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Abstract

There are many articles in the literature dealing with the first-order and the second-order differential
subordination and differential superordination problems for analytic functions in the unit disk, but there
are only a few articles dealing with the third-order differential subordination problems. The concept of
third-order differential subordination in the unit disk was introduced by Antonino and Miller, and studied
recently by Tang and Deniz. Let Ω be a set in the complex plane C, let p(z) be analytic in the unit disk
U = {z : z ∈ C and |z| < 1}, and let ψ : C4 × U → C. In this paper, we investigate the problem of
determining properties of functions p(z) that satisfy the following third-order differential superordination:

Ω ⊂
{
ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U

}
.

As applications, we derive some third-order differential superordination results for analytic functions in
U, which are associated with a family of generalized Bessel functions. The results are obtained by con-
sidering suitable classes of admissible functions. New third-order differential sandwich-type results are
also obtained.
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1. Introduction, Definitions and Preliminaries

Let H(U) be the class of functions which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.
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For n ∈ N := {1, 2, 3, · · · } and a ∈ C, let

H[a, n] = {f : f ∈ H(U) and f(z) = a+ anz
n + an+1z

n+1 + · · · }

and suppose that H0 = H[0, 1]. We denote by A the class of all normalized analytic functions in
U of the form:

f(z) = z +
∞∑
n=1

an+1z
n+1 (z ∈ U). (1.1)

Let f and F be members of the analytic function class H(U). The function f is said to be
subordinate to F , or F is superordinate to f , if there exists a Schwarz function w(z), analytic in
U with

w(0) = 0 and |w(z)| < 1 (z ∈ U),

such that
f(z) = F

(
w(z)

)
(z ∈ U).

In such a case, we write

f ≺ F or f(z) ≺ F (z) (z ∈ U).

Furthermore, if the function F is univalent in U, then we have the following equivalence (see, for
details, [21]; see also [12, 19, 35]):

f(z) ≺ F (z) (z ∈ U) ⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).

Let f, g ∈ A, where f is given by (1.1) and g is defined by

g(z) = z +
∞∑
n=1

bn+1z
n+1.

Then the Hadamard product (or convolution) f ∗ g of the functions f and g is defined by

(f ∗ g)(z) := z +
∞∑
n=1

an+1bn+1z
n+1 =: (g ∗ f)(z).

We next consider the following second-order homogeneous linear differential equation (see, for
details, [9])

z2ω′′(z) + bzω′(z) + [cz2 − p2 + (1− b)p]ω(z) = 0 (b, c, p ∈ C). (1.2)

The function ωp,b,c(z), which is called a generalized Bessel function of the first kind of order p,
is defined as a particular solution of (1.2). Furthermore, the function ωp,b,c(z) has the familiar
representation as follows:

ωp,b,c(z) =
∞∑
n=0

(−c)n

n!Γ
(
p+ n+ b+1

2

) (z
2

)2n+p

(z ∈ C), (1.3)

where Γ stands for the Euler’s Gamma function.
The series in (1.3) permits the study of the Bessel function Jν(z), the modified Bessel function

Iν(z) and the spherical Bessel function jν(z) in a unified manner. In terms of the Bessel function
Jν(z) of order ν defined by (see [34] and [9])

Jν(z) =
∞∑
n=0

(−1)n

n!Γ(ν + n+ 1)

(z
2

)2n+ν

(z ∈ C),
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the definition (1.3) immediately yields the following relationship:

ωp,b,c(z) = c
2p+b−1

4

(z
2

)− b−1
2

Jp+ b−1
2

(
z
√
c
)
.

We also note each of the following special cases of the function ωp,b,c(z) defined by (1.3):
1. For b = c = 1 in (1.3), we have the familiar Bessel function of the first kind of order p, that is,

ωp,1,1(z) = Jp(z),

which follows also from the above-mentioned relationship.

2. For b = 1 and c = −1 in (1.3), we obtain

ωp,1,−1(z) = Ip(z),

where the modified Bessel function Iν(z) of the first kind of order ν is defined by (see [34] and
[9])

Iν(z) =
∞∑
n=0

1
n!Γ(ν + n+ 1)

(z
2

)2n+ν

(z ∈ C).

3. For b = 2 and c = 1 in (1.3), we have

ωp,2,1(z) =

√
2
π
jp(z),

where jν(z) denotes the spherical Bessel function of the first kind of order ν defined by (see [34]
and [9])

jν(z) =
√
π

2

∞∑
n=0

(−1)n

n!Γ
(
ν + n+ 3

2

) (z
2

)2n+ν

(z ∈ C).

