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Abstract

A 2-rainbow dominating function (2RDF) on a graph G = (V,E) is a function f from the
vertex set V to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V with
f(v) = ∅ the condition

⋃
u∈N(v) f(u) = {1, 2} is fulfilled. A 2RDF f is independent (I2RDF)

if no two vertices assigned nonempty sets are adjacent. The weight of a 2RDF f is the value
ω(f) =

∑
v∈V |f(v)|. The 2-rainbow domination number γr2(G) (respectively, the independent 2-

rainbow domination number ir2(G) ) is the minimum weight of a 2RDF (respectively, I2RDF) on
G. We say that γr2(G) is strongly equal to ir2(G) and denote by γr2(G) ≡ ir2(G), if every 2RDF
on G of minimum weight is an I2RDF. In this paper we provide a constructive characterization
of trees T with γr2(T ) ≡ ir2(T ).

Keywords: 2-rainbow domination number, independent 2-rainbow domination number, strong
equality, tree.
MSC 2000: 05C69

1 Introduction

Let G be a simple graph with vertex set V = V (G) and edge set E = E(G). For every vertex v ∈ V ,
the open neighborhood N(v) is the set {u ∈ V | uv ∈ E} and the closed neighborhood of v is the
set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is degG(v) = deg(v) = |N(v)|. If A ⊆ V (G),
then G[A] is the subgraph induced by A. A vertex of degree one is called a leaf , and its neighbor is
called a support vertex. If v is a support vertex, then Lv will denote the set of all leaves adjacent to
v. A support vertex v is called strong support vertex if |Lv| > 1. For r, s ≥ 1, a double star S(r, s) is
a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and the other to
s leaves. For a vertex v in a rooted tree T , let C(v) denote the set of children of v, D(v) denote the
set of descendants of v and D[v] = D(v) ∪ {v}, and the depth of v, depth(v), is the largest distance
from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by D(v) ∪ {v},
and is denoted by Tv. For terminology and notation on graph theory not given here, the reader is
referred to [14].
∗Corresponding author
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For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f
from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex
v ∈ V (G) with f(v) = ∅ the condition

⋃
u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled. The weight of a

kRDF f is the value ω(f) =
∑

v∈V |f(v)|. The k-rainbow domination number of a graph G, denoted
by γrk(G), is the minimum weight of a kRDF of G. A γrk(G)-function is a k-rainbow dominating
function of G with weight γrk(G). Note that γr1(G) is the classical domination number γ(G).
The k-rainbow domination number was introduced by Brešar, Henning, and Rall [3] and has been
studied by several authors (see for example [4, 6, 7, 8, 13]). Note that 1-rainbow domination number
is the usual domination number. To study other domination parameters we refer the readers to
[1, 2, 15, 16].

A k-rainbow dominating function f is called an independent k-rainbow dominating function (ab-
breviated IkRDF) on G if the set V (G) − {v ∈ V | f(v) = ∅} is independent. The independent
k-rainbow domination number, denoted by irk(G), is the minimum weight of an IkRDF on G.
An independent k-rainbow dominating function f is called an irk(G)-function if ω(f) = irk(G).
Since each independent k-rainbow dominating function is a k-rainbow dominating function, we have
γrk(G) ≤ irk(G).

Clearly if γrk(G) = irk(G), then every irk(G)-function is also a γrk(G)-function. However not
every γrk(G)-function is an irk(G)-function, even when γrk(G) = irk(G). For example the double
star S(k, k+1) has two γrk(S(k, k+1))-function but only one of them is an irk(S(k, k+1))-function.
We say that γrk(G) and irk(G) are strongly equal and denote by γrk(G) ≡ irk(G), if every γrk(G)-
function is an irk(G)- function.

Haynes and Slater in [11] were the first to introduce strong equality between two parameters.
Also in [9] and [10], Haynes, Henning and Slater gave constructive characterizations of trees with
strong equality between some domination parameters.

Our purpose in this paper, is to present a constructive characterizations of trees T with γr2(T ) ≡
ir2(T ).

We make use of the following result in this paper.

Proposition A. [6] Let G be a connected graph. If there is a path v3v2v1 in G with deg(v2) = 2
and deg(v1) = 1, then G has a γr2(G)-function f such that f(v1) = {1} and 2 ∈ f(v3).

Corollary 1. Let T be a tree with γr2(T ) ≡ ir2(T ). If there is a path v3v2v1 in T with deg(v2) = 2
and deg(v1) = 1 such that v3 is a support vertex, then T has a γr2(T )-function f such that f(v3) =
{1, 2}, |f(v1)| = 1 and |f(x)| = 0 for every x ∈ Lv3 ∪ {v2}.

Observation 2. Let T be a tree and let z be a strong support vertex of T . Then

(a) T has a γr2(T )-function such that f(z) = {1, 2}.

(b) γr2(T ) 6≡ ir2(T ) if and only if T has a γr2(T )-function that is not independent and f(z) =
{1, 2}.

Proof. (a) The proof is immediate.
(b) Let γr2(T ) 6≡ ir2(T ). Then T has a γr2(T )-function that is not independent. If f(z) = {1, 2}, then
we are done. If |f(z)| = 1, then |f(x)| = 1 for each x ∈ Lz and the function g : V (G) → P({1, 2})
defined by g(z) = {1, 2}, g(x) = ∅ for x ∈ Lz and g(u) = f(u) otherwise, is a 2RDF of T of weight less
than ω(f) which is a contradiction. Let f(z) = ∅. Then clearly the function g : V (G) → P({1, 2})
defined by g(z) = {1, 2}, g(x) = ∅ for x ∈ Lz and g(u) = f(u) otherwise, is a γr2(T )-function with
the desired property.

