left(f_{\alpha}^{\prime}\left(e^{i \varphi}\right) i e^{i \varphi}\right)= \tag{7}\\
& \quad \frac{1}{n} \arg \left(1+e^{i(\pi+n \varphi-n \alpha)}\right)-\frac{3}{n} \arg \left(1+e^{i(n \varphi-n \alpha / 3)}\right)+\frac{\pi}{2}+\varphi .
\end{align*}
$$

Let $\varphi \in[\alpha / 3-\pi / n, \alpha)$. Then $\pi+n \varphi-n \alpha$ as well as $n \varphi-n \alpha / 3$ are in $[-\pi, \pi)$ and from (7) we get

$$
\begin{equation*}
\arg \left(\frac{\partial}{\partial \varphi}\left(f_{\alpha}\left(e^{i \varphi}\right)\right)\right)=\frac{1}{2 n}(\pi+n \varphi-n \alpha)-\frac{3}{2 n}\left(n \varphi-n \frac{\alpha}{3}\right)+\frac{\pi}{2}+\varphi=\frac{\pi}{2}+\frac{\pi}{2 n} . \tag{8}
\end{equation*}
$$

The above means that the tangent for φ in $(\alpha / 3-\pi / n, \alpha)$ has the constant argument $\pi / 2+\pi / 2 n$. Since $f_{\alpha}(\Delta)$ is a polygon with angles measuring $\pi+\pi / n$ and $\pi-3 \pi / n$ alternately, the argument of the tangent line takes values $\pi / 2+\pi / 2 n+2 j \pi / n$ and $\pi / 2-\pi / 2 n+2 j \pi / n$, $j=1,2, \ldots, n$ alternately. What is more, putting $j=k$ in $\pi / 2+\pi / 2 n+2 j \pi / n$, we obtain the argument equal to π and putting $j=3 k+1$ in $\pi / 2-\pi / 2 n+2 j \pi / n$, we obtain the argument equal to 2π. Hence two of the sides of $f_{\alpha}(\Delta)$ are horizontal; consequently $f_{\alpha} \in \mathcal{F}^{(n)}$.
The proof of Lemma 3 is similar.
Remark 2. A polygon $f_{\alpha}(\Delta)$ has vertices in points $f_{\alpha}\left(e^{i \alpha}\right) \cdot \varepsilon^{j}$ and $f_{\alpha}\left(e^{i(\alpha / 3+\pi / n)}\right) \cdot \varepsilon^{j}$, $j=$ $0,1, \ldots, n-1$. These vertices correspond to angles measuring $\pi+\pi / n$ and $\pi-3 \pi / n$ respectively. It is worth pointing out some particular cases of polygons belonging to \mathcal{W}. For $\alpha=-3 \pi / 2 n$ and $\alpha=3 \pi / 2 n$ they become regular n-gons and for $\alpha=-3 \pi / n, \alpha=0$ and $\alpha=3 \pi / n$ these sets are n-pointed stars symmetric with respect to the real axes. The functions $f_{-3 \pi / n}, f_{0}$ and $f_{3 \pi / n}$ have real coefficients. In all other cases coefficients are nonreal. These particular functions are as follows:

$$
\begin{gathered}
f_{-3 \pi / 2 n}(z)=\int_{0}^{z}\left(1+i \zeta^{n}\right)^{-\frac{2}{n}} d \zeta \quad, \quad f_{3 \pi / 2 n}(z)=\int_{0}^{z}\left(1-i \zeta^{n}\right)^{-\frac{2}{n}} d \zeta \\
f_{0}(z)=\int_{0}^{z}\left(1-\zeta^{n}\right)^{\frac{1}{n}}\left(1+\zeta^{n}\right)^{-\frac{3}{n}} d \zeta \quad, \quad f_{-3 \pi / n}(z)=f_{3 \pi / n}(z)=\int_{0}^{z}\left(1+\zeta^{n}\right)^{\frac{1}{n}}\left(1-\zeta^{n}\right)^{-\frac{3}{n}} d \zeta
\end{gathered}
$$

Likewise, for $\alpha=-\pi / 2 n$ and $\alpha=5 \pi / 2 n$ the sets $g_{\alpha}(\Delta)$ are regular n-gons, and for $\alpha=$ $-2 \pi / n, \alpha=\pi / n$ and $\alpha=4 \pi / n$ these sets are n-pointed stars. These functions g_{α} which map Δ on n-pointed stars have real coefficients.

Let $n=4 k+1, k \geq 1$ be fixed. Let us denote by W_{α} a set $f_{\alpha}(\Delta)$ for a fixed $\alpha \in$ $[-3 \pi / n, 3 \pi / n]$.
Observe that the following equalities hold:

$$
f_{-\alpha}^{\prime}(z)=\overline{f_{\alpha}^{\prime}(\bar{z})} \quad \text { for } \quad \alpha \in\left[-\frac{3 \pi}{n}, \frac{3 \pi}{n}\right]
$$

and

$$
f_{\frac{3 \pi}{2 n}-\gamma}^{\prime}(-z)=\overline{f_{\frac{3 \pi}{2 n}+\gamma}^{\prime}(\bar{z})} \quad \text { for } \quad \gamma \in\left[0, \frac{3 \pi}{2 n}\right]
$$

which means that

$$
f_{-\alpha}(z)=\overline{f_{\alpha}(\bar{z})} \quad \text { for } \quad \alpha \in\left[-\frac{3 \pi}{n}, \frac{3 \pi}{n}\right]
$$

and

$$
-f_{\frac{3 \pi}{2 n}-\gamma}(-z)=\overline{f_{\frac{3 \pi}{2 n}+\gamma}(\bar{z})} \quad \text { for } \quad \gamma \in\left[0, \frac{3 \pi}{2 n}\right] .
$$