Recently, Deniz et al. [16] and Deniz [15] (see also [8] to [11], [23] and [30]) considered the
function ϕp,b,c(z) defined, in terms of the generalized Bessel function ωp,b,c(z) in (1.3), by the
following transformation:

ϕp,b,c(z) = 2pΓ
(
p+

b+ 1
2

)
z1− p2 ωp,b,c(

√
z). (1.4)

By using the general Pochhammer symbol (or the shifted factorial) (λ)ν defined, for λ, ν ∈ C and
in terms of Euler’s Γ-function, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

 1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-quotient exists,
we can obtain the following series representation for the function ϕp,b,c(z) given by (1.4):

ϕp,b,c(z) = z +
∞∑
n=1

(−c)n

4n(κ)n
zn+1

n!

(
κ = p+

b+ 1
2
∈ C \ Z−0

)
, (1.5)

where
Z−0 = {0,−1,−2, · · · } = Z− ∪ {0}.

For simplicity, we write
ϕκ,c(z) = ϕp,b,c(z).
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Baricz et al. [10] (see also [33]) introduced a new operator Bcκ : A → A, which is defined by
means of the Hadamard product (or convolution) as follows:

Bcκf(z) := ϕκ,c(z) ∗ f(z) = z +
∞∑
n=1

(−c)nan+1

4n(κ)n
zn+1

n!
(1.6)

in terms of the Taylor-Maclaurin coefficients an+1 involved in (1.1). It is easy to verify from the
definition (1.6) that

z
(
Bcκ+1f(z)

)′ = κBcκf(z)− (κ− 1)Bcκ+1f(z), (1.7)

where
κ = p+

b+ 1
2
∈ C \ Z−0 .

In fact, the function Bcκf(z) is an elementary transform of the generalized hypergeometric function
defined by (see [20], [24], [25], [27] to [29]; see also [17] and [18])

qFs(α1, · · · , αq;β1, · · · , βs; z) =
∞∑
n=0

(α1)n · · · (αq)n
(β1)n · · · (βs)n

zn

n!(
αi ∈ C (i = 1, · · · , q); βj ∈ C \ Z−0 (j = 1, · · · , s); q 5 s+ 1; q, s ∈ N0 := N ∪ {0}

)
.

For example, we have
Bcκf(z) = z 0F1

(
κ;− c

4
z
)
∗ f(z).

For suitable choices of the parameters b and c, we obtain several other (presumably new) op-
erators as follows:

(i) Putting b = c = 1 in (1.6), we have the operator Jp : A → A related with the Bessel function,
which is defined by

Jpf(z) = ϕp,1,1(z) ∗ f(z) =
[
2pΓ(p+ 1)z1−p/2Jp(

√
z)
]
∗ f(z) = z +

∞∑
n=1

(−1)nan+1

4n(p+ 1)n
zn+1

n!
. (1.8)

(ii) Setting b = 1 and c = −1 in (1.6), we obtain the operator Ip : A → A related with the
modified Bessel function, which is defined by

Ipf(z) = ϕp,1,−1(z) ∗ f(z) =
[
2pΓ(p+ 1)z1−p/2Ip(

√
z)
]
∗ f(z) = z +

∞∑
n=1

an+1

4n(p+ 1)n
zn+1

n!
. (1.9)

(iii) Taking b = 2 and c = 1 in (1.6), we get the operator Sp : A → A related with the spherical
Bessel function, which is defined by

Spf(z) =
[
π−1/22p+

1
2 Γ
(
p+

3
2

)
z1− p2 jp(

√
z)
]
∗ f(z) = z +

∞∑
n=1

(−1)nan+1

4n
(
p+ 3

2

)
n

zn+1

n!
. (1.10)

Let Ω be any set in C, let p be analytic in U, and let ψ : C4 ×U→ C. Antonino and Miller [7]
have extended the theory of second-order differential subordinations in U introduced by Miller
and Mocanu [21] to the third-order case. They determined properties of functions p that satisfy
the following third-order differential subordination:{

ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U
}
⊂ Ω.

Recently, Tang and Deniz [33] have considered the applications of these results to third-order
differential subordination for analytic functions in U.
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In the following, we will list some definitions and theorem due to Antonino and Miller [7], which
are required in our next investigations.

