Strong equality between the 2-rainbow domination and independent 2-rainbow domination numbers in trees

J. Amjadi, M. Falahat, S.M. Sheikholeslami*
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
j-amjadi;s.m.sheikholeslami@azaruniv.edu

N. Jafari Rad
Department of Mathematics
Shahrood University of Technology
Shahrood, I.R. Iran
n.jafarirad@gmail.com

Abstract

A 2-rainbow dominating function (2RDF) on a graph $G=(V, E)$ is a function f from the vertex set V to the set of all subsets of the set $\{1,2\}$ such that for any vertex $v \in V$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N(v)} f(u)=\{1,2\}$ is fulfilled. A 2RDF f is independent (I2RDF) if no two vertices assigned nonempty sets are adjacent. The weight of a 2 RDF f is the value $\omega(f)=\sum_{v \in V}|f(v)|$. The 2-rainbow domination number $\gamma_{r 2}(G)$ (respectively, the independent 2 rainbow domination number $\left.i_{r 2}(G)\right)$ is the minimum weight of a 2RDF (respectively, I2RDF) on G. We say that $\gamma_{r 2}(G)$ is strongly equal to $i_{r 2}(G)$ and denote by $\gamma_{r 2}(G) \equiv i_{r 2}(G)$, if every 2 RDF on G of minimum weight is an I2RDF. In this paper we provide a constructive characterization of trees T with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$.

Keywords: 2-rainbow domination number, independent 2-rainbow domination number, strong equality, tree.
MSC 2000: 05C69

1 Introduction

Let G be a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=\operatorname{deg}(v)=|N(v)|$. If $A \subseteq V(G)$, then $G[A]$ is the subgraph induced by A. A vertex of degree one is called a leaf, and its neighbor is called a support vertex. If v is a support vertex, then L_{v} will denote the set of all leaves adjacent to v. A support vertex v is called strong support vertex if $\left|L_{v}\right|>1$. For $r, s \geq 1$, a double star $S(r, s)$ is a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and the other to s leaves. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of $v, D(v)$ denote the set of descendants of v and $D[v]=D(v) \cup\{v\}$, and the depth of v, depth (v), is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D(v) \cup\{v\}$, and is denoted by T_{v}. For terminology and notation on graph theory not given here, the reader is referred to [14].

[^0]For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2, \ldots, k\}$ such that for any vertex $v \in V(G)$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N(v)} f(u)=\{1,2, \ldots, k\}$ is fulfilled. The weight of a $\operatorname{kRDF} f$ is the value $\omega(f)=\sum_{v \in V}|f(v)|$. The k-rainbow domination number of a graph G, denoted by $\gamma_{r k}(G)$, is the minimum weight of a kRDF of G. A $\gamma_{r k}(G)$-function is a k-rainbow dominating function of G with weight $\gamma_{r k}(G)$. Note that $\gamma_{r 1}(G)$ is the classical domination number $\gamma(G)$. The k-rainbow domination number was introduced by Brešar, Henning, and Rall [3] and has been studied by several authors (see for example $[4,6,7,8,13]$). Note that 1-rainbow domination number is the usual domination number. To study other domination parameters we refer the readers to $[1,2,15,16]$.

A k-rainbow dominating function f is called an independent k-rainbow dominating function (abbreviated $\mathrm{I} k \mathrm{RDF}$) on G if the set $V(G)-\{v \in V \mid f(v)=\emptyset\}$ is independent. The independent k-rainbow domination number, denoted by $i_{r k}(G)$, is the minimum weight of an IkRDF on G. An independent k-rainbow dominating function f is called an $i_{r k}(G)$-function if $\omega(f)=i_{r k}(G)$. Since each independent k-rainbow dominating function is a k-rainbow dominating function, we have $\gamma_{r k}(G) \leq i_{r k}(G)$.

Clearly if $\gamma_{r k}(G)=i_{r k}(G)$, then every $i_{r k}(G)$-function is also a $\gamma_{r k}(G)$-function. However not every $\gamma_{r k}(G)$-function is an $i_{r k}(G)$-function, even when $\gamma_{r k}(G)=i_{r k}(G)$. For example the double star $S(k, k+1)$ has two $\gamma_{r k}\left(S(k, k+1)\right.$)-function but only one of them is an $i_{r k}(S(k, k+1))$-function. We say that $\gamma_{r k}(G)$ and $i_{r k}(G)$ are strongly equal and denote by $\gamma_{r k}(G) \equiv i_{r k}(G)$, if every $\gamma_{r k}(G)$ function is an $i_{r k}(G)$ - function.

Haynes and Slater in [11] were the first to introduce strong equality between two parameters. Also in [9] and [10], Haynes, Henning and Slater gave constructive characterizations of trees with strong equality between some domination parameters.

Our purpose in this paper, is to present a constructive characterizations of trees T with $\gamma_{r 2}(T) \equiv$ $i_{r 2}(T)$.

We make use of the following result in this paper.
Proposition A. [6] Let G be a connected graph. If there is a path $v_{3} v_{2} v_{1}$ in G with $\operatorname{deg}\left(v_{2}\right)=2$ and $\operatorname{deg}\left(v_{1}\right)=1$, then G has a $\gamma_{r 2}(G)$-function f such that $f\left(v_{1}\right)=\{1\}$ and $2 \in f\left(v_{3}\right)$.

Corollary 1. Let T be a tree with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. If there is a path $v_{3} v_{2} v_{1}$ in T with $\operatorname{deg}\left(v_{2}\right)=2$ and $\operatorname{deg}\left(v_{1}\right)=1$ such that v_{3} is a support vertex, then T has a $\gamma_{r 2}(T)$-function f such that $f\left(v_{3}\right)=$ $\{1,2\},\left|f\left(v_{1}\right)\right|=1$ and $|f(x)|=0$ for every $x \in L_{v_{3}} \cup\left\{v_{2}\right\}$.

Observation 2. Let T be a tree and let z be a strong support vertex of T. Then
(a) T has a $\gamma_{r 2}(T)$-function such that $f(z)=\{1,2\}$.
(b) $\gamma_{r 2}(T) \not \equiv i_{r 2}(T)$ if and only if T has a $\gamma_{r 2}(T)$-function that is not independent and $f(z)=$ $\{1,2\}$.

Proof. (a) The proof is immediate.
(b) Let $\gamma_{r 2}(T) \not \equiv i_{r 2}(T)$. Then T has a $\gamma_{r 2}(T)$-function that is not independent. If $f(z)=\{1,2\}$, then we are done. If $|f(z)|=1$, then $|f(x)|=1$ for each $x \in L_{z}$ and the function $g: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g(z)=\{1,2\}, g(x)=\emptyset$ for $x \in L_{z}$ and $g(u)=f(u)$ otherwise, is a 2RDF of T of weight less than $\omega(f)$ which is a contradiction. Let $f(z)=\emptyset$. Then clearly the function $g: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g(z)=\{1,2\}, g(x)=\emptyset$ for $x \in L_{z}$ and $g(u)=f(u)$ otherwise, is a $\gamma_{r 2}(T)$-function with the desired property.

2 Characterizations of trees with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$

Let \mathcal{F}_{1} be the family of trees that can be obtained from $k \geq 1$ disjoint stars $K_{1,2}$ by adding either a new vertex v or a path $u v$ and joining the centers of stars to v. Also let \mathcal{F}_{2} be the family including P_{5} and all trees obtained from $k \geq 2$ disjoint P_{3} by adding either a new vertex v or a path $u v$
and joining v to a leaf of each P_{3}. If T belongs to $\mathcal{F}_{1} \cup \mathcal{F}_{2}-\left\{P_{5}\right\}$ then we call the vertex v, the special vertex of T and if $T=P_{5}$, then its support vertices are special vertices of T. Note that if $T \in \mathcal{F}_{1} \cup \mathcal{F}_{2}$, then $\gamma_{r 2}(T) \equiv i_{r 2}(T)$.