Consequently,

$$
W_{-\alpha}=\overline{W_{\alpha}} \quad \text { and } \quad-W_{\frac{3 \pi}{2 n}-\gamma}=\overline{W_{\frac{3 \pi}{2 n}+\gamma}} .
$$

For this reason a polygon W as well as \bar{W} and $-\bar{W}$ belong to the family \mathcal{W}. From the geometric construction of polygons in \mathcal{W} it follows that the ratio of lengths of any two adjacent sides of a polygon varies from 0 to infinity as α is changing in $[-3 \pi / n, 3 \pi / n]$; in each case a polygon is convex in the direction of the real axis. Multiplying sets $W_{\alpha}, \alpha \in[-3 \pi / n, 3 \pi / n]$ by $\lambda>0$ we obtain all members of the set \mathcal{W}.

We have proved one part of the following lemma (the second one can be proved analogously)

Lemma 4.

1. $\mathcal{W}=\left\{\lambda \cdot f_{\alpha}(\Delta), \lambda>0, \alpha \in[-3 \pi / n, 3 \pi / n]\right\} \quad$ for $\quad n=4 k+1, k \geq 1$, 2. $\mathcal{W}=\left\{\lambda \cdot g_{\alpha}(\Delta), \lambda>0, \alpha \in[-2 \pi / n, 4 \pi / n]\right\} \quad$ for $\quad n=4 k+3, k \geq 0$.

3. Koebe sets for $\mathcal{F}^{(n)}$

Let us define

$$
F(\alpha) \equiv f_{\alpha}\left(e^{i \alpha}\right) \quad, \quad \alpha \in\left[-\frac{3 \pi}{n}, \frac{3 \pi}{n}\right]
$$

and

$$
G(\alpha) \equiv g_{\alpha}\left(e^{i \alpha}\right) \quad, \quad \alpha \in\left[-\frac{2 \pi}{n}, \frac{4 \pi}{n}\right] .
$$

From (4) and (5)

$$
F(\alpha)=e^{i \alpha} \int_{0}^{1}\left(1-t^{n}\right)^{\frac{1}{n}}\left(1+t^{n} e^{2 i n \alpha / 3}\right)^{-\frac{3}{n}} d t
$$

and

$$
G(\alpha)=e^{i \alpha} \int_{0}^{1}\left(1-t^{n}\right)^{\frac{1}{n}}\left(1-t^{n} e^{i(2 n \alpha / 3-5 \pi / 3)}\right)^{-\frac{3}{n}} d t
$$

It can be easily checked that

$$
\begin{align*}
& \arg F(\alpha)=\alpha \quad \text { for } \quad \alpha \in\left\{-\frac{3 \pi}{n},-\frac{3 \pi}{2 n}, 0, \frac{3 \pi}{2 n}, \frac{3 \pi}{n}\right\}, \tag{9}\\
& \arg G(\alpha)=\alpha \quad \text { for } \quad \alpha \in\left\{-\frac{2 \pi}{n},-\frac{\pi}{2 n}, \frac{\pi}{n}, \frac{5 \pi}{2 n}, \frac{4 \pi}{n}\right\} . \tag{10}
\end{align*}
$$

Theorem 4. The Koebe set $K_{\mathcal{F}^{(n)}}$, for a fixed $n=4 k+1, k \in \mathbb{N}$, is a bounded and $2 n$-fold symmetric domain such that

$$
\begin{equation*}
\partial K_{\mathcal{F}^{(n)}} \cap\left\{w: \arg w \in\left[-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right]\right\}=F\left(\left[-\alpha_{F}, \alpha_{F}\right]\right), \tag{11}
\end{equation*}
$$

where α_{F} is the only solution of the equation

$$
\begin{equation*}
\arg F(\alpha)=\frac{\pi}{2 n} \tag{12}
\end{equation*}
$$

in $[0,3 \pi / 2 n]$.

Proof.

Let K denote the Koebe set for $\mathcal{F}^{(n)}$.
Let us consider a polygon $V_{\alpha}=f_{\alpha}(\Delta)$ belonging to \mathcal{W}, such that one of its vertices, let say v_{*}, lies in Λ^{*} (its argument is in $[\pi / 2-\pi / n, \pi / 2]$) and the interior angle at v_{*} has the measure $\pi(1+1 / n)$. Suppose additionaly that w_{*} is a point of the boundary of K such that $\arg w_{*}=\arg v_{*}$ and $\left|w_{*}\right|<\left|v_{*}\right|$. We denote the quotient $w_{*} / v_{*}=\left|w_{*}\right| /\left|v_{*}\right|$ by λ. Hence $\lambda<1$.