2 Characterizations of trees with γr2(T ) ≡ ir2(T )

Let F1 be the family of trees that can be obtained from k ≥ 1 disjoint stars K1,2 by adding either a
new vertex v or a path uv and joining the centers of stars to v. Also let F2 be the family including
P5 and all trees obtained from k ≥ 2 disjoint P3 by adding either a new vertex v or a path uv
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and joining v to a leaf of each P3. If T belongs to F1 ∪ F2 − {P5} then we call the vertex v, the
special vertex of T and if T = P5, then its support vertices are special vertices of T . Note that if
T ∈ F1 ∪ F2, then γr2(T ) ≡ ir2(T ).

Now we provide a constructive characterization of trees T with γr2(T ) ≡ ir2(T ). For this purpose
we define a family of trees as follows: Let F be the family of trees such that: F contains star K1,2

and if T is a tree in F , then the tree T ′ obtained from T by the following seven operations which
extend the tree T by attaching a tree to a vertex y ∈ V (T ), called an attacher, is also a tree in F .

• Operation O1: If z is a strong support vertex of T ∈ F , then O1 adds a new vertex x and an
edge xz.

• Operation O2: If z is a vertex of T ∈ F , then O2 adds a new tree T1 ∈ F1 with special vertex
x and an edge xz provided that if x is a support vertex, then γr2(T − z) ≥ γr2(T ).

• Operation O3: If z is a strong support vertex of T ∈ F , then O3 adds a path zxy.

• Operation O4: If z is a vertex of T ∈ F which is adjacent to a support vertex of degree 2, then
O4 adds a path zxy.

• Operation O5: If z is a vertex of T ∈ F which is adjacent to a strong support vertex, then O5

adds a path zxyw.

• Operation O6: If z is a vertex of T ∈ F , then O6 adds new tree T2 ∈ F2 with special vertex x
and an edge xz provided that if x is a support vertex, then γr2(T − z) ≥ γr2(T ).

• Operation O7: If z is a vertex of T ∈ F such that every γr2(T )-function assigns ∅ to z, then
O7 adds the double star S(1, 2) and an edge zx where x is a leaf of S(1, 2) whose support
vertex has degree 3.

Observation 3. The family F contains all graphs in {K1,t | t ≥ 2} ∪ F1 ∪ F2.

Proof. Starting from K1,2 ∈ F and by applying t − 2 times Operation O1, we obtain the star K1,t

and hence F contains all stars. Furthermore, starting from K1,2 and by applying Operation O4, we
obtain that F contains P5.

Now let T ∈ F1. If |V (T )| = 4, then T = K1,3 and immediately T ∈ F . If |V (T )| = 5, then T
can be obtained from K1,2 by applying Operation O3. If |V (T )| ≥ 6, then T can be obtained from
K1,2 by applying Operation O2. Thus F contains all graphs in F1.

Finally let T ∈ F2 − {P5}. If |V (T )| = 7, then T = P7 and T can be obtained from P5 by
applying Operation O4 twice and so T ∈ F . If |V (T )| ≥ 9, then T can be obtained from K1,2 by
applying Operation O6. Thus F contains all graphs in F2.

Lemma 4. Let T be a tree with γr2(T ) ≡ ir2(T ) and let T ′ be the tree obtained from T by
Operation O1. Then γr2(T ′) ≡ ir2(T ′).

Proof. Assume z is a strong support vertex of T and let x is a new vertex that is attached to z by
applying Operation O1. By Observation 2 (a), T has a γr2-function f that assigns {1, 2} to z. Since
γr2(T ) ≡ ir2(T ), f is an I2RDF of T . Now we can extend f to an I2RDF of T ′ by assigning ∅ to
x, implying that γr2(T ′) ≤ ir2(T ′) ≤ ir2(T ) ≤ γr2(T ). On the other hand, by Observation 2 (a),
there is a γr2(T ′)-function g which assigns {1, 2} to z, and clearly the function g, restricted to T , is
a 2RDF of T of weight γr2(T ′), implying that γr2(T ) ≤ γr2(T ′). Hence γr2(T ′) = ir2(T ′).

It will now be shown that γr2(T ′) ≡ ir2(T ′). Suppose h is a γr2(T ′)-function that is not inde-
pendent. Since |Lz| ≥ 3, we must have f(z) = {1, 2}. Then the function h, restricted to T , is a
γr2(T )-function that is not independent which leads to a contradiction. Thus γr2(T ′) ≡ ir2(T ).

Lemma 5. Let T be a tree with γr2(T ) ≡ ir2(T ) and let T ′ be a tree obtained from T by Operation
O2. Then γr2(T ′) ≡ ir2(T ′).
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Proof. Let T1 ∈ F1 be the tree which is attached by Operation O2 to T by the edge xz for obtaining
the tree T ′, where z ∈ V (T ) is the attacher vertex, and let x1, x2, . . . , xk ∈ V (T1) be the strong
support vertices of T1. Assume x is the special vertex of T1. If x is a support vertex then let y
be the leaf that is adjacent to x. Let t be a variant defined by t = 1 if x is a support vertex, and
t = 0 otherwise. Every ir2(T )-function can be extended to an I2RDF on T ′ by assigning {1, 2} to
xi, i = 1, 2, ..., k, ∅ to u for u ∈ ∪k

i=1N(xi), and {1} to y if x is a support vertex. This implies that
ir2(T ′) ≤ ir2(T ) + 2k + t. Since γr2(T ) ≡ ir2(T ), we deduce that

γr2(T ′) ≤ ir2(T ′) ≤ γr2(T ) + 2k + t = ir2(T ) + 2k + t. (1)

Now we show that γr2(T ′) = γr2(T ) + 2k + t. Let f be a γr2(T ′)-function. It is easy to
see that

∑
u∈N [xi]−{x} |f(u)| ≥ 2, for i = 1, 2, ..., k, and |f(x)| + |f(y)| ≥ 1, if t = 1. Then∑

u∈V (T1)
|f(u)| ≥ 2k+t. If |f(x)| = 0 then f |V (T ) is a 2RDF on T , and so

∑
u∈V (T ) |f(u)| ≥ γr2(T ).

