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Abstract

A 2-rainbow dominating function (2RDF) on a graph G = (V, E) is a function f from the
vertex set V' to the set of all subsets of the set {1,2} such that for any vertex v € V with
f(w) = 0 the condition UuGN(v) f(u) = {1,2} is fulfilled. A 2RDF f is independent (I2RDF)
if no two vertices assigned nonempty sets are adjacent. The weight of a 2RDF f is the value
w(f) = ey |f(W)|. The 2-rainbow domination number v.2(G) (respectively, the independent 2-
rainbow domination number ir2(G) ) is the minimum weight of a 2RDF (respectively, 2RDF) on
G. We say that v,2(G) is strongly equal to i,2(G) and denote by vr2(G) = ir2(G), if every 2RDF
on GG of minimum weight is an I2RDF. In this paper we provide a constructive characterization
of trees T with v,r2(T) = ir2(T).

Keywords: 2-rainbow domination number, independent 2-rainbow domination number, strong
equality, tree.
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1 Introduction

Let G be a simple graph with vertex set V = V(G) and edge set E = E(G). For every vertex v € V,
the open neighborhood N(v) is the set {u € V | uv € E} and the closed neighborhood of v is the
set N[v] = N(v) U{v}. The degree of a vertex v € V is degq(v) = deg(v) = |[N(v)|. If A C V(Q),
then G[A] is the subgraph induced by A. A vertex of degree one is called a leaf, and its neighbor is
called a support vertex. If v is a support vertex, then L, will denote the set of all leaves adjacent to
v. A support vertex v is called strong support vertex if |L,| > 1. For r,s > 1, a double star S(r, s) is
a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and the other to
s leaves. For a vertex v in a rooted tree T', let C'(v) denote the set of children of v, D(v) denote the
set of descendants of v and D[v] = D(v) U {v}, and the depth of v, depth(v), is the largest distance
from v to a vertex in D(v). The mazimal subtree at v is the subtree of T' induced by D(v) U {v},
and is denoted by 7). For terminology and notation on graph theory not given here, the reader is
referred to [14].
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For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f
from the vertex set V(G) to the set of all subsets of the set {1,2,...,k} such that for any vertex
v € V(G) with f(v) = 0 the condition ey, f(v) = {1,2,...,k} is fulfilled. The weight of a
kRDF f is the value w(f) = >_ oy |f(v)]. The k-rainbow domination number of a graph G, denoted
by vrk(G), is the minimum weight of a kRDF of G. A ~,,(G)-function is a k-rainbow dominating
function of G with weight 7,1(G). Note that v,1(G) is the classical domination number v(G).
The k-rainbow domination number was introduced by Bresar, Henning, and Rall [3] and has been
studied by several authors (see for example [4, 6, 7, 8, 13]). Note that 1-rainbow domination number
is the usual domination number. To study other domination parameters we refer the readers to
1, 2, 15, 16].

A k-rainbow dominating function f is called an independent k-rainbow dominating function (ab-
breviated IkRDF) on G if the set V(G) — {v € V | f(v) = 0} is independent. The independent
k-rainbow domination number, denoted by i,1(G), is the minimum weight of an IkRDF on G.
An independent k-rainbow dominating function f is called an i,.,(G)-function if w(f) = ik(G).
Since each independent k-rainbow dominating function is a k-rainbow dominating function, we have

Clearly if v,1(G) = irx(G), then every i,,(G)-function is also a 7,4(G)-function. However not
every 7,1 (G)-function is an i, (G)-function, even when 7, (G) = i,(G). For example the double
star S(k, k+1) has two v, (S(k, k4 1))-function but only one of them is an 4,4 (S(k, k+1))-function.
We say that v,4(G) and i,,(G) are strongly equal and denote by v,5(G) = i.1(G), if every v,x(G)-
function is an i,4(G)- function.

Haynes and Slater in [11] were the first to introduce strong equality between two parameters.
Also in [9] and [10], Haynes, Henning and Slater gave constructive characterizations of trees with
strong equality between some domination parameters.

Our purpose in this paper, is to present a constructive characterizations of trees T' with v,2(T") =
iro(T).

We make use of the following result in this paper.