Definition 1 (see [7, p. 440, Definition 1]). Let ψ : C4 × U→ C and h(z) be univalent in U. If
p(z) is analytic in U and satisfies the following third-order differential subordination:

ψ
(
p(z), zp′(z), z2p′′(z), z3p′′′(z); z

)
≺ h(z) (z ∈ U), (1.11)

then p(z) is called a solution of the differential subordination. A univalent function q(z) is
called a dominant of the solutions of the differential subordination or, more simply, a dominant
if p(z) ≺ q(z) for all p(z) satisfying (1.11). A dominant q̃(z) that satisfies q̃(z) ≺ q(z) for all
dominants q(z) of (1.11) is said to be the best dominant.

Definition 2 (see [7, p. 441, Definition 2]). Let Q denote the set of functions q that are analytic
and univalent on the set U \ E(q), where

E(q) = {ξ : ξ ∈ ∂U and lim
z→ξ

q(z) =∞},

and are such that
min |q′(ξ)| = ρ > 0

for ξ ∈ ∂U \ E(q). Further, let the subclass of Q for which q(0) = a be denoted by Q(a) and

Q(0) = Q0.

Definition 3 (see [7, p. 449, Definition 3]). Let Ω be a set in C, q ∈ Q and n ∈ N \ {1}. The
class of admissible functions Ψn[Ω, q] consists of those functions ψ : C4 ×U→ C that satisfy the
following admissibility condition:

ψ(r, s, t, u; z) /∈ Ω,

whenever

r = q(ξ), s = kξq′(ξ), <
(
t

s
+ 1
)

= k<
(
ξq′′(ξ)
q′(ξ)

+ 1
)

and

<
(u
s

)
= k2<

(
ξ2q′′′(ξ)

q′(ξ)

)
,

where z ∈ U, ξ ∈ ∂U \ E(q) and k = n.

Theorem 1 (see [7, p. 449, Theorem 1]). Let p ∈ H[a, n] with n = 2. Also let q ∈ Q(a) and
satisfy the following conditions:

<
(
ξq′′(ξ)
q′(ξ)

)
= 0 and

∣∣∣∣zp′(z)q′(ξ)

∣∣∣∣ 5 k, (1.12)

where z ∈ U, ξ ∈ ∂U \ E(q) and k = n. If Ω is a set in C, ψ ∈ Ψn[Ω, q] and

ψ
(
p(z), zp′(z), z2p′′(z), z3p′′′(z); z

)
∈ Ω,

then
p(z) ≺ q(z) (z ∈ U).

In this article, following the theory of second-order differential superordinations in U introduced
by Miller and Mocanu [22], we consider the dual problem of determining properties of functions
p(z) that satisfy the following third-order differential superordination:

Ω ⊂
{
ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U

}
.
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In other words, we determine conditions on Ω, ∆ and ψ for which the following implication holds:

Ω ⊂
{
ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U

}
=⇒ ∆ ⊂ p(U), (1.13)

where ∆ is any set in C.

If either Ω or ∆ is a simply connected domain, then (1.13) can be rephrased in terms of
superordination. If p(z) is univalent in U, and if ∆ is a simply connected domain with ∆ 6= C,
then there is a conformal mapping q(z) of U onto ∆ such that q(0) = p(0). In this case, (1.13)
can be rewritten as

Ω ⊂
{
ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U

}
=⇒ q(z) ≺ p(z). (1.14)

If Ω is also a simply connected domain with Ω 6= C, then there is a conformal mapping h of U
onto Ω such that h(0) = ψ(p(0), 0, 0, 0; 0). In addition, if the function

ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z)

is univalent in U, then (1.14) can be rewritten as

h(z) ≺ ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) =⇒ q(z) ≺ p(z).

There are three key ingredients in the implication relationship (1.14): the differential operator ψ,
the set Ω and the“dominating” function q(z). If two of these entities were given, one would hope
to find conditions on the third so that (1.14) would be satisfied. In this article, we start with a
given set Ω and a given function q(z), and determine a set of “admissible” operators ψ so that
(1.14) holds true.

We first introduce the following definition.