By adding two recent inequalities, we obtain γr2(T ′) =
∑

u∈V (T ′) |f(u)| ≥ γr2(T ) + 2k + t. Assume
that |f(x)| ≥ 1. Clearly if t = 1 the |f(x)| + |f(y)| ≥ 2. Thus

∑
u∈V (T1)

|f(u)| ≥ 2k + t + 1.
If |f(z)| 6= 0 then f |V (T ) is a 2RDF on T , and if |f(z)| = 0 then the function f1 defined on
V (T ) by f1(z) = {1} and f1(u) = f(u) if u ∈ V (T ) − {z} is a 2RDF for T . It follows that
γr2(T ′) ≥ γr2(T ) + 2k + t. Hence we can deduce that

γr2(T ′) = γr2(T ) + 2k + t. (2)

By (1) and (2), we have

ir2(T ′) = ir2(T ) + 2k + t = γr2(T ) + 2k + t = γr2(T ′).

It will now be shown that γr2(T ′) ≡ ir2(T ′). Assume h is a γr2(T ′)-function that is not inde-
pendent. We may assume that h assigns {1, 2} to each support vertex adjacent to x. If |h(x)| = 0
then clearly h|V (T ) is a γr2(T )-function that is not independent, a contradiction with the assump-
tion γr2(T ) ≡ ir2(T ). Thus |h(x)| ≥ 1. Then |h(z)| = 0 and

∑
v∈V (T1)

|h(v)| ≥ 2k + 1 + t. If
|h(x)| = 1, then

∑
w∈NT (z) |h(w)| ≥ 1 and the function g : V (T )→ P({1, 2}) defined by g(z) = {1}

and g(u) = h(u) for u ∈ V (T ) − {z} is a γr2(T )-function that is not independent, contradicting
γr2(T ) ≡ ir2(T ). Thus |h(x)| = 2. Then x is a support vertex. Now

γr2(T − z) ≤
∑

u∈V (T−z)

|h(u)| = γr2(T ′)− 2k − 1− t < γr2(T ).

This is a contradiction with the assumption γr2(T − z) ≥ γr2(T ). Therefore, γr2(T ′) ≡ ir2(T ′) and
the proof is complete.

Lemma 6. If T is a tree with γr2(T ) ≡ ir2(T ) and T ′ is a tree obtained from T by Operation O3,
then γr2(T ′) ≡ ir2(T ′).

Proof. Let z ∈ V (T ) be a strong support vertex and let zxy be the path added by Operation
O3 to obtain T ′. Let f be a γr2(T )-function such that f(z) = {1, 2} (Observation 2 (a)). Since
γr2(T ) ≡ ir2(T ), f is an I2RDF of T . We can extend f to an I2RDF on T ′ by assigning ∅ to x and
{1} to y, and thus

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T ) + 1 = γr2(T ) + 1. (3)

Let now f1 be a γr2(T ′)-function. We can assume f1(z) = {1, 2} by Observation 2 (a). Since f1 is
a γr2(T ′)-function, we must have |f1(x)| = 0 and |f1(y)| = 1. Then f1|V (T ) is a 2RDF on T , and so

γr2(T ) ≤ γr2(T ′)− 1. (4)

It follows from (3) and (4) that γr2(T ′) = ir2(T ′) = γr2(T ) + 1 = ir2(T ) + 1.
Finally we shall show that γr2(T ′) ≡ ir2(T ′). Assume h is a γr2(T ′)-function that it is not

independent. First let |h(x)| ≥ 1. Then |h(x)| + |h(y)| = 2. If |h(z)| 6= 0 then replace h(x) by ∅
and h(y) by {1} or {2} to obtain a 2RDF for T ′ of weight less than γr2(T ′), a contradiction. Thus
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|h(z)| = 0. Then clearly |h(u)| = 1 for any leaf u adjacent to z and the function h1 : V (T ′) →
P({1, 2}) defined by h1(y) = {1}, h1(z) = {1, 2}, h1(u) = ∅ for u ∈ Lz ∪ {x} and h1(w) = h(w)
otherwise, is a 2RDF for T ′ of weight less than γr2(T ′), a contradiction. Now let |h(x)| = 0. Then
clearly |h(y)| = 1 (else we could make a change to be in the previous case |h(x)| ≥ 1), and h|V (T )

is a γr2(T )-function which is not independent, a contradiction. Hence, γr2(T ′) ≡ ir2(T ′). This
completes the proof.

Lemma 7. If T is a tree with γr2(T ) ≡ ir2(T ) and T ′ is a tree obtained from T by Operation O4,
then γr2(T ′) ≡ ir2(T ′).

Proof. Let z ∈ V (T ) be a vertex which is adjacent to a support vertex of degree 2 such as w, and
let Operation O4 adds the path zxy to T .

First let degT (z) ≥ 2. Let w′ be the leaf adjacent to w. Assume f is a γr2(T )-function such that
2 ∈ f(z) (Proposition A). Since γr2(T ) ≡ ir2(T ), f is an ir2(T )-function. Now f can be extended
to an I2RDF on T ′ by assigning ∅ to x and {1} to y. Thus

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T ) + 1 = γr2(T ) + 1. (5)

On the other hand, if f1 is a γr2(T ′)-function, then we may assume that 2 ∈ f1(z) by Proposition
A. Clearly |f1(x)|+ |f1(y)| ≥ 1 and f1|V (T ) is a 2RDF on T of weight at most γr2(T ′)− 1, implying
that γr2(T ′) ≥ γr2(T ) + 1. It follows from (5) and the recent inequality that γr2(T ′) = ir2(T ′) =
ir2(T ) + 1 = γr2(T ) + 1.