Proposition A. [6] Let G be a connected graph. If there is a path vsvev; in G with deg(ve) = 2
and deg(v1) = 1, then G has a ~,2(G)-function f such that f(v;) = {1} and 2 € f(vs).

Corollary 1. Let T be a tree with v,2(T") = i,2(T"). If there is a path vsvav; in T with deg(ve) =
and deg(vy) = 1 such that vs is a support vertex, then T has a 7,o(T)-function f such that f(v3)
{1,2}, |f(v1)] =1 and |f(x)| = 0 for every © € L,, U {v2}.
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Observation 2. Let T be a tree and let z be a strong support vertex of T. Then
(a) T has a vro(T)-function such that f(z) = {1,2}.

(b) vr2(T) Z i2(T) if and only if T has a v.2(T)-function that is not independent and f(z) =
{1,2}.

Proof. (a) The proof is immediate.

(b) Let v,2(T) # ip2(T). Then T has a v,2(T)-function that is not independent. If f(z) = {1, 2}, then
we are done. If |f(z)| = 1, then |f(z)| = 1 for each z € L, and the function ¢ : V(G) — P({1,2})
defined by g(z) = {1,2},g(x) = 0 for z € L, and g(u) = f(u) otherwise, is a 2RDF of T of weight less
than w(f) which is a contradiction. Let f(z) = 0. Then clearly the function g : V(G) — P({1,2})
defined by g(z) = {1,2},9(z) = 0 for x € L, and g(u) = f(u) otherwise, is a y,2(T)-function with
the desired property. O

2 Characterizations of trees with 7,2(7T) = i,5(7)
Let 77 be the family of trees that can be obtained from k > 1 disjoint stars K » by adding either a

new vertex v or a path uv and joining the centers of stars to v. Also let F5 be the family including
P5 and all trees obtained from k£ > 2 disjoint P3 by adding either a new vertex v or a path wv



and joining v to a leaf of each P5. If T belongs to F1 U Fo — {Ps} then we call the vertex v, the
special vertex of T and if T = Ps, then its support vertices are special vertices of T. Note that if
T e FLUF;, then ’yrg(T) = ’l‘»,«-Q(T).

Now we provide a constructive characterization of trees T' with 7,.o(T") = i,2(T'). For this purpose
we define a family of trees as follows: Let F be the family of trees such that: F contains star K o
and if T is a tree in F, then the tree 7" obtained from T by the following seven operations which
extend the tree T by attaching a tree to a vertex y € V(T'), called an attacher, is also a tree in F.

e Operation Oy: If z is a strong support vertex of T € F, then O; adds a new vertex x and an
edge zz.

e Operation Oy: If z is a vertex of T' € F, then O, adds a new tree T € F; with special vertex
x and an edge xzz provided that if = is a support vertex, then v.o(T — z) > v.2(T).

e Operation O3: If z is a strong support vertex of T' € F, then O3 adds a path zzy.

e Operation Oy4: If z is a vertex of T' € F which is adjacent to a support vertex of degree 2, then
O, adds a path zzy.

e Operation Os: If z is a vertex of T' € F which is adjacent to a strong support vertex, then Oy
adds a path zzyw.

e Operation Og: If z is a vertex of T' € F, then Og adds new tree Ty € Fo with special vertex x
and an edge xz provided that if = is a support vertex, then v,.o(T — z) > ~v,.2(T).

e Operation O7: If z is a vertex of T' € F such that every ~,2(T)-function assigns () to z, then
Oz adds the double star S(1,2) and an edge zz where x is a leaf of S(1,2) whose support
vertex has degree 3.

Observation 3. The family F contains all graphs in {Kj |t > 2} UF U Fa.

Proof. Starting from K; 5 € F and by applying ¢ — 2 times Operation O;, we obtain the star K; ;
and hence F contains all stars. Furthermore, starting from K, » and by applying Operation Oy, we
obtain that F contains Ps.

Now let T' € Fy. If |[V(T)| = 4, then T = K; 3 and immediately T € F. If |V(T)| = 5, then T'
can be obtained from K; 2 by applying Operation Os. If |V(T)| > 6, then T can be obtained from
K, > by applying Operation O,. Thus F contains all graphs in Fj.