Definition 4. Let ψ : C4 × U→ C and h(z) be analytic in U. If p(z) and

ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z)

are univalent in U and satisfy the following third-order differential superordination:

h(z) ≺ ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z), (1.15)

then p(z) is called a solution of the differential superordination. An analytic function q(z) is called
a subordinant of the solutions of the differential superordination, or more simply a subordinant if
q(z) ≺ p(z) for p(z) satisfying (1.15). A univalent subordinant q̃(z) that satisfies q(z) ≺ q̃(z) for
all subordinants q(z) of (1.15) is said to be the best subordinant. Note that the best subordinant
is unique up to a rotation of U.

For Ω a set in C, with ψ and p(z) as given in Definition 4, we suppose that (1.15) is replaced
by

Ω ⊂
{
ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U

}
.

Although this more general situation is a “differential containment”, we also refer to it as a dif-
ferential superordination, and the definitions of solution, subordinant and best subordinant as
given above can be extended to this more general case.

We will use the following lemma [7, p. 445, Lemma D] from the theory of third-order differen-
tial subordinations in U to determine subordinants of third-order differential superordinations.
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Lemma 1 (see [7]). Let p ∈ Q(a), and let q(z) = a+anzn+· · · be analytic in U with q(z) 6= a and
n = 2. If q is not subordinate to p, then there exists points z0 = r0e

iθ0 ∈ U and ξ0 ∈ ∂U\E(p),
and an m = n for which q(Ur0) ⊂ p(U),

(i) q(z0) = p(ξ0),

(ii) <
(
ξ0p′′(ξ0)

p′(ξ0)

)
= 0 and

∣∣∣ zq′(z)p′(ξ0)

∣∣∣ 5 m,

(iii) z0q′(z0) = mξ0p
′(ξ0),

(iv) <
(

1 + z0q′′(z0)
q′(z0)

)
= m<

(
1 + ξ0p′′(ξ0)

p′(ξ0)

)
, and

(v) <
(
z20q′′′(z0)

q′(z0)

)
= m2<

(
ξ20p′′′(ξ0)

p′(ξ0)

)
.

2. Admissible functions and a fundamental result

We next define the class of admissible functions referred to in Section 1.

Definition 5. Let Ω be a set in C, q ∈ H[a, n] and q′(z) 6= 0. The class of admissible functions
Ψ′n[Ω, q] consists of those functions ψ : C4 × U→ C that satisfy the admissibility condition

ψ(r, s, t, u; ξ) ∈ Ω,

whenever

r = q(z), s =
zq′(z)
m

, <
(
t

s
+ 1
)

5
1
m
<
(
zq′′(z)
q′(z)

+ 1
)

(2.1)

and

<
(u
s

)
5

1
m2
<
(
z2q′′′(z)

q′(z)

)
,

where z ∈ U, ξ ∈ ∂U and m = n = 2.

If ψ : C2 × U→ C and q ∈ H[a, n], then the admissibility condition (2.1) reduces to

ψ

(
q(z),

zq′(z)
m

; ξ
)
∈ Ω (z ∈ U; ξ ∈ ∂U;m = n = 2).

If ψ : C3×U→ C and q ∈ H[a, n] with q′(z) 6= 0, then the admissibility condition (2.1) reduces
to

ψ(r, s, t; ξ) ∈ Ω,

whenever r = q(z), s = zq′(z)
m and

<
(
t

s
+ 1
)

5
1
m
<
(
zq′′(z)
q′(z)

+ 1
)

(z ∈ U; ξ ∈ ∂U;m = n = 2).

The next theorem is a foundation result in the theory of third-order differential superordina-
tions.

Theorem 2. Let ψ ∈ Ψ′n[Ω, q]. If ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) is univalent in U, p ∈ Q(a)
and q ∈ H[a, n] satisfy the following condition:

<
(
zq′′(z)
q′(z)

)
= 0 and

∣∣∣∣zp′(z)q′(z)

∣∣∣∣ 5 m (z ∈ U; m = n = 2), (2.2)
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then
Ω ⊂

{
ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U

}
(2.3)

implies that
q(z) ≺ p(z) (z ∈ U).

Proof. Suppose that q 6≺ p. By Lemma 1, there exists points z0 = r0e
iθ0 ∈ U and ξ0 ∈ ∂U\E(p),

and an m = n = 2 that satisfy the conditions (i)-(v) of Lemma 1. Using these conditions with
r = p(ξ0), s = ξ0p

′(ξ0), t = ξ20p′′(ξ0), u = ξ30p′′′(ξ0) and ξ = ξ0 in Definition 5, we obtain

ψ
(
p(ξ0), ξ0p′(ξ0), ξ20p′′(ξ0), ξ30p′′′(ξ0); ξ0

)
∈ Ω,

which contradicts (2.3), so we have

q(z) ≺ p(z) (z ∈ U).