Since $w_{*} \in \partial K$, there exists $f_{*} \in \mathcal{F}^{(n)}$ such that

$$
\begin{equation*}
f_{*}(\Delta) \subset \lambda V_{\alpha} \subsetneq V_{\alpha}=f_{\alpha}(\Delta) \tag{13}
\end{equation*}
$$

Therefore, $f_{*} \prec f_{\alpha}$ and $1=f_{*}^{\prime}(0) \leq f_{\alpha}^{\prime}(0)=1$. Consequently $f_{*}=f_{\alpha}$, which contradicts (13). It means that $v_{*}=w_{*}$, or in other words, w_{*} coincides with some vertex of $f_{\alpha}(\Delta)$. Hence w_{*} is equal to $f_{\alpha}\left(e^{i \alpha}\right)$ rotated about a multiple of $2 \pi / n$, namely about $2 \pi / n \cdot(n-1) / 4$. However, it is true only for those α, for which $w_{*}=F(\alpha) \cdot \varepsilon^{(n-1) / 4}$ is in Λ^{*}.

Observe that for $\alpha \in[-3 \pi / n, 3 \pi / n]$ we have

$$
F(-\alpha)=\overline{F(\alpha)},
$$

that is,

$$
\arg F(-\alpha)=-\arg F(\alpha) .
$$

From this and (9),(12) it follows that

$$
\left\{F(\alpha) \cdot \varepsilon^{(n-1) / 4}: \alpha \in\left[-\alpha_{F}, \alpha_{F}\right]\right\}
$$

is the boundary of the Koebe set for $\mathcal{F}^{(n)}$ in Λ^{*}. Combining this with Theorem 3 the equality (11) follows.

Finally, we claim that α_{F} is the only solution of (12) in $[0,3 \pi / 2 n]$. On the contrary, assume that there exist two different numbers $\alpha_{1}, \alpha_{2} \in[0,3 \pi / 2 n]$ such that

$$
\arg F\left(\alpha_{1}\right)=\arg F\left(\alpha_{2}\right),
$$

or equivalently,

$$
\arg f_{\alpha_{1}}\left(e^{i \alpha_{1}}\right)=\arg f_{\alpha_{2}}\left(e^{i \alpha_{2}}\right)
$$

The sets $W_{\alpha_{1}}=f_{\alpha_{1}}(\Delta), W_{\alpha_{2}}=f_{\alpha_{2}}(\Delta)$ are polygons of the family \mathcal{W}. This and the definition of \mathcal{W} (or Lemma 4) result in

$$
W_{\alpha_{1}} \subset W_{\alpha_{2}} \quad \text { or } \quad W_{\alpha_{2}} \subset W_{\alpha_{1}}
$$

The normalization of $f_{\alpha_{1}}$ and $f_{\alpha_{2}}$ leads to $W_{\alpha_{1}}=W_{\alpha_{2}}$. Hence $\alpha_{1}=\alpha_{2}$, a contradiction. This means that (12) has only one solution in the set $[0,3 \pi / 2 n]$.

The above proof gives more. Namely, F is starlike for $\alpha \in[-3 \pi / 2 n, 3 \pi / 2 n]$. Moreover,

$$
\arg F\left(\alpha+\frac{3 \pi}{n}\right)=\arg F(\alpha)+\frac{3 \pi}{n}
$$

It implies that F is starlike for $\alpha \in[-\pi, \pi]$.
Furthermore, it is not difficult to see that there do not exist two different points in the set $\partial K_{\mathcal{F}^{(n)}} \cap \Lambda^{*}$ with the same imaginary part. For contrary suppose that it is not the case, ie. there exist v_{1} and v_{2} such that $v_{1} \neq v_{2}, v_{1}, v_{2} \in \partial K_{\mathcal{F}^{(n)}} \cap \Lambda^{*}$ and $\operatorname{Im} v_{1}=\operatorname{Im} v_{2}$.

With use of an argument similar to those in the proof of previous theorem we can see that there exist two polygons $V_{1}, V_{2} \in \mathcal{W}$ with vertices v_{1}, v_{2} respectively. The angles at these vertices have the same measure. Hence the sides of these polygons are pairwise parallel and if $\operatorname{Re} v_{1}<\operatorname{Re} v_{2}$ then $V_{1} \subset V_{2}$. This means that there exist $f_{1}, f_{2} \in \mathcal{F}^{(n)}$ that $f_{1}(\Delta)=V_{1}$, $f_{2}(\Delta)=V_{2}$ and $f_{1} \prec f_{2}$. But the normalization of f_{1} and f_{2} is the same, hence $f_{1}=f_{2}$; a contradiction.

Theorem 5. The Koebe set $K_{\mathcal{F}^{(n)}}$, for a fixed $n=4 k+3, k \geq 0$ is a bounded and $2 n$-fold symmetric domain such that

$$
\begin{equation*}
\partial K_{\mathcal{F}^{(n)}} \cap\left\{w: \arg w \in\left[\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right]\right\}=G\left(\left[\alpha_{G}, \frac{2 \pi}{n}-\alpha_{G}\right]\right) \tag{14}
\end{equation*}
$$

where α_{G} is the only solution of the equation

$$
\begin{equation*}
\arg G(\alpha)=\frac{\pi}{2 n} \tag{15}
\end{equation*}
$$

in $[-\pi / 2 n, \pi / n]$.

Proof.

A consideration similar to the above shows that α_{G} is the only solution of the equation (15) in $[-\pi / 2 n, \pi / n]$.