It will now be shown that γr2(T ′) ≡ ir2(T ′). Suppose h is a γr2(T ′)-function which it is not
independent. If |h(z)| > 0 then we must have |h(x)| = 0 and |h(y)| = 1, and so h|V (T ) is a γr2(T )-
function which is not independent, a contradiction. Let |h(z)| = 0. Then obviously |h(x)|+ |h(y)| =
|h(w)| + |h(w′)| = 2. Then the function g : V (T ′) → P({1, 2}) defined by g(x) = g(w) = ∅,
g(y) = g(w′) = {1}, g(z) = {2} and g(u) = f(u) for u ∈ V (T ′)− {x, y, w,w′, z}, is a 2RDF of T ′ of
weight less than γr2(T ′), a contradiction. Thus γr2(T ′) ≡ ir2(T ′).

Now let degT (z) = 1, i.e. z is a leaf.
Assume f is a γr2(T )-function. By Proposition A, we may assume that f(z) = {1} . Note that

f is an ir2(T )-function because γr2(T ) ≡ ir2(T ). Then f can be extended to an I2RDF on T ′ by
assigning ∅ to x and {2} to y. This implies that

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T ) + 1 = γr2(T ) + 1. (6)

On the other hand, if f1 is a γr2(T ′)-function then by Proposition A, we may assume f1(y) = {1}
and 2 ∈ f1(z). Then f1|V (T ) is a 2RDF of T of weight at most γr2(T ′)− 1 implying that γr2(T ′) ≥
γr2(T )+1. It follows from the last inequality and (6) that γr2(T ′) = ir2(T ′) = γr2(T )+1 = ir2(T )+1.

Next we show that γr2(T ′) ≡ ir2(T ′). Assume h is a γr2(T ′)-function that it is not independent.
If |h(z)| > 0 then we may assume that |h(x)| = 0 and |h(y)| = 1, and so h|V (T ) is a γr2(T )-function
which is not independent, a contradiction. Let h(z) = ∅. Then |h(x)| + |h(y)| ≥ 2. If |h(w)| = 0
then |h(x)| = 2 and |h(y)| = 0, and the function h1 : V (T )→ P({1, 2}) defined by h1(z) = {1} and
h1(u) = h(u) if u ∈ V (T ) − {z} is a γr2(T )-function which is not independent, a contradiction. If
|h(w)| ≥ 1 then it follows from |h(x)|+ |h(y)| ≥ 2 that the function h1 : V (T ) → P({1, 2}) defined
above, is a γr2(T )-function which is not independent, a contradiction. Hence γr2(T ′) ≡ ir2(T ′).

Lemma 8. If T is a tree with γr2(T ) ≡ ir2(T ) and T ′ is a tree obtained from T by Operation O5,
then γr2(T ′) ≡ ir2(T ′).

Proof. Let z ∈ V (T ) be a vertex that has a strong support vertex u in its neighborhood and let
Operation O5 add the path zxyw to T for obtaining T ′. Any 2RDF of T can be extended to a 2RDF
for T ′ by assigning {1, 2} to y, and ∅ to x and w. Since γr2(T ) ≡ ir2(T ), we deduce that

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T ) + 2 = γr2(T ) + 2. (7)

Let f be a γr2(T ′)-function. We may assume f(w) = {1}, f(y) = ∅ and 2 ∈ f(x), by Proposition
A. Also we may assume that |f(u)| = 2, since u is a strong support vertex. Then f |V (T ) is a 2RDF
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on T of weight at most γr2(T ′)− 2, and so γr2(T ) ≤ γr2(T ′)− 2. It follows from (7) that

γr2(T ′) = ir2(T ′) = ir2(T ) + 2 = γr2(T ) + 2.

To show that γr2(T ′) ≡ ir2(T ′), suppose h is a γr2(T ′)-function that it is not independent. Since
u is a strong support vertex, we may assume |h(u)| = 2. Then clearly h(z) = ∅ and |h(x)|+ |h(y)|+
|h(w)| = 2, and so h|V (T ) is a γr2(T )-function which is not independent, a contradiction. Hence
γr2(T ′) ≡ ir2(T ′) and the proof is completed.

The proof of next lemma is similar to the proof of Lemma 5, and therefore omitted.

Lemma 9. If T is a tree with γr2(T ) ≡ ir2(T ), and T ′ is a tree obtained from T by Operation O6,
then γr2(T ) ≡ ir2(T ).

Lemma 10. If T is a tree with γr2(T ) ≡ ir2(T ) and T ′ is a tree obtained from T by Operation O7,
then γr2(T ′) ≡ ir2(T ′).

Proof. Let z be a vertex of T such that every γr2(T )-function assign ∅ to it, and let x be a leaf
of double star S(1, 2) whose support vertex has degree 3. Assume that Operation O7 adds the
double star S(1, 2) and the edge xz to obtain T ′ from T . Let V (S(1, 2)) = {x, v, v0, u, u0} where
N(v) = {x, u, v0} and u ∈ N(u0). Any 2RDF of T can be extended to a 2RDF on T ′ by assigning
∅ to x, u and v0, {1, 2} to v and {1} to u0. Since γr2(T ) ≡ ir2(T ), we deduce that

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T ) + 3 = γr2(T ) + 3. (8)

Let f be a γr2(T ′)-function such that f(u0) = {1} and 2 ∈ f(v) by Observation A. Clearly
|f(v)| + |f(u0)| + |f(u)| + |f(v0)| ≥ 3. We may assume that |f(x)| = 0, otherwise we replace f(x)
by ∅ and f(z) by f(z)∪ f(x). Then f |V (T ) is a 2RDF of T , implying that γr2(T ) ≤ γr2(T ′)− 3. By
(8), we have γr2(T ′) = ir2(T ′) = γr2(T ) + 3 = ir2(T ) + 3.