In the special case when Ω 6= C is a simply connected domain and h is a conformal mapping
of U onto Ω, we denote this class Ψ′n[h(U), q] by Ψ′n[h, q]. The following result is an immediate
consequence of Theorem 2.

Theorem 3. Let h be analytic in U and let ψ ∈ Ψ′n[h, q]. If p ∈ Q(a) and q ∈ H[a, n] satisfy the
condition (2.2) and ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) is univalent in U, then

h(z) ≺ ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) (2.4)

implies that
q(z) ≺ p(z) (z ∈ U).

Theorems 2 and 3 can only be used to obtain subordinants of third-order differential superor-
dination of the form (2.3) or (2.4).

Theorem 4. Let h be analytic in U and let ψ : C4×U→ C. Suppose that the following differential
equation:

ψ
(
q(z), zq′(z), z2q′′(z), z3q′′′(z); z

)
= h(z) (2.5)

has a solution q ∈ Q(a). If ψ ∈ Ψ′n[h, q], p ∈ Q(a) and ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) is
univalent in U, then (2.4) implies that

q(z) ≺ p(z) (z ∈ U)

and q(z) is the best subordinant.

Proof. Since ψ ∈ Ψ′n[h, q], by applying Theorem 3, we deduce that q is a subordinant of (2.4).
Since q satisfies (2.5), it is also a solution of the differential superordination (2.4) and therefore all
subordinants of (2.4) will be subordinate to q. Hence, q will be the best subordinant of (2.4).

Next, by making use of the third-order differential superordination results obtained in Section
2 (see, for details, Theorems 2, 3 and 4), we determine certain appropriate classes of admissible
functions and investigate some third-order differential superordination properties of analytic func-
tions associated with the operator Bcκ defined by (1.6). New third-order differential sandwich-type
results for the operator Bcκ are also obtained. It should be remarked in passing that, in recent
years, several authors obtained many interesting results involving various linear and nonlinear
operators associated with (second-order) differential subordination and superordination, the in-
terested reader may refer to, for example, (see [1] to [6], [12] to [14], [31] and [32]).
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3. Third-order differential superordination and sandwich-type results

In this section, we obtain some third-order differential superordination and sandwich-type results
for functions associated with the operator Bcκ defined by (1.6). For this aim, the class of admis-
sible functions is given in the following definition.

Definition 6. Let Ω be a set in C and q ∈ H0 with q′(z) 6= 0. The class of admissible functions
Φ′B [Ω, q] consists of those functions φ : C4 × U→ C that satisfy the admissibility condition:

φ(α, β, γ, δ; ξ) ∈ Ω

whenever

α = q(z), β =
zq′(z) +m(κ− 1)q(z)

mκ
,

<
(
κ(κ− 1)γ − (κ− 1)(κ− 2)α

κβ − (κ− 1)α
− (2κ− 3)

)
5

1
m
<
(
zq′′(z)
q′(z)

+ 1
)

and

<
(
κ(κ− 1)((1− κ)α+ 3κβ + (1− 3κ)γ + (κ− 2)δ)

α+ κ(β − α)

)
5

1
m2
<
(
z2q′′′(z)

q′(z)

)
,

where z ∈ U, κ ∈ C\{0, 1, 2}, ξ ∈ ∂U and m = 2.

Theorem 5. Let φ ∈ Φ′B [Ω, q]. If the functions f ∈ A, Bcκ+1f(z) ∈ Q0 and q ∈ H0 with q′(z) 6= 0
satisfy the following condition:

<
(
zq′′(z)
q′(z)

)
= 0,

∣∣∣∣Bcκf(z)
q′(z)

∣∣∣∣ 5 m, (3.1)

and
φ(Bcκ+1f(z), Bcκf(z), Bcκ−1f(z), Bcκ−2f(z); z)

is univalent in U, then

Ω ⊂
{
φ(Bcκ+1f(z), Bcκf(z), Bcκ−1f(z), Bcκ−2f(z); z) : z ∈ U

}
(3.2)

implies that
q(z) ≺ Bcκ+1f(z) (z ∈ U).