Now we provide a constructive characterization of trees T with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. For this purpose we define a family of trees as follows: Let \mathcal{F} be the family of trees such that: \mathcal{F} contains star $K_{1,2}$ and if T is a tree in \mathcal{F}, then the tree T^{\prime} obtained from T by the following seven operations which extend the tree T by attaching a tree to a vertex $y \in V(T)$, called an attacher, is also a tree in \mathcal{F}.

- Operation \mathcal{O}_{1} : If z is a strong support vertex of $T \in \mathcal{F}$, then \mathcal{O}_{1} adds a new vertex x and an edge $x z$.
- Operation \mathcal{O}_{2} : If z is a vertex of $T \in \mathcal{F}$, then \mathcal{O}_{2} adds a new tree $T_{1} \in \mathcal{F}_{1}$ with special vertex x and an edge $x z$ provided that if x is a support vertex, then $\gamma_{r 2}(T-z) \geq \gamma_{r 2}(T)$.
- Operation \mathcal{O}_{3} : If z is a strong support vertex of $T \in \mathcal{F}$, then \mathcal{O}_{3} adds a path $z x y$.
- Operation \mathcal{O}_{4} : If z is a vertex of $T \in \mathcal{F}$ which is adjacent to a support vertex of degree 2 , then \mathcal{O}_{4} adds a path $z x y$.
- Operation $\mathcal{O}_{5}:$ If z is a vertex of $T \in \mathcal{F}$ which is adjacent to a strong support vertex, then \mathcal{O}_{5} adds a path $z x y w$.
- Operation \mathcal{O}_{6} : If z is a vertex of $T \in \mathcal{F}$, then \mathcal{O}_{6} adds new tree $T_{2} \in \mathcal{F}_{2}$ with special vertex x and an edge $x z$ provided that if x is a support vertex, then $\gamma_{r 2}(T-z) \geq \gamma_{r 2}(T)$.
- Operation \mathcal{O}_{7} : If z is a vertex of $T \in \mathcal{F}$ such that every $\gamma_{r 2}(T)$-function assigns \emptyset to z, then \mathcal{O}_{7} adds the double star $S(1,2)$ and an edge $z x$ where x is a leaf of $S(1,2)$ whose support vertex has degree 3 .

Observation 3. The family \mathcal{F} contains all graphs in $\left\{K_{1, t} \mid t \geq 2\right\} \cup \mathcal{F}_{1} \cup \mathcal{F}_{2}$.
Proof. Starting from $K_{1,2} \in \mathcal{F}$ and by applying $t-2$ times Operation \mathcal{O}_{1}, we obtain the star $K_{1, t}$ and hence \mathcal{F} contains all stars. Furthermore, starting from $K_{1,2}$ and by applying Operation \mathcal{O}_{4}, we obtain that \mathcal{F} contains P_{5}.

Now let $T \in \mathcal{F}_{1}$. If $|V(T)|=4$, then $T=K_{1,3}$ and immediately $T \in \mathcal{F}$. If $|V(T)|=5$, then T can be obtained from $K_{1,2}$ by applying Operation \mathcal{O}_{3}. If $|V(T)| \geq 6$, then T can be obtained from $K_{1,2}$ by applying Operation \mathcal{O}_{2}. Thus \mathcal{F} contains all graphs in \mathcal{F}_{1}.

Finally let $T \in \mathcal{F}_{2}-\left\{P_{5}\right\}$. If $|V(T)|=7$, then $T=P_{7}$ and T can be obtained from P_{5} by applying Operation \mathcal{O}_{4} twice and so $T \in \mathcal{F}$. If $|V(T)| \geq 9$, then T can be obtained from $K_{1,2}$ by applying Operation \mathcal{O}_{6}. Thus \mathcal{F} contains all graphs in \mathcal{F}_{2}.

Lemma 4. Let T be a tree with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$ and let T^{\prime} be the tree obtained from T by Operation \mathcal{O}_{1}. Then $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$.

Proof. Assume z is a strong support vertex of T and let x is a new vertex that is attached to z by applying Operation \mathcal{O}_{1}. By Observation 2 (a), T has a $\gamma_{r 2}$-function f that assigns $\{1,2\}$ to z. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is an I2RDF of T. Now we can extend f to an I2RDF of T^{\prime} by assigning \emptyset to x, implying that $\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T) \leq \gamma_{r 2}(T)$. On the other hand, by Observation 2 (a), there is a $\gamma_{r 2}\left(T^{\prime}\right)$-function g which assigns $\{1,2\}$ to z, and clearly the function g, restricted to T, is a 2RDF of T of weight $\gamma_{r 2}\left(T^{\prime}\right)$, implying that $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)$. Hence $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$.

It will now be shown that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Suppose h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that is not independent. Since $\left|L_{z}\right| \geq 3$, we must have $f(z)=\{1,2\}$. Then the function h, restricted to T, is a $\gamma_{r 2}(T)$-function that is not independent which leads to a contradiction. Thus $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}(T)$.

Lemma 5. Let T be a tree with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$ and let T^{\prime} be a tree obtained from T by Operation \mathcal{O}_{2}. Then $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$.

Proof. Let $T_{1} \in \mathcal{F}_{1}$ be the tree which is attached by Operation \mathcal{O}_{2} to T by the edge $x z$ for obtaining the tree T^{\prime}, where $z \in V(T)$ is the attacher vertex, and let $x_{1}, x_{2}, \ldots, x_{k} \in V\left(T_{1}\right)$ be the strong support vertices of T_{1}. Assume x is the special vertex of T_{1}. If x is a support vertex then let y be the leaf that is adjacent to x. Let t be a variant defined by $t=1$ if x is a support vertex, and $t=0$ otherwise. Every $i_{r 2}(T)$-function can be extended to an I2RDF on T^{\prime} by assigning $\{1,2\}$ to $x_{i}, i=1,2, \ldots, k, \emptyset$ to u for $u \in \cup_{i=1}^{k} N\left(x_{i}\right)$, and $\{1\}$ to y if x is a support vertex. This implies that $i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)+2 k+t$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T)$, we deduce that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq \gamma_{r 2}(T)+2 k+t=i_{r 2}(T)+2 k+t \tag{1}
\end{equation*}
$$

Now we show that $\gamma_{r 2}\left(T^{\prime}\right)=\gamma_{r 2}(T)+2 k+t$. Let f be a $\gamma_{r 2}\left(T^{\prime}\right)$-function. It is easy to see that $\sum_{u \in N\left[x_{i}\right]-\{x\}}|f(u)| \geq 2$, for $i=1,2, \ldots, k$, and $|f(x)|+|f(y)| \geq 1$, if $t=1$. Then $\sum_{u \in V\left(T_{1}\right)}|f(u)| \geq 2 k+t$. If $|f(x)|=0$ then $\left.f\right|_{V(T)}$ is a $2 \operatorname{RDF}$ on T, and so $\sum_{u \in V(T)}|f(u)| \geq \gamma_{r 2}(T)$. By adding two recent inequalities, we obtain $\gamma_{r 2}\left(T^{\prime}\right)=\sum_{u \in V\left(T^{\prime}\right)}|f(u)| \geq \gamma_{r 2}(T)+2 k+t$. Assume that $|f(x)| \geq 1$. Clearly if $t=1$ the $|f(x)|+|f(y)| \geq 2$. Thus $\sum_{u \in V\left(T_{1}\right)}|f(u)| \geq 2 k+t+1$. If $|f(z)| \neq 0$ then $\left.f\right|_{V(T)}$ is a 2 RDF on T, and if $|f(z)|=0$ then the function f_{1} defined on $V(T)$ by $f_{1}(z)=\{1\}$ and $f_{1}(u)=f(u)$ if $u \in V(T)-\{z\}$ is a 2 RDF for T. It follows that $\gamma_{r 2}\left(T^{\prime}\right) \geq \gamma_{r 2}(T)+2 k+t$. Hence we can deduce that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right)=\gamma_{r 2}(T)+2 k+t \tag{2}
\end{equation*}
$$