It now will be shown that γr2(T ′) ≡ ir2(T ′). Suppose h is a γr2(T ′)-function which is not
independent. Clearly

∑
y∈V (S(1,2)) |h(y)| ≥ 3. If |h(z)| > 0, then h|V (T ) is a γr2(T )-function

assigning non empty set to z which leads to a contradiction. Thus |h(z)| = 0. If
∑

y∈V (S(1,2)) |h(y)| ≥
4, then we change the values of h on V (S(1, 2)) ∪ {z} to h(z) = h(u0) = {1}, h(v) = {1, 2}, and
h(x) = h(u) = h(v0) = ∅, then the new function plays the role of h which has been considered
earlier. Thus we assume that

∑
y∈V (S(1,2)) |h(y)| = 3. Then clearly |h(x)| = 0, and h|V (T ) is a

γr2(T )-function which is not independent, a contradiction. Hence γr2(T ′) ≡ ir2(T ′).

Theorem 11. Each tree T in family F ∪ {K1} satisfies γr2(T ) ≡ ir2(T ).

Proof. If T = K1, then clearly γr2(T ) ≡ ir2(T ). Let T ∈ F . Then T is obtained from a star K1,2

by successive operations T 1, . . . , T m, where T i ∈ {O1, . . . ,O7} if m ≥ 1 and T = K1,2 if m = 0.
The proof is by induction on m. If m = 0, then clearly γr2(K1,2) ≡ ir2(K1,2). Let m ≥ 1 and
that the statement holds for all trees which are obtained from K1,2 by applying m− 1 operations in
{O1, . . . ,O7}. It follows from Lemmas 4, . . . , 10 that γr2(T ) ≡ ir2(T ).

Observation 12. If S(p, q) is a double star with q ≥ p ≥ 1 and γr2(S(p, q)) ≡ ir2(S(p, q)), then
p = 1 and q ≥ 2.

Theorem 13. Let T be a tree of order n. If γr2(T ) ≡ ir2(T ), then T ∈ F ∪ {K1}.

Proof. The proof is by induction on n. If n = 1 then T = K1. Let the statement holds for all trees
of order less than n and let T be a tree of order n with γr2(T ) ≡ ir2(T ). Since γr2(P2) 6≡ ir2(P2),
we may assume that n ≥ 3. If diam(T ) = 2 then T is a star and by Observation 3, T ∈ F . If
diam(T ) = 3, then T is a double star S(p, q) with q ≥ p ≥ 1. By Observation 12, we have p = 1
and q ≥ 2. Then T can be obtained from K1,q by Operation O3 and so T ∈ F . Therefore, we may
assume that diam(T ) ≥ 4.

Let v1v2 . . . vk (k ≥ 5) be a diametral path in T such that |Lv2 | is as large as possible and root
T at vk. Also suppose among paths with this property we choose a path such that |Lv3 | is as large
as possible.
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Assume first that deg(v2) ≥ 4. Let f be a γr2(T )-function. Then clearly f(v2) = {1, 2} and
so f is a 2RDF of T − v1. Since γr2(T ) ≡ ir2(T ), f is also an I2RDF of T − v1, implying that
γr2(T ) = ir2(T ) ≥ ir2(T − v1) ≥ γr2(T − v1). On the other hand, by Observation 2 (a), T − v1 has
a γr2-function g that assigns {1, 2} to v2. Then g can be extended to a γr2(T )-function by assigning
∅ to v1 that yields γr2(T ) ≤ γr2(T − v1). Hence γr2(T ) = ir2(T ) = ir2(T − v1) = γr2(T − v1).

We show that γr2(T − v1) ≡ ir2(T − v1). Suppose that there is a γr2(T − v1)-function g that is
not independent. Since g is a γr2(T − v1)-function, we must have |g(v2)|+

∑
u∈Lv2−{v1} |g(u)| = 2.

Now the function h : V (T − v1)→ P({1, 2}) defined by h(v2) = {1, 2}, h(u) = ∅ for u ∈ Lv2 − {v1}
and h(x) = g(x) otherwise, is a 2RDF of T − v1 which in not independent. It is clear that h can
be extended to a γr2(T )-function which is not independent by assigning ∅ to v1. This leads to a
contradiction with γr2(T ) ≡ ir2(T ). Thus γr2(T − v1) ≡ ir2(T − v1). It follows from the inductive
hypothesis that T − v1 ∈ F . Now it is clear that T can be obtained from T − v1 ∈ F by applying
Operation O1.

Assume next that deg(v2) = 3. Let u ∈ Lv2 − {v1}. We claim that v3 is not a strong support
vertex. Assume to the contrary that v3 is a strong support vertex. By Observation 2 (a), T has
a γr2(T )-function f such that f(v3) = {1, 2}. Clearly |f(v2)| + |f(v1)| + |f(u)| = 2. Now the
function g : V (T ) → P({1, 2}) defined by g(v2) = {1, 2}, g(v1) = g(u) = ∅ and g(x) = f(x) for
x ∈ V (T ) − {u, v1, v2} is clearly a γr2(T )-function that is not independent, a contradiction with
γr2(T ) ≡ ir2(T ). Thus v3 is not a strong support vertex. Using Proposition A and an argument
similar to that described above, we deduce that v3 is not adjacent to a support vertex of degree 2.
By the choice of the diametral path, we deduce that any child of v3 is a leaf or a support vertex of
degree 3 and at most one of them is leaf. This implies that Tv3 ∈ F1. Let T ′ = T − Tv3 .

We claim that if v3 is a support vertex, then γr2(T ′ − v4) ≥ γr2(T ′). Let v3 be a support vertex
and let to the contrary that γr2(T ′ − v4) < γr2(T ′). Assume h is a γr2(T ′ − v4)-function and define
g : V (T )→ P({1, 2}) by g(x) = h(x) for x ∈ V (T ′)−{v4}, g(x) = {1, 2} for x ∈ N [v3]− (Lv3 ∪{v4})
and g(x) = ∅ otherwise. Obviously g is a γr2(T )-function that is not independent, a contradiction
with γr2(T ) ≡ ir2(T ). Thus γr2(T ′ − v4) ≥ γr2(T ′) when v3 is a support vertex.