Suppose that $w_{*} \in \partial K \cap \Lambda^{*}$. The analogous argument to this in the proof of Theorem 4 yields that K is contained in some polygon W of the family \mathcal{W}.

Let g_{*} be a function from $\mathcal{F}^{(n)}$ for which $w_{*} \in \partial g_{*}(\Delta)$. We have $g_{*}(\Delta) \subset W=g_{\alpha}(\Delta)$ for some $\alpha \in[-\pi / 2 n, 5 \pi / n]$. For this reason $g_{*} \prec g_{\alpha}$, but taking into account the normalization of both functions we obtain $g_{*}=g_{\alpha}$. Hence $w_{*}=g_{\alpha}\left(e^{i \alpha}\right) \cdot \varepsilon^{(n-3) / 4}$, but only if $w_{*} \in \Lambda^{*}$.

For $\alpha \in[-\pi / 2 n, \pi / n]$,

$$
G\left(\frac{2 \pi}{n}-\alpha\right)=\varepsilon \overline{G(\alpha)}
$$

and so

$$
\arg G\left(\frac{2 \pi}{n}-\alpha\right)=\frac{2 \pi}{n}-\arg G(\alpha)
$$

From this, (10) and (15), we conclude that

$$
\left\{G(\alpha) \cdot \varepsilon^{(n-3) / 4}: \alpha \in\left[\alpha_{G}, \frac{2 \pi}{n}-\alpha_{G}\right]\right\}
$$

is the boundary of the Koebe set for $\mathcal{F}^{(n)}$ in Λ^{*}. Theorem 3 concludes the proof of our theorem.
Now we can derive the Koebe constant for $\mathcal{F}^{(n)}$.
Theorem 6. For a fixed positive odd integer $n, n \geq 3$ and for every function $f \in \mathcal{F}^{(n)}$ the disk $\Delta_{r_{n}}$, where $r_{n}=B(1 / n, 1 / 2 n+1 / 2) / n \sqrt[n]{4}$, is included in $f(\Delta)$. The number r_{n} cannot be increased.

The symbol B stands for the Beta and $\Delta_{r}, r>0$ means $\Delta_{r}=\{\zeta \in \mathbb{C}:|\zeta|<r\}$. Proof.
According to Theorems 4 and 5, the Koebe constant is equal to

$$
\min \left\{|F(\alpha)|: \alpha \in\left[-\alpha_{F}, \alpha_{F}\right]\right\} \quad \text { for } \quad n=4 k+1,
$$

or

$$
\min \left\{|G(\alpha)|: \alpha \in\left[\alpha_{G}, \frac{2 \pi}{n}-\alpha_{G}\right]\right\} \quad \text { for } \quad n=4 k+3 .
$$

But

$$
|F(\alpha)|^{2} \geq\left(\int_{0}^{1}\left(1-t^{n}\right)^{\frac{1}{n}} \operatorname{Re}\left(1+t^{n} e^{2 i n \alpha / 3}\right)^{-\frac{3}{n}} d t\right)^{2}
$$

and the integrand in this expression is nonnegative; thus

$$
|F(\alpha)| \geq \int_{0}^{1}\left(1-t^{n}\right)^{\frac{1}{n}} \operatorname{Re} q_{F}(\alpha, t) d t \quad, \quad q_{F}(\alpha, t)=\left(1+t^{n} e^{2 i n \alpha / 3}\right)^{-\frac{3}{n}}
$$

Likewise,

$$
|G(\alpha)| \geq \int_{0}^{1}\left(1-t^{n}\right)^{\frac{1}{n}} \operatorname{Re} q_{G}(\alpha, t) d t \quad, \quad q_{G}(\alpha, t)=\left(1-t^{n} e^{i(2 n \alpha / 3-5 \pi / 3)}\right)^{-\frac{3}{n}} .
$$

It is easy to check that for $n \geq 3$ the functions $p(z)=\left(1 \pm t^{n} z\right)^{-3 / n}$ are convex in Δ and they have real coefficients. This means that

$$
\begin{equation*}
\operatorname{Re}\left(1 \pm t^{n} z\right)^{-\frac{3}{n}} \geq\left(1+t^{n}\right)^{-\frac{3}{n}} \tag{16}
\end{equation*}
$$

Applying (16) for both q_{F} and q_{G}, we get

$$
|F(\alpha)| \geq q_{0} \quad \text { and } \quad|G(\alpha)| \geq q_{0}
$$

where

$$
\begin{equation*}
q_{0}=\int_{0}^{1}\left(1-t^{n}\right)^{\frac{1}{n}}\left(1+t^{n}\right)^{-\frac{3}{n}} d t \tag{17}
\end{equation*}
$$

This results in

$$
\min \left\{|F(\alpha)|: \alpha \in\left[-\alpha_{F}, \alpha_{F}\right]\right\}=|F(0)|
$$

and

$$
\min \left\{|G(\alpha)|: \alpha \in\left[\alpha_{G}, \frac{2 \pi}{n}-\alpha_{G}\right]\right\}=\left|G\left(\frac{\pi}{n}\right)\right|
$$

Figure 4. Koebe domain (solid line) and Koebe disk (dashed line) for $\mathcal{F}^{(3)}$ and $\mathcal{F}^{(5)}$.
Moreover, substituting $t^{n}=\tan ^{2}(x / 2)$ in (17) we get

$$
q_{0}=\frac{2}{n \sqrt[n]{4}} \int_{0}^{\pi / 2}(\sin x)^{\frac{2}{n}-1}(\cos x)^{\frac{1}{n}} d x=\frac{1}{n \sqrt[n]{4}} B\left(\frac{1}{n}, \frac{1}{2 n}+\frac{1}{2}\right)
$$

Corollary 1. For a fixed positive odd integer n, $n \geq 3$ the Koebe constant for $\mathcal{F}^{(n)}$ is equal to $r_{n}=B(1 / n, 1 / 2 n+1 / 2) / n \sqrt[n]{4}$.