By (1) and (2), we have

$$
i_{r 2}\left(T^{\prime}\right)=i_{r 2}(T)+2 k+t=\gamma_{r 2}(T)+2 k+t=\gamma_{r 2}\left(T^{\prime}\right)
$$

It will now be shown that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Assume h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that is not independent. We may assume that h assigns $\{1,2\}$ to each support vertex adjacent to x. If $|h(x)|=0$ then clearly $\left.h\right|_{V(T)}$ is a $\gamma_{r 2}(T)$-function that is not independent, a contradiction with the assumption $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus $|h(x)| \geq 1$. Then $|h(z)|=0$ and $\sum_{v \in V\left(T_{1}\right)}|h(v)| \geq 2 k+1+t$. If $|h(x)|=1$, then $\sum_{w \in N_{T}(z)}|h(w)| \geq 1$ and the function $g: V(T) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g(z)=\{1\}$ and $g(u)=h(u)$ for $u \in V(T)-\{z\}$ is a $\gamma_{r 2}(T)$-function that is not independent, contradicting $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus $|h(x)|=2$. Then x is a support vertex. Now

$$
\gamma_{r 2}(T-z) \leq \sum_{u \in V(T-z)}|h(u)|=\gamma_{r 2}\left(T^{\prime}\right)-2 k-1-t<\gamma_{r 2}(T)
$$

This is a contradiction with the assumption $\gamma_{r 2}(T-z) \geq \gamma_{r 2}(T)$. Therefore, $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$ and the proof is complete.

Lemma 6. If T is a tree with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$ and T^{\prime} is a tree obtained from T by Operation \mathcal{O}_{3}, then $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$.

Proof. Let $z \in V(T)$ be a strong support vertex and let $z x y$ be the path added by Operation \mathcal{O}_{3} to obtain T^{\prime}. Let f be a $\gamma_{r 2}(T)$-function such that $f(z)=\{1,2\}$ (Observation 2 (a)). Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is an I2RDF of T. We can extend f to an I2RDF on T^{\prime} by assigning \emptyset to x and $\{1\}$ to y, and thus

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)+1=\gamma_{r 2}(T)+1 \tag{3}
\end{equation*}
$$

Let now f_{1} be a $\gamma_{r 2}\left(T^{\prime}\right)$-function. We can assume $f_{1}(z)=\{1,2\}$ by Observation 2 (a). Since f_{1} is a $\gamma_{r 2}\left(T^{\prime}\right)$-function, we must have $\left|f_{1}(x)\right|=0$ and $\left|f_{1}(y)\right|=1$. Then $\left.f_{1}\right|_{V(T)}$ is a 2 RDF on T, and so

$$
\begin{equation*}
\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)-1 \tag{4}
\end{equation*}
$$

It follows from (3) and (4) that $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)=\gamma_{r 2}(T)+1=i_{r 2}(T)+1$.
Finally we shall show that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Assume h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that it is not independent. First let $|h(x)| \geq 1$. Then $|h(x)|+|h(y)|=2$. If $|h(z)| \neq 0$ then replace $h(x)$ by \emptyset and $h(y)$ by $\{1\}$ or $\{2\}$ to obtain a 2 RDF for T^{\prime} of weight less than $\gamma_{r 2}\left(T^{\prime}\right)$, a contradiction. Thus
$|h(z)|=0$. Then clearly $|h(u)|=1$ for any leaf u adjacent to z and the function $h_{1}: V\left(T^{\prime}\right) \rightarrow$ $\mathcal{P}(\{1,2\})$ defined by $h_{1}(y)=\{1\}, h_{1}(z)=\{1,2\}, h_{1}(u)=\emptyset$ for $u \in L_{z} \cup\{x\}$ and $h_{1}(w)=h(w)$ otherwise, is a 2 RDF for T^{\prime} of weight less than $\gamma_{r 2}\left(T^{\prime}\right)$, a contradiction. Now let $|h(x)|=0$. Then clearly $|h(y)|=1$ (else we could make a change to be in the previous case $|h(x)| \geq 1$), and $\left.h\right|_{V(T)}$ is a $\gamma_{r 2}(T)$-function which is not independent, a contradiction. Hence, $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. This completes the proof.

Lemma 7. If T is a tree with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$ and T^{\prime} is a tree obtained from T by Operation \mathcal{O}_{4}, then $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$.

Proof. Let $z \in V(T)$ be a vertex which is adjacent to a support vertex of degree 2 such as w, and let Operation \mathcal{O}_{4} adds the path $z x y$ to T.

First let $\operatorname{deg}_{T}(z) \geq 2$. Let w^{\prime} be the leaf adjacent to w. Assume f is a $\gamma_{r 2}(T)$-function such that $2 \in f(z)$ (Proposition A). Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is an $i_{r 2}(T)$-function. Now f can be extended to an I2RDF on T^{\prime} by assigning \emptyset to x and $\{1\}$ to y. Thus

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)+1=\gamma_{r 2}(T)+1 \tag{5}
\end{equation*}
$$

On the other hand, if f_{1} is a $\gamma_{r 2}\left(T^{\prime}\right)$-function, then we may assume that $2 \in f_{1}(z)$ by Proposition A. Clearly $\left|f_{1}(x)\right|+\left|f_{1}(y)\right| \geq 1$ and $\left.f_{1}\right|_{V(T)}$ is a 2 RDF on T of weight at most $\gamma_{r 2}\left(T^{\prime}\right)-1$, implying that $\gamma_{r 2}\left(T^{\prime}\right) \geq \gamma_{r 2}(T)+1$. It follows from (5) and the recent inequality that $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)=$ $i_{r 2}(T)+1=\gamma_{r 2}(T)+1$.

It will now be shown that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Suppose h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function which it is not independent. If $|h(z)|>0$ then we must have $|h(x)|=0$ and $|h(y)|=1$, and so $\left.h\right|_{V(T)}$ is a $\gamma_{r 2}(T)$ function which is not independent, a contradiction. Let $|h(z)|=0$. Then obviously $|h(x)|+|h(y)|=$ $|h(w)|+\left|h\left(w^{\prime}\right)\right|=2$. Then the function $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g(x)=g(w)=\emptyset$, $g(y)=g\left(w^{\prime}\right)=\{1\}, g(z)=\{2\}$ and $g(u)=f(u)$ for $u \in V\left(T^{\prime}\right)-\left\{x, y, w, w^{\prime}, z\right\}$, is a 2RDF of T^{\prime} of weight less than $\gamma_{r 2}\left(T^{\prime}\right)$, a contradiction. Thus $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$.

Now let $\operatorname{deg}_{T}(z)=1$, i.e. z is a leaf.
Assume f is a $\gamma_{r 2}(T)$-function. By Proposition A, we may assume that $f(z)=\{1\}$. Note that f is an $i_{r 2}(T)$-function because $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Then f can be extended to an I2RDF on T^{\prime} by assigning \emptyset to x and $\{2\}$ to y. This implies that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)+1=\gamma_{r 2}(T)+1 \tag{6}
\end{equation*}
$$

On the other hand, if f_{1} is a $\gamma_{r 2}\left(T^{\prime}\right)$-function then by Proposition A, we may assume $f_{1}(y)=\{1\}$ and $2 \in f_{1}(z)$. Then $\left.f_{1}\right|_{V(T)}$ is a 2 RDF of T of weight at most $\gamma_{r 2}\left(T^{\prime}\right)-1$ implying that $\gamma_{r 2}\left(T^{\prime}\right) \geq$ $\gamma_{r 2}(T)+1$. It follows from the last inequality and (6) that $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)=\gamma_{r 2}(T)+1=i_{r 2}(T)+1$.