It will now be shown that γr2(T ′) ≡ ir2(T ′). First we show that γr2(T ′) = ir2(T ′). Since every
γr2(T ′)-function can be extended to a 2RDF on T by assigning {1, 2} to the strong support vertices
in NTv3

(v3), {1} to the leaf adjacent to v3, if any, and ∅ to the other vertices in Tv3 , we deduce that

ir2(T ) = γr2(T ) ≤ γr2(T ′) + 2k + t ≤ ir2(T ′) + 2k + t (9)

where k is the number of strong support vertices adjacent to v3 in Tv3 and t is the number of leaf
adjacent to v3. On the other hand, let f be a γr2(T )-function. By Observation 2 (a), we may
assume that f assigns {1, 2} to the strong support vertices in Tv3 . Since γr2(T ) ≡ ir2(T ), f is an
I2RDF. Then f assigns ∅ to v3 and {1} or {2} to the leaf adjacent to v3, if any, and f |V (T ′) is an
I2RDF on T ′ with weight ir2(T )− 2k − t. Thus ir2(T ′) ≤ ir2(T )− 2k − t. It follows from (9) that
ir2(T ) = γr2(T ) = γr2(T ′) + 2k + t = ir2(T ′) + 2k + t and hence γr2(T ′) = ir2(T ′).

Now we show that this equality is strong. Suppose h is a γr2(T ′)-function that it is not indepen-
dent. We can extend h to a 2RDF on T by assigning {1, 2} to every strong support vertex of Tv3 and
{1} to the leaf adjacent to v3, if any, and ∅ to the other vertices in Tv3 , to obtain a γr2(T )-function
which is not independent, a contradiction with γr2(T ) ≡ ir2(T ). Therefore γr2(T ′) ≡ ir2(T ′). It
follows from the induction hypothesis that T ′ ∈ F . Then T can be obtained from T ′ by applying
Operation O2 and hence T ∈ F .

We thus assume that deg(v2) = 2. Furthermore, we may assume that every child of v3 that is a
support vertex, has degree two. We now consider the following three cases on |Lv3 |.
Case 1. |Lv3 | ≥ 2.
Let T ′ = T −{v1, v2}. We show that γr2(T ′) ≡ ir2(T ′). Suppose f is a γr2(T )-function that assigns
{1, 2} to v3 (Observation 2 (a)). Clearly |f(v1)| + |f(v2)| = 1. Since γr2(T ) ≡ ir2(T ), f is an
ir2(T )-function. Hence |f(v2)| = 0 and f |V (T ′) is an I2RDF on T ′ implying that

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T )− 1 = γr2(T )− 1. (10)

Now let g be a γr2(T ′)-function that assigns {1, 2} to v3 (Observation 2 (a)). Then g can be extended
to a 2RDF on T by assigning ∅ to v2 and {1} to v1. This yields γr2(T ) ≤ γr2(T ′) + 1, By (10), we
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have γr2(T ′) = ir2(T ′). To show that this equality is strong, assume h is a γr2(T ′)-function that it is
not independent. We may assume h(v3) = {1, 2}. Now one can extend h to a γr2(T )-function which
is not independent, by assigning ∅ to v2 and {1} to v1, a contradiction with γr2(T ) ≡ ir2(T ). Thus
γr2(T ′) ≡ ir2(T ′). By induction hypothesis, T ′ ∈ F and so T can be obtain from T ′ by Operation
O3.
Case 2. |Lv3 | = 0.
Then any child of v3 is a support vertex of degree 2. We consider two subcases.

Subcase 2.1. deg(v3) ≥ 3.
Let z2 be a child of v3 different from v2, and let z1 be the leaf adjacent to z2. Suppose T ′ =
T − {v1, v2}. We show that γr2(T ′) ≡ ir2(T ′). Let f be a γr2(T )-function. We may assume
2 ∈ f(v3) by Proposition A. Clearly |f(v1)| + |f(v2)| = 1. Since γr2(T ) ≡ ir2(T ), f is a ir2(T )-
function. Clearly f |V (T ′) is an I2RDF on T ′ implying that

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T )− 1 = γr2(T )− 1. (11)

On the other hand, by Proposition A, T ′ has a γr2(T ′)-function g such that 2 ∈ g(v3) . Then we
can extend g on T by assigning ∅ to v2 and {1} to v1, to obtain a 2RDF of weight γr2(T ′) + 1. Thus
γr2(T ′) ≥ γr2(T )− 1. It follows from (11) that γr2(T ′) = ir2(T ′).

To show that this equality is strong, assume h is a γr2(T ′)-function that it is not independent.
First let |h(v3)| > 0. Assume without loss of generality that 2 ∈ h(v3). Then the function h′ :
V (T ) → P({1, 2}) defined by h′(v1) = {1}, h′(v2) = ∅ and h′(x) = h(x) for x ∈ V (T ) − {v1, v2}
is a γr2(T )-function that is not independent, a contradiction. Let now |h(v3)| = 0. Then |h(z2)| +
|h(z1)| = 2. If ∪x∈N(v3)−{z2}h(x) 6= ∅, then we define g : V (T )→ P({1, 2}) by g(v3) = {1}, g(z2) =
g(v2) = ∅, g(z1) = g(v1) = {2} and g(x) = h(x) otherwise, to produce a γr2(T )-function that is
not independent, a contradiction. Let ∪x∈N(v3)−{z2}h(x) = ∅. Then to rainbowly dominate v3, we
must have h(z2) = {1, 2} and |h(z1)| = 0. Then the function h1 : V (T ′) → P ({1, 2}) defined by
h1(v3) = {1}, h1(z2) = ∅, h1(z1) = {2}, and h1(x) = h(x) otherwise, is a γr2(T ′)-function that is not
independent and |h1(v3)| > 0. This leads to a contradiction as above. Thus γr2(T ′) ≡ ir2(T ′) and
by inductive hypothesis we have T ′ ∈ F . Now T can be obtained from T ′ by Operation O4.