Proof. Define the analytic function p(z) in U by

p(z) = Bcκ+1f(z). (3.3)

Then, differentiating (3.3) with respect to z and using (1.7), we have

Bcκf(z) =
zp′(z) + (κ− 1)p(z)

κ
. (3.4)

Further computations show that

Bcκ−1f(z) =
z2p′′(z) + 2(κ− 1)zp′(z) + (κ− 1)(κ− 2)p(z)

κ(κ− 1)
, (3.5)

and

Bcκ−2f(z) =
z3p′′′(z) + 3(κ− 1)z2p′′(z) + 3(κ− 1)(κ− 2)zp′(z) + (κ− 1)(κ− 2)(κ− 3)p(z)

κ(κ− 1)(κ− 2)
.

(3.6)



10

We now define the transformation from C4 to C by

α(r, s, t, u) = r, β(r, s, t, u) =
s+ (κ− 1)r

κ
, γ(r, s, t, u) =

t+ 2(κ− 1)s+ (κ− 1)(κ− 2)r
κ(κ− 1)

(3.7)
and

δ(r, s, t, u) =
u+ 3(κ− 1)t+ 3(κ− 1)(κ− 2)s+ (κ− 1)(κ− 2)(κ− 3)r

κ(κ− 1)(κ− 2)
. (3.8)

Let

ψ(r, s, t, u; z) = φ(α, β, γ, δ; z)

= φ

(
r,
s+ (κ− 1)r

κ
,
t+ 2(κ− 1)s+ (κ− 1)(κ− 2)r

κ(κ− 1)
,

u+ 3(κ− 1)t+ 3(κ− 1)(κ− 2)s+ (κ− 1)(κ− 2)(κ− 3)r
κ(κ− 1)(κ− 2)

; z
)
. (3.9)

Using equations (3.3) to (3.6), we find from (3.9) that

ψ
(
p(z), zp′(z), z2p′′(z), z3p′′′(z); z

)
= φ(Bcκ+1f(z), Bcκf(z), Bcκ−1f(z), Bcκ−2f(z); z). (3.10)

Since φ ∈ Φ′B [Ω, q], (3.10) and (3.2) yield

Ω ⊂
{
ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U

}
.

From (3.7) and (3.8), we see that the admissible condition for φ ∈ Φ′B [Ω, q] in Definition 10-
6 is equivalent to the admissible condition for ψ as given in Definition 5 with n = 2. Hence
ψ ∈ Ψ′2[Ω, q], and by using (3.1) and Theorem 2, we have

q(z) ≺ p(z) (z ∈ U)

or equivalently,
q(z) ≺ Bcκ+1f(z) (z ∈ U),

which evidently completes the proof of Theorem 5.

If Ω 6= C is a simply connected domain and Ω = h(U) for some conformal mapping h(z) of U
onto Ω, then the class Φ′B [h(U), q] is written as Φ′B [h, q]. Proceedings similarly as in the previous
section, the following result is an immediate consequence of Theorem 5.

Theorem 6. Let φ ∈ Φ′B [h, q] and h be analytic in U. If the functions f ∈ A, Bcκ+1f(z) ∈ Q0

and q ∈ H0 with q′(z) 6= 0 satisfy the condition (3.1) and

φ(Bcκ+1f(z), Bcκf(z), Bcκ−1f(z), Bcκ−2f(z); z)

is univalent in U, then

h(z) ≺ φ(Bcκ+1f(z), Bcκf(z), Bcκ−1f(z), Bcκ−2f(z); z) (3.11)

implies that
q(z) ≺ Bcκ+1f(z) (z ∈ U).

Theorems 5 and 6 can only be used to obtain subordinations of third-order differential super-
ordination of the form (3.2) or (3.11). The following theorem proves the existence of the best
subordinant of (3.11) for a suitable φ.
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Theorem 7. Let h be analytic in U, and let φ : C4 × U → C and ψ be given by (3.9). Suppose
that the differential equation

ψ(q(z), zq′(z), z2q′′(z), z3q′′′(z); z) = h(z)

has a solution q(z) ∈ Q0. If the functions f ∈ A, Bcκ+1f(z) ∈ Q0 and q ∈ H0 with q′(z) 6= 0
satisfy the condition (3.1) and

φ(Bcκ+1f(z), Bcκf(z), Bcκ−1f(z), Bcκ−2f(z); z)

is univalent in U, then

h(z) ≺ φ(Bcκ+1f(z), Bcκf(z), Bcκ−1f(z), Bcκ−2f(z); z)

implies that
q(z) ≺ Bcκ+1f(z) (z ∈ U)

and q(z) is the best subordinant.