Next we show that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Assume h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that it is not independent. If $|h(z)|>0$ then we may assume that $|h(x)|=0$ and $|h(y)|=1$, and so $\left.h\right|_{V(T)}$ is a $\gamma_{r 2}(T)$-function which is not independent, a contradiction. Let $h(z)=\emptyset$. Then $|h(x)|+|h(y)| \geq 2$. If $|h(w)|=0$ then $|h(x)|=2$ and $|h(y)|=0$, and the function $h_{1}: V(T) \rightarrow \mathcal{P}(\{1,2\})$ defined by $h_{1}(z)=\{1\}$ and $h_{1}(u)=h(u)$ if $u \in V(T)-\{z\}$ is a $\gamma_{r 2}(T)$-function which is not independent, a contradiction. If $|h(w)| \geq 1$ then it follows from $|h(x)|+|h(y)| \geq 2$ that the function $h_{1}: V(T) \rightarrow \mathcal{P}(\{1,2\})$ defined above, is a $\gamma_{r 2}(T)$-function which is not independent, a contradiction. Hence $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$.

Lemma 8. If T is a tree with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$ and T^{\prime} is a tree obtained from T by Operation \mathcal{O}_{5}, then $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$.

Proof. Let $z \in V(T)$ be a vertex that has a strong support vertex u in its neighborhood and let Operation \mathcal{O}_{5} add the path zxyw to T for obtaining T^{\prime}. Any 2 RDF of T can be extended to a 2 RDF for T^{\prime} by assigning $\{1,2\}$ to y, and \emptyset to x and w. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T)$, we deduce that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)+2=\gamma_{r 2}(T)+2 \tag{7}
\end{equation*}
$$

Let f be a $\gamma_{r 2}\left(T^{\prime}\right)$-function. We may assume $f(w)=\{1\}, f(y)=\emptyset$ and $2 \in f(x)$, by Proposition A. Also we may assume that $|f(u)|=2$, since u is a strong support vertex. Then $\left.f\right|_{V(T)}$ is a 2 RDF
on T of weight at most $\gamma_{r 2}\left(T^{\prime}\right)-2$, and so $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)-2$. It follows from (7) that

$$
\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)=i_{r 2}(T)+2=\gamma_{r 2}(T)+2
$$

To show that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$, suppose h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that it is not independent. Since u is a strong support vertex, we may assume $|h(u)|=2$. Then clearly $h(z)=\emptyset$ and $|h(x)|+|h(y)|+$ $|h(w)|=2$, and so $\left.h\right|_{V(T)}$ is a $\gamma_{r 2}(T)$-function which is not independent, a contradiction. Hence $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$ and the proof is completed.

The proof of next lemma is similar to the proof of Lemma 5, and therefore omitted.
Lemma 9. If T is a tree with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$, and T^{\prime} is a tree obtained from T by Operation \mathcal{O}_{6}, then $\gamma_{r 2}(T) \equiv i_{r 2}(T)$.

Lemma 10. If T is a tree with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$ and T^{\prime} is a tree obtained from T by Operation \mathcal{O}_{7}, then $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$.

Proof. Let z be a vertex of T such that every $\gamma_{r 2}(T)$-function assign \emptyset to it, and let x be a leaf of double star $S(1,2)$ whose support vertex has degree 3 . Assume that Operation \mathcal{O}_{7} adds the double star $S(1,2)$ and the edge $x z$ to obtain T^{\prime} from T. Let $V(S(1,2))=\left\{x, v, v_{0}, u, u_{0}\right\}$ where $N(v)=\left\{x, u, v_{0}\right\}$ and $u \in N\left(u_{0}\right)$. Any 2 RDF of T can be extended to a 2RDF on T^{\prime} by assigning \emptyset to x, u and $v_{0},\{1,2\}$ to v and $\{1\}$ to u_{0}. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T)$, we deduce that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)+3=\gamma_{r 2}(T)+3 \tag{8}
\end{equation*}
$$

Let f be a $\gamma_{r 2}\left(T^{\prime}\right)$-function such that $f\left(u_{0}\right)=\{1\}$ and $2 \in f(v)$ by Observation A. Clearly $|f(v)|+\left|f\left(u_{0}\right)\right|+|f(u)|+\left|f\left(v_{0}\right)\right| \geq 3$. We may assume that $|f(x)|=0$, otherwise we replace $f(x)$ by \emptyset and $f(z)$ by $f(z) \cup f(x)$. Then $\left.f\right|_{V(T)}$ is a 2 RDF of T, implying that $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)-3$. By (8), we have $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)=\gamma_{r 2}(T)+3=i_{r 2}(T)+3$.

It now will be shown that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Suppose h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function which is not independent. Clearly $\sum_{y \in V(S(1,2))}|h(y)| \geq 3$. If $|h(z)|>0$, then $\left.h\right|_{V(T)}$ is a $\gamma_{r 2}(T)$-function assigning non empty set to z which leads to a contradiction. Thus $|h(z)|=0$. If $\sum_{y \in V(S(1,2))}|h(y)| \geq$ 4, then we change the values of h on $V(S(1,2)) \cup\{z\}$ to $h(z)=h\left(u_{0}\right)=\{1\}, h(v)=\{1,2\}$, and $h(x)=h(u)=h\left(v_{0}\right)=\emptyset$, then the new function plays the role of h which has been considered earlier. Thus we assume that $\sum_{y \in V(S(1,2))}|h(y)|=3$. Then clearly $|h(x)|=0$, and $\left.h\right|_{V(T)}$ is a $\gamma_{r 2}(T)$-function which is not independent, a contradiction. Hence $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$.

Theorem 11. Each tree T in family $\mathcal{F} \cup\left\{K_{1}\right\}$ satisfies $\gamma_{r 2}(T) \equiv i_{r 2}(T)$.
Proof. If $T=K_{1}$, then clearly $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Let $T \in \mathcal{F}$. Then T is obtained from a star $K_{1,2}$ by successive operations $\mathcal{T}^{1}, \ldots, \mathcal{T}^{m}$, where $\mathcal{T}^{i} \in\left\{\mathcal{O}_{1}, \ldots, \mathcal{O}_{7}\right\}$ if $m \geq 1$ and $T=K_{1,2}$ if $m=0$. The proof is by induction on m. If $m=0$, then clearly $\gamma_{r 2}\left(K_{1,2}\right) \equiv i_{r 2}\left(K_{1,2}\right)$. Let $m \geq 1$ and that the statement holds for all trees which are obtained from $K_{1,2}$ by applying $m-1$ operations in $\left\{\mathcal{O}_{1}, \ldots, \mathcal{O}_{7}\right\}$. It follows from Lemmas $4, \ldots, 10$ that $\gamma_{r 2}(T) \equiv i_{r 2}(T)$.

Observation 12. If $S(p, q)$ is a double star with $q \geq p \geq 1$ and $\gamma_{r 2}(S(p, q)) \equiv i_{r 2}(S(p, q))$, then $p=1$ and $q \geq 2$.