Finally let T € F5 — {Ps}. If [V(T)| = 7, then T = P; and T can be obtained from P; by
applying Operation Oy twice and so T' € F. If |V(T)| > 9, then T can be obtained from Kj 3 by
applying Operation Og. Thus F contains all graphs in F. O

Lemma 4. Let T be a tree with v.9(T) = 4,2(T) and let T’ be the tree obtained from T by
Operation Oy. Then v,2(T") = i,2(T").

Proof. Assume z is a strong support vertex of 7" and let x is a new vertex that is attached to z by
applying Operation O;. By Observation 2 (a), T has a v,o-function f that assigns {1,2} to z. Since
Yro(T) = ip2(T), f is an I2RDF of T. Now we can extend f to an I2RDF of T by assigning §) to
z, implying that v,2(T") < 42 (T") < i2(T) < 4p2(T). On the other hand, by Observation 2 (a),
there is a y,2(T")-function g which assigns {1,2} to z, and clearly the function g, restricted to T, is
a 2RDF of T of weight v,2(T"), implying that v,2(T) < v2(T"). Hence v,2(T") = i2(T").

It will now be shown that v,.o(T") = i,2(T"). Suppose h is a y.o(T")-function that is not inde-
pendent. Since |L.| > 3, we must have f(z) = {1,2}. Then the function h, restricted to T, is a
~r2(T)-function that is not independent which leads to a contradiction. Thus ~,.o(T") = io(T). O

Lemma 5. Let T be a tree with v,2(T') = i,2(T) and let T' be a tree obtained from T' by Operation
Os. Then vp2(T") = ipe(T).



Proof. Let T7 € F; be the tree which is attached by Operation Os to T by the edge xz for obtaining
the tree T', where z € V(T) is the attacher vertex, and let 1, xa,...,2; € V(T1) be the strong
support vertices of T7. Assume z is the special vertex of T;. If z is a support vertex then let y
be the leaf that is adjacent to x. Let t be a variant defined by ¢ = 1 if x is a support vertex, and
t = 0 otherwise. Every i,o(T)-function can be extended to an I2RDF on T” by assigning {1,2} to
25, 1=1,2,...,k 0 touforue UleN(xi), and {1} to y if = is a support vertex. This implies that
iro(T") <ipa(T) + 2k + t. Since v,2(T) = ir2(T), we deduce that

Yr2(T") < ipa(T') < yo2(T) + 2k + t = ipo(T) + 2k + ¢ (1)

Now we show that v.o(T") = v2(T) + 2k +t. Let f be a v.o(T')-function. It is easy to
see that 32, c N qay [f(W)] = 2, for i = 1,2, k, and |f(z)| + |f(y)| = 1, if ¢ = 1. Then
Yuev(ry |F(W)] > 2k+t. If | f(x)| = 0 then f|y 7y is a 2RDF on T', and 50 3,7y | ()] = vr2(T).
By adding two recent inequalities, we obtain ,2(T") = 3_ ey (p [/ (w)| = Yr2(T) + 2k + ¢. Assume
that |f(z)] > 1. Clearly if ¢ = 1 the |f(z)| + |f(y)| > 2. Thus 3,y [f(w)] > 2k + 1 + 1.
If |f(2)] # 0 then f|y(r) is a 2RDF on T, and if [f(z)] = 0 then the function f; defined on
V(T) by fi(z) = {1} and fi(u) = f(u) if u € V(T) — {z} is a 2RDF for T. It follows that
Yr2(T") > 4p2(T) + 2k + t. Hence we can deduce that

Yr2(T") = 4p2(T) + 2k + t. (2)
By (1) and (2), we have
ir2(T") = iy2(T) + 2k +t = 2 (T) 4 2k + t = v,2(T").