The Koebe sets and the Koebe disks for $n=3$ and $n=5$ are shown in Figure 4.
Remark 3. The results established in Theorem 4 and in Corollary 1 are actually valid also for $n=1$. They were obtained by Ztotkiewicz and Reade in [6].

One can check that for $n=1$ the function F takes the form

$$
F(\alpha)=e^{i \alpha} \int_{0}^{1} \frac{1-t}{\left(1+t e^{2 i \alpha / 3}\right)^{3}} d t=\frac{e^{2 i \alpha / 3}}{4 \cos (\alpha / 3)} .
$$

The equation (12) gives $\alpha_{F}=3 \pi / 4$; thus the boundary of the Koebe set in the upper half-plane can be written as follows

$$
u=\frac{\cos (2 \alpha / 3)}{4 \cos (\alpha / 3)}, v=\frac{1}{2} \sin (\alpha / 3), \alpha \in\left[-\frac{3 \pi}{4}, \frac{3 \pi}{4}\right] .
$$

This fact we can rewrite in a different way

$$
K_{\mathcal{F}}=\{w \in \mathbb{C}: 8|w|(|w|+|\operatorname{Re} w|)<1\} .
$$

The extremal functions f_{α} given by (4) are of the form

$$
f_{\alpha}(z)=\frac{z+B z^{2}}{\left(1+z e^{-i \alpha / 3}\right)^{2}}, B=i \sin (\alpha / 3) e^{-2 i \alpha / 3}
$$

and

$$
g_{\alpha}(z)=-f_{\alpha}(-z)
$$

where $\alpha \in[-3 \pi / 4,3 \pi / 4]$. The image set $f_{\alpha}(\Delta)$ for a fixed $\alpha \in(-3 \pi / 4,3 \pi / 4)$ coincides with the plane with a horizontal ray excluded. For $\alpha=-3 \pi / 4,3 \pi / 4$, the sets $f_{\alpha}(\Delta)$ are half-planes.

Moreover, $r_{1}=B(1,1) / 4=1 / 4$.

4. Covering domains for $\mathcal{F}^{(n)}$

Theorem 7. The covering set $L_{\mathcal{F}(n)}$ for odd $n \geq 5$ is a bounded and $2 n$-fold symmetric domain such that

$$
\begin{equation*}
\partial L_{\mathcal{F}^{(n)}} \cap\left\{w: \arg w \in\left[0, \frac{\pi}{2 n}\right]\right\}=H\left(\left[0, \frac{\pi}{2 n}\right]\right) . \tag{18}
\end{equation*}
$$

In the proof of this theorem we need the following lemma.
Lemma 5. Let $n \geq 5$ be a fixed odd integer. If $f \in \mathcal{F}^{(n)}$ and $w \in f(\Delta) \cap \Lambda^{*}$ then $f(\Delta)$ contains a polygon $W \in \mathcal{W}$ such that W has one of its vertices at w and the interior angle at w has the measure $\pi-3 \pi / n$.

Proof.
Let $f \in \mathcal{F}^{(n)}$ and $w \in f(\Delta) \cap \Lambda^{*}$, i.e. $\arg w \in[\pi / 2-\pi / n, \pi / 2]$. Because of the n-fold symmetry of f every point $w \cdot \varepsilon^{j}, j=0,1, \ldots, n-1$ belongs to $f(\Delta)$.

It can be easily checked that

$$
\max \left\{\operatorname{Im}\left(w \cdot \varepsilon^{j}\right), j=0,1, \ldots, n-1\right\}=\operatorname{Im}(w)
$$

and

$$
\min \left\{\operatorname{Im}\left(w \cdot \varepsilon^{j}\right), j=0,1, \ldots, n-1\right\}=\operatorname{Im}\left(w \cdot \varepsilon^{2 k+1}\right)
$$

Let $w_{1}=w \cdot \varepsilon$ and $w_{2}=w \cdot \varepsilon^{2 k}$. The point w_{1} has the second biggest imaginary part among points $w, w \cdot \varepsilon, \ldots, w \cdot \varepsilon^{n-1}$. Likewise, w_{2} has the second lowest imaginary part among those points.

Let, moreover, l_{1} and l_{2} stand for two horizontal rays emanating from w_{1} and $w_{2}: l_{1}=$ $\left\{w_{1}+t: t \geq 0\right\}, l_{2}=\left\{w_{2}+t: t \geq 0\right\}$ respectively.