Theorem 13. Let T be a tree of order n. If $\gamma_{r 2}(T) \equiv i_{r 2}(T)$, then $T \in \mathcal{F} \cup\left\{K_{1}\right\}$.
Proof. The proof is by induction on n. If $n=1$ then $T=K_{1}$. Let the statement holds for all trees of order less than n and let T be a tree of order n with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Since $\gamma_{r 2}\left(P_{2}\right) \not \equiv i_{r 2}\left(P_{2}\right)$, we may assume that $n \geq 3$. If $\operatorname{diam}(T)=2$ then T is a star and by Observation $3, T \in \mathcal{F}$. If $\operatorname{diam}(T)=3$, then T is a double star $S(p, q)$ with $q \geq p \geq 1$. By Observation 12 , we have $p=1$ and $q \geq 2$. Then T can be obtained from $K_{1, q}$ by Operation \mathcal{O}_{3} and so $T \in \mathcal{F}$. Therefore, we may assume that $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \ldots v_{k}(k \geq 5)$ be a diametral path in T such that $\left|L_{v_{2}}\right|$ is as large as possible and root T at v_{k}. Also suppose among paths with this property we choose a path such that $\left|L_{v_{3}}\right|$ is as large as possible.

Assume first that $\operatorname{deg}\left(v_{2}\right) \geq 4$. Let f be a $\gamma_{r 2}(T)$-function. Then clearly $f\left(v_{2}\right)=\{1,2\}$ and so f is a 2 RDF of $T-v_{1}$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is also an I2RDF of $T-v_{1}$, implying that $\gamma_{r 2}(T)=i_{r 2}(T) \geq i_{r 2}\left(T-v_{1}\right) \geq \gamma_{r 2}\left(T-v_{1}\right)$. On the other hand, by Observation 2 (a), $T-v_{1}$ has a $\gamma_{r 2}$-function g that assigns $\{1,2\}$ to v_{2}. Then g can be extended to a $\gamma_{r 2}(T)$-function by assigning \emptyset to v_{1} that yields $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T-v_{1}\right)$. Hence $\gamma_{r 2}(T)=i_{r 2}(T)=i_{r 2}\left(T-v_{1}\right)=\gamma_{r 2}\left(T-v_{1}\right)$.

We show that $\gamma_{r 2}\left(T-v_{1}\right) \equiv i_{r 2}\left(T-v_{1}\right)$. Suppose that there is a $\gamma_{r 2}\left(T-v_{1}\right)$-function g that is not independent. Since g is a $\gamma_{r 2}\left(T-v_{1}\right)$-function, we must have $\left|g\left(v_{2}\right)\right|+\sum_{u \in L_{v_{2}}-\left\{v_{1}\right\}}|g(u)|=2$. Now the function $h: V\left(T-v_{1}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $h\left(v_{2}\right)=\{1,2\}, h(u)=\emptyset$ for $u \in L_{v_{2}}-\left\{v_{1}\right\}$ and $h(x)=g(x)$ otherwise, is a 2 RDF of $T-v_{1}$ which in not independent. It is clear that h can be extended to a $\gamma_{r 2}(T)$-function which is not independent by assigning \emptyset to v_{1}. This leads to a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus $\gamma_{r 2}\left(T-v_{1}\right) \equiv i_{r 2}\left(T-v_{1}\right)$. It follows from the inductive hypothesis that $T-v_{1} \in \mathcal{F}$. Now it is clear that T can be obtained from $T-v_{1} \in \mathcal{F}$ by applying Operation \mathcal{O}_{1}.

Assume next that $\operatorname{deg}\left(v_{2}\right)=3$. Let $u \in L_{v_{2}}-\left\{v_{1}\right\}$. We claim that v_{3} is not a strong support vertex. Assume to the contrary that v_{3} is a strong support vertex. By Observation 2 (a), T has a $\gamma_{r 2}(T)$-function f such that $f\left(v_{3}\right)=\{1,2\}$. Clearly $\left|f\left(v_{2}\right)\right|+\left|f\left(v_{1}\right)\right|+|f(u)|=2$. Now the function $g: V(T) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g\left(v_{2}\right)=\{1,2\}, g\left(v_{1}\right)=g(u)=\emptyset$ and $g(x)=f(x)$ for $x \in V(T)-\left\{u, v_{1}, v_{2}\right\}$ is clearly a $\gamma_{r 2}(T)$-function that is not independent, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus v_{3} is not a strong support vertex. Using Proposition A and an argument similar to that described above, we deduce that v_{3} is not adjacent to a support vertex of degree 2 . By the choice of the diametral path, we deduce that any child of v_{3} is a leaf or a support vertex of degree 3 and at most one of them is leaf. This implies that $T_{v_{3}} \in \mathcal{F}_{1}$. Let $T^{\prime}=T-T_{v_{3}}$.

We claim that if v_{3} is a support vertex, then $\gamma_{r 2}\left(T^{\prime}-v_{4}\right) \geq \gamma_{r 2}\left(T^{\prime}\right)$. Let v_{3} be a support vertex and let to the contrary that $\gamma_{r 2}\left(T^{\prime}-v_{4}\right)<\gamma_{r 2}\left(T^{\prime}\right)$. Assume h is a $\gamma_{r 2}\left(T^{\prime}-v_{4}\right)$-function and define $g: V(T) \rightarrow \mathcal{P}(\{1,2\})$ by $g(x)=h(x)$ for $x \in V\left(T^{\prime}\right)-\left\{v_{4}\right\}, g(x)=\{1,2\}$ for $x \in N\left[v_{3}\right]-\left(L_{v_{3}} \cup\left\{v_{4}\right\}\right)$ and $g(x)=\emptyset$ otherwise. Obviously g is a $\gamma_{r 2}(T)$-function that is not independent, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus $\gamma_{r 2}\left(T^{\prime}-v_{4}\right) \geq \gamma_{r 2}\left(T^{\prime}\right)$ when v_{3} is a support vertex.

It will now be shown that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. First we show that $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$. Since every $\gamma_{r 2}\left(T^{\prime}\right)$-function can be extended to a 2 RDF on T by assigning $\{1,2\}$ to the strong support vertices in $N_{T_{v_{3}}}\left(v_{3}\right),\{1\}$ to the leaf adjacent to v_{3}, if any, and \emptyset to the other vertices in $T_{v_{3}}$, we deduce that

$$
\begin{equation*}
i_{r 2}(T)=\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)+2 k+t \leq i_{r 2}\left(T^{\prime}\right)+2 k+t \tag{9}
\end{equation*}
$$

where k is the number of strong support vertices adjacent to v_{3} in $T_{v_{3}}$ and t is the number of leaf adjacent to v_{3}. On the other hand, let f be a $\gamma_{r 2}(T)$-function. By Observation 2 (a), we may assume that f assigns $\{1,2\}$ to the strong support vertices in $T_{v_{3}}$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is an I2RDF. Then f assigns \emptyset to v_{3} and $\{1\}$ or $\{2\}$ to the leaf adjacent to v_{3}, if any, and $\left.f\right|_{V\left(T^{\prime}\right)}$ is an I2RDF on T^{\prime} with weight $i_{r 2}(T)-2 k-t$. Thus $i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)-2 k-t$. It follows from (9) that $i_{r 2}(T)=\gamma_{r 2}(T)=\gamma_{r 2}\left(T^{\prime}\right)+2 k+t=i_{r 2}\left(T^{\prime}\right)+2 k+t$ and hence $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$.

Now we show that this equality is strong. Suppose h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that it is not independent. We can extend h to a 2RDF on T by assigning $\{1,2\}$ to every strong support vertex of $T_{v_{3}}$ and $\{1\}$ to the leaf adjacent to v_{3}, if any, and \emptyset to the other vertices in $T_{v_{3}}$, to obtain a $\gamma_{r 2}(T)$-function which is not independent, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Therefore $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. It follows from the induction hypothesis that $T^{\prime} \in \mathcal{F}$. Then T can be obtained from T^{\prime} by applying Operation \mathcal{O}_{2} and hence $T \in \mathcal{F}$.