Proof. The proof of Theorem 7 is similar to that of Theorem 2.3 in [33] and it therefore omitted
here.

Combining the above Theorem 6 and Theorem 2.2 in [33], we obtain the following sandwich-
type result.

Corollary 1. Let h1 and q1 be analytic functions in U, h2 be univalent function in U, q2 ∈ Q0 with
q1(0) = q2(0) = 0 and φ ∈ ΦB [h2, q2] ∩ Φ′B [h1, q1]. If the functions f ∈ A, Bcκ+1f(z) ∈ Q0 ∩ H0

and
φ(Bcκ+1f(z), Bcκf(z), Bcκ−1f(z), Bcκ−2f(z); z)

is univalent in U, and the condition (2.1) in [33], that is, that

<
(
ξq′′(ξ)
q′(ξ)

)
= 0,

∣∣∣∣Bcκf(z)
q′(ξ)

∣∣∣∣ 5 k

and the condition (3.1) are satisfied, then

h1(z) ≺ φ(Bcκ+1f(z), Bcκf(z), Bcκ−1f(z), Bcκ−2f(z); z) ≺ h2(z)

implies that
q1(z) ≺ Bcκ+1f(z) ≺ q2(z) (z ∈ U).

Definition 7. Let Ω be a set in C and q ∈ H0 with q′(z) 6= 0. The class of admissible functions
Φ′B,1[Ω, q] consists of those functions φ : C4 × U→ C that satisfy the admissibility condition:

φ(α, β, γ, δ; ξ) ∈ Ω

whenever

α = q(z), β =
zq′(z) +mκq(z)

mκ
,

<
(

(κ− 1)(γ − α)
β − α

+ (1− 2κ)
)

5
1
m
<
(
zq′′(z)
q′(z)

+ 1
)

and

<
(

(κ− 1)(κ− 2)(δ − α)− 3κ(κ− 1)(γ − 2α+ β)
β − α

+ 6κ2

)
5

1
m2
<
(
z2q′′′(z)

q′(z)

)
,
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where z ∈ U, κ ∈ C\{0, 1, 2}, ξ ∈ ∂U and m = 2.

Theorem 8. Let φ ∈ Φ′B,1[Ω, q]. If the functions f ∈ A, Bcκ+1f(z)

z ∈ Q0 and q ∈ H0 with
q′(z) 6= 0 satisfy the following condition:

<
(
zq′′(z)
q′(z)

)
= 0,

∣∣∣∣Bcκf(z)
zq′(z)

∣∣∣∣ 5 m, (3.12)

and

φ

(
Bcκ+1f(z)

z
,
Bcκf(z)

z
,
Bcκ−1f(z)

z
,
Bcκ−2f(z)

z
; z
)

is univalent in U, then

Ω ⊂
{
φ

(
Bcκ+1f(z)

z
,
Bcκf(z)

z
,
Bcκ−1f(z)

z
,
Bcκ−2f(z)

z
; z
)

: z ∈ U
}

(3.13)

implies that

q(z) ≺
Bcκ+1f(z)

z
(z ∈ U).

Proof. Define the analytic function p(z) in U by

p(z) =
Bcκ+1f(z)

z
. (3.14)

By making use of (1.7) and (3.14), we get

Bcκf(z)
z

=
zp′(z) + κp(z)

κ
. (3.15)

Further computations show that

Bcκ−1f(z)
z

=
z2p′′(z) + 2κzp′(z) + κ(κ− 1)p(z)

κ(κ− 1)
(3.16)

and

Bcκ−2f(z)
z

=
z3p′′′(z) + 3κz2p′′(z) + 3κ(κ− 1)zp′(z) + κ(κ− 1)(κ− 2)p(z)

κ(κ− 1)(κ− 2)
. (3.17)

We next define the transformation from C4 to C by

α(r, s, t, u) = r, β(r, s, t, u) =
s+ κr

κ
, γ(r, s, t, u) =

t+ 2κs+ κ(κ− 1)r
κ(κ− 1)

(3.18)

and

δ(r, s, t, u) =
u+ 3κt+ 3κ(κ− 1)s+ κ(κ− 1)(κ− 2)r

κ(κ− 1)(κ− 2)
. (3.19)