Subcase 2.2. deg(v3) = 2.
First let deg(v4) = 2. Let T ′ = T − {v1, v2}. We show that γr2(T ′) ≡ ir2(T ′). Let f be a γr2(T )-
function such that f(v1) = {1} and 2 ∈ f(v3) (Proposition A). This implies that |f(v2)| = 0. Since
γr2(T ) ≡ ir2(T ), f is an ir2(T )-function. Obviously the function f , restricted to T ′, is an I2RDF on
T ′ implying that

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T )− 1 = γr2(T )− 1. (12)

Now let g be a γr2(T ′)-function such that g(v3) = {1} by Proposition A. We can extend g to a
γr2(T )-function by assigning ∅ to v2 and {2} to v1. This implies that γr2(T ) ≤ γr2(T ′) + 1 and by
(12) we obtain γr2(T ′) = ir2(T ′).

Now we show that this equality is strong. Assume h is a γr2(T ′)-function that is not independent.
If |h(v3)| > 0, then we can extend h to a γr2(T )-function that is not independent by assigning ∅ to
v2 and {1} to v1 if 2 ∈ h(v3) and {2} to v1 if 1 ∈ h(v3), a contradiction with γr2(T ) ≡ ir2(T ). Let
|h(v3)| = 0. Then to rainbowly dominate v3, we must have h(v4) = {1, 2}. Since h is a γr2(T ′)-
function and deg(v4) = 2, we must have |h(v5)| = 0. Then the function h1 : V (T ) → P({1, 2})
defined by h1(v5) = h1(v1) = {1}, h1(v3) = {2}, h1(v2) = h1(v4) = ∅ and h1(x) = h(x) otherwise, is
a γr2(T )-function which is not independent, a contradiction with γr2(T ) ≡ ir2(T ). Hence γr2(T ′) ≡
ir2(T ′) and by inductive hypothesis, T ′ ∈ F . Now T can be obtained from T ′ by Operation O4.

Next let deg(v4) ≥ 3. By Proposition A, T has a γr2-function f such that f(v1) = {1}, |f(v2)| = 0
and 2 ∈ f(v3). Also suppose among γr2(T )-functions with this property we choose a γr2(T )-function
such that |f(v4)| is as large as possible. If |f(v3)| = 2, then the function g1 : V (T ) → P({1, 2})
defined by g1(v1) = {1}, g1(v2) = ∅, g1(v3) = {2}, g1(v4) = {1} and g1(x) = f(x) for x ∈ V (T ) −
{v1, v2, v3, v4} is a γr2(T )-function that is not independent, a contradiction. Therefore |f(v3)| = 1.
Since γr2(T ) ≡ ir2(T ), f is an I2RDF of T and hence f(v4) = ∅. This implies that neither v4 is
a strong support vertex nor v4 has a support vertex of degree 2 in its neighbor. If there is a path
v4y3y2y1 in T4 where y3 6= v3 and deg(y1) = 1, then by the choice of diametral path v1 . . . vk, we
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have |Lv2 | ≥ |Ly2 | and |Lv3 | ≥ |Ly3 | that implies deg(y2) = 2 and |Ly3 | = 0. Hence, if there is a leaf
at distance three from v4 in Tv4 , then it plays the same role of v1. Thus we may assume that each
component of Tv4 − v4 is isomorphic to P3, K1,t, (t ≥ 2) or a single vertex, where v4 is adjacent to
a leaf of each P3, the center of K1,t, or the single vertex, respectively.

Assume first that one of the components of Tv4 − v4 is K1,t, (t ≥ 2). That is, v4 has a strong
support vertex such as z in its neighbor. Let T ′ = T − {v1, v2, v3} and let f be a γr2(T )-function.
By Observation 2 (a), we may assume f(z) = {1, 2}. Since γr2(T ) ≡ ir2(T ), f is a ir2(T )-function
and hence |f(v4)| = 0. Then clearly |f(v1)| + |f(v2)| + |f(v3)| = 2 and f |V (T ′) is an I2RDF on T ′

implying that
γr2(T ′) ≤ ir2(T ′) ≤ ir2(T )− 2 = γr2(T )− 2. (13)

On the other hand, let f1 be a γr2(T ′)-function such that f1(z) = {1, 2} (Observation 2 (a)). We
can extend f1 to a 2RDF on T with weight γr2(T ′) + 2 by assigning {2}, ∅ and {1} to v3, v2 and
v1, respectively. Hence γr2(T ) ≤ γr2(T ′) + 2 and by (13), we have γr2(T ′) = ir2(T ′).

If there exists a γr2(T ′)-function h that is not independent, then as above we can extend h to
a γr2(T )-function that is not independent, a contradiction with γr2(T ) ≡ ir2(T ). Thus γr2(T ′) ≡
ir2(T ′). It follows from inductive hypothesis that T ′ ∈ F and so T can be obtained from T ′ by
Operation O5.