We thus assume that $\operatorname{deg}\left(v_{2}\right)=2$. Furthermore, we may assume that every child of v_{3} that is a support vertex, has degree two. We now consider the following three cases on $\left|L_{v_{3}}\right|$.
Case 1. $\left|L_{v_{3}}\right| \geq 2$.
Let $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. We show that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Suppose f is a $\gamma_{r 2}(T)$-function that assigns $\{1,2\}$ to v_{3} (Observation $2(\mathrm{a})$). Clearly $\left|f\left(v_{1}\right)\right|+\left|f\left(v_{2}\right)\right|=1$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T)$, f is an $i_{r 2}(T)$-function. Hence $\left|f\left(v_{2}\right)\right|=0$ and $\left.f\right|_{V\left(T^{\prime}\right)}$ is an I2RDF on T^{\prime} implying that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)-1=\gamma_{r 2}(T)-1 \tag{10}
\end{equation*}
$$

Now let g be a $\gamma_{r 2}\left(T^{\prime}\right)$-function that assigns $\{1,2\}$ to v_{3} (Observation 2 (a)). Then g can be extended to a 2 RDF on T by assigning \emptyset to v_{2} and $\{1\}$ to v_{1}. This yields $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)+1$, By (10), we
have $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$. To show that this equality is strong, assume h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that it is not independent. We may assume $h\left(v_{3}\right)=\{1,2\}$. Now one can extend h to a $\gamma_{r 2}(T)$-function which is not independent, by assigning \emptyset to v_{2} and $\{1\}$ to v_{1}, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$ and so T can be obtain from T^{\prime} by Operation \mathcal{O}_{3}.
Case 2. $\left|L_{v_{3}}\right|=0$.
Then any child of v_{3} is a support vertex of degree 2 . We consider two subcases.
Subcase 2.1. $\operatorname{deg}\left(v_{3}\right) \geq 3$.
Let z_{2} be a child of v_{3} different from v_{2}, and let z_{1} be the leaf adjacent to z_{2}. Suppose $T^{\prime}=$ $T-\left\{v_{1}, v_{2}\right\}$. We show that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Let f be a $\gamma_{r 2}(T)$-function. We may assume $2 \in f\left(v_{3}\right)$ by Proposition A. Clearly $\left|f\left(v_{1}\right)\right|+\left|f\left(v_{2}\right)\right|=1$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is a $i_{r 2}(T)-$ function. Clearly $\left.f\right|_{V\left(T^{\prime}\right)}$ is an I2RDF on T^{\prime} implying that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)-1=\gamma_{r 2}(T)-1 \tag{11}
\end{equation*}
$$

On the other hand, by Proposition A, T^{\prime} has a $\gamma_{r 2}\left(T^{\prime}\right)$-function g such that $2 \in g\left(v_{3}\right)$. Then we can extend g on T by assigning \emptyset to v_{2} and $\{1\}$ to v_{1}, to obtain a 2 RDF of weight $\gamma_{r 2}\left(T^{\prime}\right)+1$. Thus $\gamma_{r 2}\left(T^{\prime}\right) \geq \gamma_{r 2}(T)-1$. It follows from (11) that $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$.

To show that this equality is strong, assume h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that it is not independent. First let $\left|h\left(v_{3}\right)\right|>0$. Assume without loss of generality that $2 \in h\left(v_{3}\right)$. Then the function $h^{\prime}:$ $V(T) \rightarrow \mathcal{P}(\{1,2\})$ defined by $h^{\prime}\left(v_{1}\right)=\{1\}, h^{\prime}\left(v_{2}\right)=\emptyset$ and $h^{\prime}(x)=h(x)$ for $x \in V(T)-\left\{v_{1}, v_{2}\right\}$ is a $\gamma_{r 2}(T)$-function that is not independent, a contradiction. Let now $\left|h\left(v_{3}\right)\right|=0$. Then $\left|h\left(z_{2}\right)\right|+$ $\left|h\left(z_{1}\right)\right|=2$. If $\cup_{x \in N\left(v_{3}\right)-\left\{z_{2}\right\}} h(x) \neq \emptyset$, then we define $g: V(T) \rightarrow \mathcal{P}(\{1,2\})$ by $g\left(v_{3}\right)=\{1\}, g\left(z_{2}\right)=$ $g\left(v_{2}\right)=\emptyset, g\left(z_{1}\right)=g\left(v_{1}\right)=\{2\}$ and $g(x)=h(x)$ otherwise, to produce a $\gamma_{r 2}(T)$-function that is not independent, a contradiction. Let $\cup_{x \in N\left(v_{3}\right)-\left\{z_{2}\right\}} h(x)=\emptyset$. Then to rainbowly dominate v_{3}, we must have $h\left(z_{2}\right)=\{1,2\}$ and $\left|h\left(z_{1}\right)\right|=0$. Then the function $h_{1}: V\left(T^{\prime}\right) \rightarrow P(\{1,2\})$ defined by $h_{1}\left(v_{3}\right)=\{1\}, h_{1}\left(z_{2}\right)=\emptyset, h_{1}\left(z_{1}\right)=\{2\}$, and $h_{1}(x)=h(x)$ otherwise, is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that is not independent and $\left|h_{1}\left(v_{3}\right)\right|>0$. This leads to a contradiction as above. Thus $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$ and by inductive hypothesis we have $T^{\prime} \in \mathcal{F}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}.

Subcase 2.2. $\quad \operatorname{deg}\left(v_{3}\right)=2$.
First let $\operatorname{deg}\left(v_{4}\right)=2$. Let $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. We show that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Let f be a $\gamma_{r 2}(T)-$ function such that $f\left(v_{1}\right)=\{1\}$ and $2 \in f\left(v_{3}\right)$ (Proposition A). This implies that $\left|f\left(v_{2}\right)\right|=0$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is an $i_{r 2}(T)$-function. Obviously the function f, restricted to T^{\prime}, is an I2RDF on T^{\prime} implying that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)-1=\gamma_{r 2}(T)-1 \tag{12}
\end{equation*}
$$

Now let g be a $\gamma_{r 2}\left(T^{\prime}\right)$-function such that $g\left(v_{3}\right)=\{1\}$ by Proposition A. We can extend g to a $\gamma_{r 2}(T)$-function by assigning \emptyset to v_{2} and $\{2\}$ to v_{1}. This implies that $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)+1$ and by (12) we obtain $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$.

Now we show that this equality is strong. Assume h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that is not independent. If $\left|h\left(v_{3}\right)\right|>0$, then we can extend h to a $\gamma_{r 2}(T)$-function that is not independent by assigning \emptyset to v_{2} and $\{1\}$ to v_{1} if $2 \in h\left(v_{3}\right)$ and $\{2\}$ to v_{1} if $1 \in h\left(v_{3}\right)$, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Let $\left|h\left(v_{3}\right)\right|=0$. Then to rainbowly dominate v_{3}, we must have $h\left(v_{4}\right)=\{1,2\}$. Since h is a $\gamma_{r 2}\left(T^{\prime}\right)-$ function and $\operatorname{deg}\left(v_{4}\right)=2$, we must have $\left|h\left(v_{5}\right)\right|=0$. Then the function $h_{1}: V(T) \rightarrow \mathcal{P}(\{1,2\})$ defined by $h_{1}\left(v_{5}\right)=h_{1}\left(v_{1}\right)=\{1\}, h_{1}\left(v_{3}\right)=\{2\}, h_{1}\left(v_{2}\right)=h_{1}\left(v_{4}\right)=\emptyset$ and $h_{1}(x)=h(x)$ otherwise, is a $\gamma_{r 2}(T)$-function which is not independent, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Hence $\gamma_{r 2}\left(T^{\prime}\right) \equiv$ $i_{r 2}\left(T^{\prime}\right)$ and by inductive hypothesis, $T^{\prime} \in \mathcal{F}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}.