From the inequality $\operatorname{Im} w_{2}>\operatorname{Im} w \cdot \varepsilon^{2 k+1}$ we conclude that the point $w \cdot \varepsilon^{2 k+1}$ lies on the opposite side of the straight line which contains l_{2} with respect to the origin. As a consequence, w_{1} lies on the other side of the straight line including $l_{2} \cdot \varepsilon^{-2 k}$ with respect to the origin. Hence, two rays l_{1} and $l_{2} \cdot \varepsilon^{-2 k}$ have a common point, let say w_{0}.

We shall show that w_{0} also belongs to $f(\Delta)$. Suppose, contrary to our claim, that $w_{0} \notin f(\Delta)$. The points w_{0}, w_{1} lie on the ray l_{1} and $w_{1} \in f(\Delta)$. Therefore, taking into account the convexity in the direction of the real axis of f, a ray $m_{1}=\left\{w_{0}+t: t \geq 0\right\}$ is disjoint from $f(\Delta)$.

Since w_{0}, w belong to $l_{2} \cdot \varepsilon^{-2 k}$, the points $w_{0} \cdot \varepsilon^{2 k}, w \cdot \varepsilon^{2 k}$ belong to l_{2}. Moreover, $w_{0} \cdot \varepsilon^{2 k} \notin f(\Delta)$ and $w_{2} \in f(\Delta)$. Consequently, $m_{2}=\left\{w_{0} \cdot \varepsilon^{2 k}+t: t \geq 0\right\}$ is disjoint from $f(\Delta)$, and, generally, $m_{2} \varepsilon^{j} \cap f(\Delta)=\emptyset, j=0,1, \ldots, n-1$.

We have proved that the rays m_{1} and $m_{2} \varepsilon^{-2 k}$ with the common vertex w_{0} are disjoint from $f(\Delta)$. It means that the reflex sector with the vertex in w_{0} and these two rays as the sides has no common points with $f(\Delta)$. But w_{1} lies in this reflex sector; hence $w_{1} \notin f(\Delta)$, a contradiction.

From the argument given above all points $w \varepsilon^{j}, w_{0} \varepsilon^{j}, j=0,1, \ldots, n-1$ belong to $f(\Delta)$. Applying n-fold symmetry and the convexity of f in the direction of the real axis we can see that a polygon W with succeeding vertices at points $w, w_{0}, w \varepsilon, w_{0} \varepsilon, \ldots, w \varepsilon^{n-1}, w_{0} \varepsilon^{n-1}$ is contained in $f(\Delta)$. It is easy to check that this polygon has the interior angles $\pi-3 \pi / n$ and $\pi+\pi / n$ alternately. For this reason W is in \mathcal{W}.

According to Lemmas 2 and 3, every function in $\mathcal{F}^{(n)}$ mapping Δ onto a polygon of the family \mathcal{W} has the form (4)-(5) with appropriately taken α. These functions may be written in the form

$$
\begin{array}{ll}
f_{\beta}(z)=\int_{0}^{z}\left(1+\zeta^{n} e^{-3 i n \beta}\right)^{\frac{1}{n}}\left(1-\zeta^{n} e^{-i n \beta}\right)^{-\frac{3}{n}} d \zeta \quad, \quad \beta \in\left[0, \frac{2 \pi}{n}\right] \\
g_{\beta}(z)=\int_{0}^{z}\left(1+\zeta^{n} e^{-3 i n \beta}\right)^{\frac{1}{n}}\left(1-\zeta^{n} e^{-i n \beta}\right)^{-\frac{3}{n}} d \zeta \quad, \quad \beta \in\left[\frac{\pi}{n}, \frac{3 \pi}{n}\right], \tag{20}
\end{array}
$$

equivalent to (4)-(5).
In fact, the functions defined by (4) and (19) are connected by the relation $\beta=\alpha / 3+\pi / n$ and the functions in (5) and (20) are connected by $\beta=\alpha / 3+5 \pi / 3 n$.

Let us define

$$
H(\beta)=f_{\beta}\left(e^{i \beta}\right) \quad \text { for } \quad \beta \in\left[0, \frac{2 \pi}{n}\right],
$$

and

$$
H(\beta)=g_{\beta}\left(e^{i \beta}\right) \quad \text { for } \quad \beta \in\left[\frac{\pi}{n}, \frac{3 \pi}{n}\right]
$$

Hence

$$
H(\beta) \equiv e^{i \beta} \int_{0}^{1}\left(1+t^{n} e^{-2 i n \beta}\right)^{\frac{1}{n}}\left(1-t^{n}\right)^{-\frac{3}{n}} d t, \beta \in \mathbb{R}
$$

Observe that

$$
\begin{equation*}
\arg H(\beta)=\beta \quad \text { for } \quad \beta=\frac{\pi}{2 n} \cdot j, j=0,1, \ldots, 4 n-1 . \tag{21}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
H\left(\beta+\frac{\pi}{n}\right)=e^{i \frac{\pi}{n}} H(\beta) \tag{22}
\end{equation*}
$$

Now we can prove Theorem 7.
Proof of Theorem 7.
Let L denote the covering set for $\mathcal{F}^{(n)}$. We additionaly assume that $n=4 k+1, k \geq 1$. The proof for the case $n=4 k+3, k \geq 0$ is almost similar.