Now suppose that v4 has no child which is a strong support vertex. We claim that |Lv4 | ≤ 1.
Let to the contrary that |Lv4 | ≥ 2. By Proposition A, T has a γr2-function f that f(v1) = {1}
and 2 ∈ f(v3). Since |Lv4 | ≥ 2, we may assume f(v4) = {1, 2} which contradicts the assumption
γr2(T ) ≡ ir2(T ). Hence |Lv4 | ≤ 1. Since deg(v4) ≥ 3, we deduce that Tv4 ∈ F2. Let T ′ = T − Tv4

and let g be a γr2(T )-function with g(v1) = {1} and 2 ∈ g(v3). By assumption g is an I2RDF of T
and hence g(v4) = ∅. Then g|V (T ′) is an I2RDF of T ′ implying that

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T )− 2 deg(v4) + 2− t = γr2(T )− 2 deg(v4) + 2− t, (14)

where t is number of leaves adjacent to v4.
On the other hand, each γr2(T ′)-function f , can be extended to a 2RDF of T by assigning {2}

to v3, {1} to v1, each vertex of N(v4) \ (Lv4 ∪ {v5, v3}) and the leaf adjacent to v4, if any, {2} to
every vertex in Tv4 at distance 3 from v4 except v1, and ∅ to the other vertices of Tv4 . It follows
that γr2(T ′) ≥ γr2(T )− 2 deg(v4) + 2− t. By (14) we obtain γr2(T ′) = ir2(T ′).

If h is a γr2(T ′)-function that is not independent, then we can easily extend h to a γr2(T )-function
that is not independent, a contradiction with γr2(T ) ≡ ir2(T ). Thus γr2(T ′) ≡ ir2(T ′). By inductive
hypothesis, we have T ′ ∈ F . It can be easily seen that γr2(T ′ − v5) ≥ γr2(T ′) if v4 is a support
vertex. Now T can be obtained from T ′ by Operation O6.
Case 3. |Lv3 | = 1.
Let w be the leaf adjacent to v3. We consider the following subcases.

Subcase 3.1. deg(v3) > 3.
Then v3 has a child z2 6= v2 that is a support vertex of degree 2. Let z1 be the leaf adjacent to
z2. Set T ′ = T − {v1, v2}. We show that γr2(T ′) ≡ ir2(T ′). Assume that f is a γr2(T )-function.
We may assume that f(v1) = {1} and 2 ∈ f(v3) by Proposition A. Clearly |f(v2)| = 0. Since
γr2(T ) ≡ ir2(T ), f is an I2RDF of T . Now f |V (T ′) is an I2RDF of T ′ of weight γr2(T ) − 1 which
implies that

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T )− 1 = γr2(T )− 1. (15)

On the other hand, if f1 is a γr2(T ′)-function, then we may assume that 2 ∈ f1(v3) by Proposition
A, and so f1 can be extended to a 2RDF of T of weight γr2(T ′) + 1 by assigning ∅ to v2 and {1} to
v1 implying that γr2(T ) ≤ γr2(T ′) + 1. By (15) we obtain γr2(T ′) = ir2(T ′).

To show that this equality is strong, suppose h is a γr2(T ′)-function which is not independent.
We may assume |h(v3)| > 0, for otherwise we must have |h(w)| = 1 and |h(z2)| + |h(z1)| = 2 and
the function g : V (T ′) → P({1, 2}) by g(v3) = {1}, g(z2) = ∅, g(z1) = g(w) = {2} and g(x) = h(x)
otherwise, is a γr2(T ′)-function with the desired property. Then we can easily extend h to a γr2(T )-
function that is not independent, a contradiction with γr2(T ) ≡ ir2(T ). Thus γr2(T ′) ≡ ir2(T ′) and
by inductive hypothesis, T ′ ∈ F . Now T can be obtained from T ′ by Operation O4.
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Subcase 3.2. deg(v3) = 3.
First let deg(v4) ≥ 3. Let f be a γr2(T )-function. By Corollary 1, we may assume f(v3) =
{1, 2}. Since γr2(T ) ≡ ir2(T ), f is an I2RDF of T . Then |f(v4)| = 0 and |f(v1)| = 1. If 1 ∈
∪x∈N(v4)−{v3}f(x) (the case 2 ∈ ∪x∈N(v4)−{v3}f(x) is similar), then the function f1 : V (T ) →
P({1, 2}) defined by f1(v1) = f1(w) = {1}, f1(v3) = {2}, f1(v2) = ∅ and f1(x) = f(x) otherwise, is a
γr2(T )-function which is not independent, a contradiction with γr2(T ) ≡ ir2(T ). Thus |∪x∈N [v4]−{v3}
f(x)| = 0. This implies that v4 has no child with depth 0 or 1. Assume that v4 has a child z with
depth 2. Then any leaf of Tz at distance two from z plays the same role of v1, and thus by the
previous arguments, we may assume that Tz ' Tv3 and as above we can define a γr2(T )-function
g such that g(z) = g(v3) = {1, 2} which leads to a contradiction. Thus deg(v4) = 2. Suppose
T ′ = T − Tv4 . We show that ir2(T ′) ≡ γr2(T ′). Let f be a γr2(T )-function that assigns {1, 2} to v3
and ∅ to v4, according to Corollary 1. Note that f is also an I2RDF of T because ir2(T ) ≡ γr2(T ).
Then f |V (T ′) is an I2RDF on T ′ implying that

γr2(T ′) ≤ ir2(T ′) ≤ ir2(T )− 3 = γr2(T )− 3. (16)

On the other hand, every γr2(T ′)-function can be extended to a 2RDF of T by assigning {1} to v1, ∅
to v2, v4, w and {1, 2} to v3, and thus γr2(T ) ≤ γr2(T ′)+3. It follows from (16) that γr2(T ′) = ir2(T ′).

If there is a γr2(T ′)-function g that is not independent then as above, we can extend it to a
γr2(T )-function that is not independent, a contradiction. Thus γr2(T ′) ≡ ir2(T ′). By the inductive
hypothesis, T ′ ∈ F and T can be obtained from T ′ by Operation O7 and the proof is completed.

Now we are ready to state the main theorem of this paper.

Theorem 14. Let T be a tree. Then ir2(T ) ≡ γr2(T ) if and only if T ∈ F ∪ {K1}.
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