Next let $\operatorname{deg}\left(v_{4}\right) \geq 3$. By Proposition A, T has a $\gamma_{r 2}$-function f such that $f\left(v_{1}\right)=\{1\},\left|f\left(v_{2}\right)\right|=0$ and $2 \in f\left(v_{3}\right)$. Also suppose among $\gamma_{r 2}(T)$-functions with this property we choose a $\gamma_{r 2}(T)$-function such that $\left|f\left(v_{4}\right)\right|$ is as large as possible. If $\left|f\left(v_{3}\right)\right|=2$, then the function $g_{1}: V(T) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g_{1}\left(v_{1}\right)=\{1\}, g_{1}\left(v_{2}\right)=\emptyset, g_{1}\left(v_{3}\right)=\{2\}, g_{1}\left(v_{4}\right)=\{1\}$ and $g_{1}(x)=f(x)$ for $x \in V(T)-$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a $\gamma_{r 2}(T)$-function that is not independent, a contradiction. Therefore $\left|f\left(v_{3}\right)\right|=1$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is an I2RDF of T and hence $f\left(v_{4}\right)=\emptyset$. This implies that neither v_{4} is a strong support vertex nor v_{4} has a support vertex of degree 2 in its neighbor. If there is a path $v_{4} y_{3} y_{2} y_{1}$ in T_{4} where $y_{3} \neq v_{3}$ and $\operatorname{deg}\left(y_{1}\right)=1$, then by the choice of diametral path $v_{1} \ldots v_{k}$, we
have $\left|L_{v_{2}}\right| \geq\left|L_{y_{2}}\right|$ and $\left|L_{v_{3}}\right| \geq\left|L_{y_{3}}\right|$ that implies $\operatorname{deg}\left(y_{2}\right)=2$ and $\left|L_{y_{3}}\right|=0$. Hence, if there is a leaf at distance three from v_{4} in $T_{v_{4}}$, then it plays the same role of v_{1}. Thus we may assume that each component of $T_{v_{4}}-v_{4}$ is isomorphic to $P_{3}, K_{1, t},(t \geq 2)$ or a single vertex, where v_{4} is adjacent to a leaf of each P_{3}, the center of $K_{1, t}$, or the single vertex, respectively.

Assume first that one of the components of $T_{v_{4}}-v_{4}$ is $K_{1, t},(t \geq 2)$. That is, v_{4} has a strong support vertex such as z in its neighbor. Let $T^{\prime}=T-\left\{v_{1}, v_{2}, v_{3}\right\}$ and let f be a $\gamma_{r 2}(T)$-function. By Observation 2 (a), we may assume $f(z)=\{1,2\}$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is a $i_{r 2}(T)$-function and hence $\left|f\left(v_{4}\right)\right|=0$. Then clearly $\left|f\left(v_{1}\right)\right|+\left|f\left(v_{2}\right)\right|+\left|f\left(v_{3}\right)\right|=2$ and $\left.f\right|_{V\left(T^{\prime}\right)}$ is an I2RDF on T^{\prime} implying that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)-2=\gamma_{r 2}(T)-2 \tag{13}
\end{equation*}
$$

On the other hand, let f_{1} be a $\gamma_{r 2}\left(T^{\prime}\right)$-function such that $f_{1}(z)=\{1,2\}$ (Observation 2 (a)). We can extend f_{1} to a 2 RDF on T with weight $\gamma_{r 2}\left(T^{\prime}\right)+2$ by assigning $\{2\}, \emptyset$ and $\{1\}$ to v_{3}, v_{2} and v_{1}, respectively. Hence $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)+2$ and by (13), we have $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$.

If there exists a $\gamma_{r 2}\left(T^{\prime}\right)$-function h that is not independent, then as above we can extend h to a $\gamma_{r 2}(T)$-function that is not independent, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus $\gamma_{r 2}\left(T^{\prime}\right) \equiv$ $i_{r 2}\left(T^{\prime}\right)$. It follows from inductive hypothesis that $T^{\prime} \in \mathcal{F}$ and so T can be obtained from T^{\prime} by Operation \mathcal{O}_{5}.

Now suppose that v_{4} has no child which is a strong support vertex. We claim that $\left|L_{v_{4}}\right| \leq 1$. Let to the contrary that $\left|L_{v_{4}}\right| \geq 2$. By Proposition A, T has a $\gamma_{r 2}$-function f that $f\left(v_{1}\right)=\{1\}$ and $2 \in f\left(v_{3}\right)$. Since $\left|L_{v_{4}}\right| \geq 2$, we may assume $f\left(v_{4}\right)=\{1,2\}$ which contradicts the assumption $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Hence $\left|L_{v_{4}}\right| \leq 1$. Since $\operatorname{deg}\left(v_{4}\right) \geq 3$, we deduce that $T_{v_{4}} \in \mathcal{F}_{2}$. Let $T^{\prime}=T-T_{v_{4}}$ and let g be a $\gamma_{r 2}(T)$-function with $g\left(v_{1}\right)=\{1\}$ and $2 \in g\left(v_{3}\right)$. By assumption g is an I2RDF of T and hence $g\left(v_{4}\right)=\emptyset$. Then $\left.g\right|_{V\left(T^{\prime}\right)}$ is an I2RDF of T^{\prime} implying that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)-2 \operatorname{deg}\left(v_{4}\right)+2-t=\gamma_{r 2}(T)-2 \operatorname{deg}\left(v_{4}\right)+2-t \tag{14}
\end{equation*}
$$

where t is number of leaves adjacent to v_{4}.
On the other hand, each $\gamma_{r 2}\left(T^{\prime}\right)$-function f, can be extended to a 2 RDF of T by assigning $\{2\}$ to $v_{3},\{1\}$ to v_{1}, each vertex of $N\left(v_{4}\right) \backslash\left(L_{v_{4}} \cup\left\{v_{5}, v_{3}\right\}\right)$ and the leaf adjacent to v_{4}, if any, $\{2\}$ to every vertex in $T_{v_{4}}$ at distance 3 from v_{4} except v_{1}, and \emptyset to the other vertices of $T_{v_{4}}$. It follows that $\gamma_{r 2}\left(T^{\prime}\right) \geq \gamma_{r 2}(T)-2 \operatorname{deg}\left(v_{4}\right)+2-t$. By (14) we obtain $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$.

If h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function that is not independent, then we can easily extend h to a $\gamma_{r 2}(T)$-function that is not independent, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. By inductive hypothesis, we have $T^{\prime} \in \mathcal{F}$. It can be easily seen that $\gamma_{r 2}\left(T^{\prime}-v_{5}\right) \geq \gamma_{r 2}\left(T^{\prime}\right)$ if v_{4} is a support vertex. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{6}.
Case 3. $\left|L_{v_{3}}\right|=1$.
Let w be the leaf adjacent to v_{3}. We consider the following subcases.
Subcase 3.1. $\operatorname{deg}\left(v_{3}\right)>3$.
Then v_{3} has a child $z_{2} \neq v_{2}$ that is a support vertex of degree 2. Let z_{1} be the leaf adjacent to z_{2}. Set $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. We show that $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. Assume that f is a $\gamma_{r 2}(T)$-function. We may assume that $f\left(v_{1}\right)=\{1\}$ and $2 \in f\left(v_{3}\right)$ by Proposition A. Clearly $\left|f\left(v_{2}\right)\right|=0$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T), f$ is an I2RDF of T. Now $\left.f\right|_{V\left(T^{\prime}\right)}$ is an I2RDF of T^{\prime} of weight $\gamma_{r 2}(T)-1$ which implies that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)-1=\gamma_{r 2}(T)-1 \tag{15}
\end{equation*}
$$

On the other hand, if f_{1} is a $\gamma_{r 2}\left(T^{\prime}\right)$-function, then we may assume that $2 \in f_{1}\left(v_{3}\right)$ by Proposition A, and so f_{1} can be extended to a 2 RDF of T of weight $\gamma_{r 2}\left(T^{\prime}\right)+1$ by assigning \emptyset to v_{2} and $\{1\}$ to v_{1} implying that $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)+1$. By (15) we obtain $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$.