Let us consider a polygon $W_{\beta}=f_{\beta}(\Delta)$ belonging to \mathcal{W}, such that one of its vertices, let say w^{*}, lies in Λ^{*} and the interior angle at w^{*} has the measure $\pi(1-3 / n)$. Suppose additionaly that v^{*} is a point of the boundary of L such that $\arg v^{*}=\arg w^{*}$ and $\left|v^{*}\right|>\left|w^{*}\right|$. We denote the quotient $v^{*} / w^{*}=\left|v^{*}\right| /\left|w^{*}\right|$ by μ. Hence $\mu>1$.

Since $v^{*} \in \partial L$, there exists $f^{*} \in \mathcal{F}^{(n)}$ such that v^{*} is a boundary point of $f^{*}(\Delta)$. From Lemma 5

$$
\begin{equation*}
f^{*}(\Delta) \supset \mu W_{\beta} \supsetneq W_{\beta}=f_{\beta}(\Delta) . \tag{23}
\end{equation*}
$$

Therefore, $f_{\beta} \prec f^{*}$ and $1=f_{\beta}^{\prime}(0) \leq f^{*^{\prime}}(0)=1$. Consequently $f_{\beta}=f^{*}$, which contradicts (23). It means that $w^{*}=v^{*}$, or in other words, v^{*} coincides with some vertex of $f_{\beta}(\Delta)$. Hence v^{*} is equal to $f_{\beta}\left(e^{i \beta}\right)$ rotated about a multiple of $2 \pi / n$, namely about $2 \pi / n \cdot(n-1) / 4$. It is enough to take such β that $v^{*}=H(\beta) \cdot \varepsilon^{(n-1) / 4}$ is in Λ^{*}. From this we conclude that $\beta \in[0, \pi / 2 n]$.

Theorem 8. For a fixed odd integer $n \geq 5$ and for every function $f \in \mathcal{F}^{(n)}$ the set $f(\Delta)$ is included in $\Delta_{R_{n}}$, where $R_{n}=B(1 / n, 1 / 2-3 / 2 n) / n \sqrt[n]{4}$. The number R_{n} cannot be decreased.

Proof.
We have

$$
|H(\beta)| \leq \int_{0}^{1}\left|\left(1+t^{n} e^{-2 i n \beta}\right)^{\frac{1}{n}}\left(1-t^{n}\right)^{-\frac{3}{n}}\right| d t \leq \int_{0}^{1} \frac{\left(1+t^{n}\right)^{\frac{1}{n}}}{\left(1-t^{n}\right)^{\frac{3}{n}}} d t=|H(0)|
$$

It can be shown that $H(0)=B(1 / n, 1 / 2-3 / 2 n) / n \sqrt[n]{4}$.
Corollary 2. For a fixed odd integer $n \geq 5$ the covering constant for $\mathcal{F}^{(n)}$ is equal to $R_{n}=$ $B(1 / n, 1 / 2-3 / 2 n) / n \sqrt[n]{4}$.

The results presented above are valid for positive odd integers greater than or equal to 5 . In the last part of this section we turn to the case $n=3$.

As it was said in Section 2 (see also Figure 3) for $n=3$ and $\beta \in[\pi / 3, \pi] \backslash\{\pi / 2,5 \pi / 6\}$ the functions given by (20) map Δ onto the polygons with the interior angles $4 \pi / 3$ and 0 alternately, and the vertices in points $a \cdot \varepsilon^{j}, \infty \cdot a \cdot \varepsilon^{j}, j=0,1,2$ alternately, where $a=$ $g_{\beta}\left(e^{i \beta}\right)=H(\beta)$. Both sides adjacent to every vertex in infinity are parallel. Hence $g_{\beta}(\Delta)$ are star-shaped sets with three unbounded strips. The strips have the direction $\pi / 3, \pi, 5 \pi / 3$ if $\beta \in[\pi / 3, \pi / 2) \cup(5 \pi / 6, \pi]$ and $0,2 \pi / 3,4 \pi / 3$ if $\beta \in(\pi / 2,5 \pi / 6)$. The thickness of the strips is changing as β varies in $\beta \in[\pi / 3, \pi] \backslash\{\pi / 2,5 \pi / 6\}$, but when β tends to $\pi / 2$ or $5 \pi / 6$ the thickness of the strips tends to 0 .

For $\beta=\pi / 2$ and $\beta=5 \pi / 6$ the functions

$$
g_{\frac{\pi}{2}}(z)=\int_{0}^{z} \frac{1}{\left(1-i \zeta^{3}\right)^{2 / 3}} d \zeta
$$

and

$$
g_{\frac{5 \pi}{6}}(z)=\int_{0}^{z} \frac{1}{\left(1+i \zeta^{3}\right)^{2 / 3}} d \zeta
$$

map Δ onto the equilateral triangles symmetric with respect to the imaginary axis. The first triangle has one of its vertices in the point $i c$, the second one - in the point $-i c$, where

$$
c=\frac{B\left(\frac{1}{3}, \frac{1}{6}\right)}{3 \sqrt[3]{4}}=1.76 \ldots
$$

Let

$$
\Omega_{0}=\left\{w: \operatorname{Re} w \geq 0,|\operatorname{Im} w|<\frac{1}{2} c\right\}
$$

Theorem 9. The covering domain $L_{\mathcal{F}^{(3)}}$ is an unbounded and 6-fold symmetric domain

$$
L_{\mathcal{F}^{(3)}}=\bigcup_{j=0}^{5} e^{j \frac{\pi}{3} i} \cdot \Omega_{0}
$$