Then, upon setting

ψ(r, s, t, u; z) = φ(α, β, γ, δ; z)

= φ

(
r,
s+ κr

κ
,
t+ 2κs+ κ(κ− 1)r

κ(κ− 1)
,

u+ 3κt+ 3κ(κ− 1)s+ κ(κ− 1)(κ− 2)r
κ(κ− 1)(κ− 2)

; z

)
, (3.20)
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if we use the equations (3.14) to (3.17), we find from (3.20) that

ψ
(
p(z), zp′(z), z2p′′(z), z3p′′′(z); z

)
= φ

(
Bcκ+1f(z)

z
,
Bcκf(z)

z
,
Bcκ−1f(z)

z
,
Bcκ−2f(z)

z
; z
)
. (3.21)

Since φ ∈ Φ′B,1[Ω, q], it follows from (3.21) and (3.13) that

Ω ⊂
{
ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U

}
.

From (3.18) and (3.19), we see that the admissible condition for φ ∈ Φ′B,1[Ω, q] in Definition
7 is equivalent to the admissible condition for ψ as given in Definition 5 with n = 2. Hence
ψ ∈ Ψ′2[Ω, q], and by using (3.12) and Theorem 2, we get

q(z) ≺ p(z) (z ∈ U)

or, equivalently,

q(z) ≺
Bcκ+1f(z)

z
(z ∈ U).

In the case Ω 6= C is a simply-connected domain with Ω = h(U) for some conformal mapping
h(z) of U onto Ω, the class Φ′B,1[h(U), q] is written as Φ′B,1[h, q]. Proceedings similarly, the fol-
lowing result is an immediate consequence of Theorem 8.

Theorem 9. Let φ ∈ Φ′B,1[h, q] and h be analytic in U. If the functions f ∈ A, Bcκ+1f(z)

z ∈ Q0

and q ∈ H0 with q′(z) 6= 0 satisfy the condition (3.12) and

φ

(
Bcκ+1f(z)

z
,
Bcκf(z)

z
,
Bcκ−1f(z)

z
,
Bcκ−2f(z)

z
; z
)

is univalent in U, then

h(z) ≺ φ
(
Bcκ+1f(z)

z
,
Bcκf(z)

z
,
Bcκ−1f(z)

z
,
Bcκ−2f(z)

z
; z
)

implies that

q(z) ≺
Bcκ+1f(z)

z
(z ∈ U).

Combining the above Theorem 9 and Theorem 2.5 in [33], we have the following sandwich-type
result.

Corollary 2. Let h1 and q1 be analytic functions in U, h2 be univalent function in U, q2 ∈ Q0 with
q1(0) = q2(0) = 0 and φ ∈ ΦB,1[h2, q2]∩Φ′B,1[h1, q1]. If the functions f ∈ A, Bcκ+1f(z)

z ∈ Q0 ∩H0

and

φ

(
Bcκ+1f(z)

z
,
Bcκf(z)

z
,
Bcκ−1f(z)

z
,
Bcκ−2f(z)

z
; z
)

is univalent in U, and the condition (2.12) in [33], that is, that

<
(
ξq′′(ξ)
q′(ξ)

)
= 0,

∣∣∣∣Bcκf(z)
zq′(ξ)

∣∣∣∣ 5 k

and the condition (3.12) are satisfied, then

h1(z) ≺ φ
(
Bcκ+1f(z)

z
,
Bcκf(z)

z
,
Bcκ−1f(z)

z
,
Bcκ−2f(z)

z
; z
)
≺ h2(z)
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implies that

q1(z) ≺
Bcκ+1f(z)

z
≺ q2(z) (z ∈ U).

Remark 1. By suitably specializing the results presented in this paper, we can obtain the
corresponding results for the simpler operators Jpf(z), Ipf(z) and Spf(z), which are defined by
(1.8), (1.9) and (1.10), respectively.

4. Concluding Remarks and Observations

In our present investigation, we have derived several third-order differential superordination re-
sults for analytic functions in the open unit disk U by using the operator Bcκ which is defined by
means of the convolution in (1.6) involving the normalized form of the three-parameter family
ωp,b,c(z) of the generalized Bessel functions of the first kind, which is defined by (1.3). Our results
have been obtained by considering suitable classes of admissible functions. Furthermore, some
third-order differential sandwich-type results for the operator Bcκ have been obtained.
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