To show that this equality is strong, suppose h is a $\gamma_{r 2}\left(T^{\prime}\right)$-function which is not independent. We may assume $\left|h\left(v_{3}\right)\right|>0$, for otherwise we must have $|h(w)|=1$ and $\left|h\left(z_{2}\right)\right|+\left|h\left(z_{1}\right)\right|=2$ and the function $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ by $g\left(v_{3}\right)=\{1\}, g\left(z_{2}\right)=\emptyset, g\left(z_{1}\right)=g(w)=\{2\}$ and $g(x)=h(x)$ otherwise, is a $\gamma_{r 2}\left(T^{\prime}\right)$-function with the desired property. Then we can easily extend h to a $\gamma_{r 2}(T)-$ function that is not independent, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$ and by inductive hypothesis, $T^{\prime} \in \mathcal{F}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}.

Subcase 3.2. $\operatorname{deg}\left(v_{3}\right)=3$.
First let $\operatorname{deg}\left(v_{4}\right) \geq 3$. Let f be a $\gamma_{r 2}(T)$-function. By Corollary 1, we may assume $f\left(v_{3}\right)=$ $\{1,2\}$. Since $\gamma_{r 2}(T) \equiv i_{r 2}(T)$, f is an I2RDF of T. Then $\left|f\left(v_{4}\right)\right|=0$ and $\left|f\left(v_{1}\right)\right|=1$. If $1 \in$ $\cup_{x \in N\left(v_{4}\right)-\left\{v_{3}\right\}} f(x)$ (the case $2 \in \cup_{x \in N\left(v_{4}\right)-\left\{v_{3}\right\}} f(x)$ is similar), then the function $f_{1}: V(T) \rightarrow$ $\mathcal{P}(\{1,2\})$ defined by $f_{1}\left(v_{1}\right)=f_{1}(w)=\{1\}, f_{1}\left(v_{3}\right)=\{2\}, f_{1}\left(v_{2}\right)=\emptyset$ and $f_{1}(x)=f(x)$ otherwise, is a $\gamma_{r 2}(T)$-function which is not independent, a contradiction with $\gamma_{r 2}(T) \equiv i_{r 2}(T)$. Thus $\mid \cup_{x \in N\left[v_{4}\right]-\left\{v_{3}\right\}}$ $f(x) \mid=0$. This implies that v_{4} has no child with depth 0 or 1 . Assume that v_{4} has a child z with depth 2. Then any leaf of T_{z} at distance two from z plays the same role of v_{1}, and thus by the previous arguments, we may assume that $T_{z} \simeq T_{v_{3}}$ and as above we can define a $\gamma_{r 2}(T)$-function g such that $g(z)=g\left(v_{3}\right)=\{1,2\}$ which leads to a contradiction. Thus $\operatorname{deg}\left(v_{4}\right)=2$. Suppose $T^{\prime}=T-T_{v_{4}}$. We show that $i_{r 2}\left(T^{\prime}\right) \equiv \gamma_{r 2}\left(T^{\prime}\right)$. Let f be a $\gamma_{r 2}(T)$-function that assigns $\{1,2\}$ to v_{3} and \emptyset to v_{4}, according to Corollary 1. Note that f is also an I2RDF of T because $i_{r 2}(T) \equiv \gamma_{r 2}(T)$. Then $\left.f\right|_{V\left(T^{\prime}\right)}$ is an I2RDF on T^{\prime} implying that

$$
\begin{equation*}
\gamma_{r 2}\left(T^{\prime}\right) \leq i_{r 2}\left(T^{\prime}\right) \leq i_{r 2}(T)-3=\gamma_{r 2}(T)-3 \tag{16}
\end{equation*}
$$

On the other hand, every $\gamma_{r 2}\left(T^{\prime}\right)$-function can be extended to a 2 RDF of T by assigning $\{1\}$ to v_{1}, \emptyset to v_{2}, v_{4}, w and $\{1,2\}$ to v_{3}, and thus $\gamma_{r 2}(T) \leq \gamma_{r 2}\left(T^{\prime}\right)+3$. It follows from (16) that $\gamma_{r 2}\left(T^{\prime}\right)=i_{r 2}\left(T^{\prime}\right)$.

If there is a $\gamma_{r 2}\left(T^{\prime}\right)$-function g that is not independent then as above, we can extend it to a $\gamma_{r 2}(T)$-function that is not independent, a contradiction. Thus $\gamma_{r 2}\left(T^{\prime}\right) \equiv i_{r 2}\left(T^{\prime}\right)$. By the inductive hypothesis, $T^{\prime} \in \mathcal{F}$ and T can be obtained from T^{\prime} by Operation \mathcal{O}_{7} and the proof is completed.

Now we are ready to state the main theorem of this paper.
Theorem 14. Let T be a tree. Then $i_{r 2}(T) \equiv \gamma_{r 2}(T)$ if and only if $T \in \mathcal{F} \cup\left\{K_{1}\right\}$.
Acknowledgements The authors would like to thank anonymous referees for their remarks and suggestions that helped improve the manuscripts.

References

[1] H. Aram, S.M. Sheikholeslami and L. Volkmann, On the total $\{k\}$-domination and $\{k\}$-domatic number of a graph, Bull. Malays. Math. Sci. Soc.(2) 36(1) (2013), 39-47.
[2] H. Aram, M. Atapour, S.M. Sheikholeslami and L. Volkmann, Signed k-domatic number of digraphs, Bull. Malays. Math. Sci. Soc.(2) 36(1) (2013), 143-150.
[3] B. Brešar, M.A. Henning, and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008), 213-225
[4] B. Brešar, T.K. Šumenjak, On the 2-rainbow domination in graphs, Discerete Appl. Math. 155 (2007), 2394-2400.
[5] M. Chellali and N. Jafari Rad, Strong equality between the Roman domination and independent Roman domination numbers in trees, Discuss. Math. Graph Theory 33 (2013), 337-346.
[6] N. Dehgardi, S.M. Sheikholeslami and L. Volkmann, The rainbow domination subdivision numbers of graphs, Mat. Vesnik (to appear)
[7] N. Dehgardi, S.M. Sheikholeslami and L. Volkmann, The k-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014), 133-139.
[8] M. Falahat, S.M. Sheikholeslami and L. Volkmann, New bounds on the rainbow domination subdivision number, Filomat (to appear)
[9] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discerete Math. 260 (2003), 77-87
[10] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001), 111-124
[11] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998), 199-206
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
[13] S.M. Sheikholeslami and L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory 32 (2012), 129-140.
[14] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
[15] Y. Wu and Q. Yu, A characterization of graphs with equal domination number and vertex cover number, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 803-806.
[16] Y. Zhao, E. Shan, Z. Liang, and R. Gao, A labeling algorithm for distance domination on block graphs Bull. Malays. Math. Sci. Soc. (2) (accepted)

[^0]: * Corresponding author