Proof.
Let L denote the covering set for $\mathcal{F}^{(n)}$ and let L^{*} stand for $\bigcup_{j=0}^{5} e^{j \pi i / 3} \cdot \Omega_{0}$.
At the beginning we can see that L includes six-pointed star obtained as a union of $g_{\pi / 2}(\Delta)$ and $g_{5 \pi / 6}(\Delta)$. We know that for $\beta \in(\pi / 2,5 \pi / 6)$ each set $g_{\beta}(\Delta)$ contains a part of a horizontal strip between two rays emanating from a / ε and a, where $a=H(\beta)$. From (21) it follows that

Figure 5. Covering domains for $\mathcal{F}^{(3)}$ and $\mathcal{F}^{(5)}$.
the arguments of these points vary continuously from $-\pi / 6$ to $\pi / 6$ for the point a / ε and from $\pi / 2$ to $5 \pi / 6$ for the point a. This and the symmetry of L with respect to the imaginary axis result in $L^{*} \subset L$.

Now we shall prove that $L \subset L^{*}$. On the contrary, assume that $w_{0} \notin L^{*}$ but $w_{0} \in L$. It means that there exists a function $f_{0} \in \mathcal{F}^{(3)}$ such that $w_{0} \in f_{0}(\Delta)$. Without loss of generality we can assume that $\arg w_{0} \in(0, \pi / 6)$ because of Lemma 1 and Remark 1.

From the 3 -fold symmetry of f_{0} we know that $w_{0} \varepsilon, w_{0} \varepsilon^{2} \in f_{0}(\Delta)$. Moreover,

$$
\operatorname{Im} w_{0}=\left|w_{0}\right| \sin \varphi_{0}<\left|w_{0}\right| \sin \left(\varphi_{0}+\frac{2 \pi}{3}\right)=\operatorname{Im}\left(w_{0} \varepsilon\right),
$$

because $\varphi_{0}=\arg w_{0} \in(0, \pi / 6)$.
Observe that the point $w_{1}=\left\{w_{0}-t: t \geq 0\right\} \cap\left(\varepsilon \cdot\left\{w_{0}-t: t \geq 0\right\}\right)$ also belongs to $f_{0}(\Delta)$. If it were not the case, the points $w_{1} \varepsilon, w_{1} \varepsilon^{2}$ would not be in $f_{0}(\Delta)$ either. But $w_{1}, w_{1} \varepsilon^{2} \in\left\{w_{0}-t: t \geq 0\right\}$. Combining $w_{1}, w_{1} \varepsilon^{2} \notin f_{0}(\Delta)$ with $w_{0} \in f_{0}(\Delta)$ yields that the segment connecting w_{1} and $w_{1} \varepsilon^{2}$ has no common points with $f_{0}(\Delta)$. From this and the 3 -fold symmetry, all three segments connecting $w_{1}, w_{1} \varepsilon, w_{1} \varepsilon^{2}$ and, as a consequence, the equilateral triangle T with vertices in these points, would be disjoint with $f_{0}(\Delta)$, a contradiction. This means that $w_{1}, w_{1} \varepsilon, w_{1} \varepsilon^{2} \in f_{0}(\Delta)$, which results in

$$
\begin{equation*}
T \subset f_{0}(\Delta) \tag{24}
\end{equation*}
$$

But

$$
\begin{equation*}
g_{\frac{5 \pi}{6}}(\Delta) \subset T \quad \text { and } \quad g_{\frac{5 \pi}{6}}(\Delta) \neq T \tag{25}
\end{equation*}
$$

From (24) and (25), $g_{5 \pi / 6}$ is subordinated to f, but $g_{5 \pi / 6}$ and f have the same normalization, a contradiction. It means that if $w_{0} \in L$ then $w_{0} \in L^{*}$, which completes the proof.

The covering domains for $\mathcal{F}^{(3)}$ and $\mathcal{F}^{(5)}$ are shown in Figure 5 .

References

[1] Goodman, A.W., Saff, E.B., On univalent functions convex in one direction. Proc. Am. Math. Soc. 73, 183-187 (1979).
[2] Koczan, L., Typically real functions convex in the direction of the real axis. Ann. Univ. Mariae Curie-Skłodowska, Sect.A, 43, 23-29 (1989).
[3] Koczan, L., Zaprawa, P., On functions convex in the direction of the real axis with real coefficients. Bull. Belg. Math. Soc. - Simon Stevin, 18, No. 2, 321-335 (2011).
[4] Koczan, L., Zaprawa, P., Covering problems for functions n-fold symmetric and convex in the direction of the real axis. Appl. Math. Comput. 219, No.3, 947-958 (2012).
[5] Krzyz, J., Reade, M.O., Koebe domains for certain classes of analytic functions. J. Anal. Math. 18, 185-195 (1967).
[6] Reade, M.O., Złotkiewicz E., On univalent functions with two preassigned values. Proc. Am. Math. Soc. 30, 539-544 (1971).

Department of Mathematics, Lublin University of Technology, Nadbystrzycka 38D, 20-618
Lublin, Poland
E-mail address: l.koczan@pollub.pl, p.zaprawa@pollub.pl