It will now be shown that v.o(T") = ir2(7"). Assume h is a y,2(T”)-function that is not inde-
pendent. We may assume that h assigns {1,2} to each support vertex adjacent to x. If |h(z)| =0
then clearly hly (1 is a v.2(T)-function that is not independent, a contradiction with the assump-
tion v,2(T) = dr2(T). Thus |h(z)| = 1. Then |h(2)] = 0 and 3, cy(q,) [(v)| = 2k + 1+t If
|h(z)| =1, then >° ¢, () [M(w)| = 1 and the function g : V(T') — P({1,2}) defined by g(z) = {1}
and g(u) = h(u) for u € V(T) — {z} is a v2(T)-function that is not independent, contradicting
Yr2(T) = ip2(T). Thus |h(z)| = 2. Then z is a support vertex. Now

2T —2) < Y |h(u)] =ya(T') = 2k =1 =t < (7).
ueV(T—z)

This is a contradiction with the assumption v,2(T — z) > v,2(T). Therefore, v,2(T") = ir2(T") and
the proof is complete. O

Lemma 6. If T is a tree with v,2(T) = i,o(T) and T” is a tree obtained from T by Operation Os,
then v,2(T") = i2(T").

Proof. Let z € V(T) be a strong support vertex and let zay be the path added by Operation
O3 to obtain T'. Let f be a ~yqo(T)-function such that f(z) = {1,2} (Observation 2 (a)). Since
Yro(T) = ipo(T), f is an I2RDF of T. We can extend f to an I2RDF on T” by assigning §) to x and
{1} to y, and thus

Yr2(T') < ir2(T') < ira(T) +1 = y2(T) + 1. (3)

Let now f; be a v,2(T")-function. We can assume fi(z) = {1,2} by Observation 2 (a). Since f; is
a vr2(T")-function, we must have |fi(z)| = 0 and |f1(y)| = 1. Then f1|y (1) is a 2RDF on T, and so

’YTQ(T) < ’Y’I“Q(T/) -1 (4)

It follows from (3) and (4) that vpo(T") = ira(T") = 12(T) + 1 = 4o (T) + 1.

Finally we shall show that v.o(T") = i,2(T"). Assume h is a ~v.o(7”)-function that it is not
independent. First let |h(x)| > 1. Then |h(z)| + |h(y)| = 2. If |h(z)| # O then replace h(z) by 0
and h(y) by {1} or {2} to obtain a 2RDF for T" of weight less than ~,2(T"), a contradiction. Thus



|[h(2)] = 0. Then clearly |h(u)] = 1 for any leaf v adjacent to z and the function h; : V(T") —
P({1,2}) defined by hi(y) = {1}, h1(z) = {1,2},h1(u) = 0 for u € L, U{z} and hy(w) = h(w)
otherwise, is a 2RDF for 7" of weight less than ~,2(7"), a contradiction. Now let |h(z)| = 0. Then
clearly |h(y)| = 1 (else we could make a change to be in the previous case |h(x)| > 1), and h|y )
is a 7,2(T)-function which is not independent, a contradiction. Hence, vqo(T') = 4,2(T"). This
completes the proof. O

Lemma 7. If T is a tree with v,2(T) = i,2(T) and T’ is a tree obtained from T by Operation Oy,
then v,.2(T") = i,0(T").

Proof. Let z € V(T) be a vertex which is adjacent to a support vertex of degree 2 such as w, and
let Operation O4 adds the path zxy to T.

First let degp(z) > 2. Let w’ be the leaf adjacent to w. Assume f is a 7,2(T)-function such that
2 € f(2) (Proposition A). Since v,2(T) = ir2(T), f is an i,o(T)-function. Now f can be extended
to an I2RDF on T” by assigning @) to = and {1} to y. Thus

’Yr2(T/) < ir?(T/) < Zr2(T) +1= 'YTZ(T) + 1. (5)

On the other hand, if f; is a v,.o(7")-function, then we may assume that 2 € f1(z) by Proposition
A. Clearly |fi(x)| +|f1(y)| > 1 and fi|y (1) is a 2RDF on T of weight at most v,2(7") — 1, implying
that v.2(T') > v2(T) + 1. Tt follows from (5) and the recent inequality that v.o(T") = i2(T") =
ir2(T) + 1 =2(T) + 1.

It will now be shown that v,2(7") = i,2(T"). Suppose h is a y,2(T")-function which it is not
independent. If [A(z)| > 0 then we must have |h(x)| = 0 and |h(y)| = 1, and so h|y () is a y2(T)-
function which is not independent, a contradiction. Let |h(z)| = 0. Then obviously |h(z)|+ |h(y)| =
|h(w)] 4+ |h(w')] = 2. Then the function g : V(T') — P({1,2}) defined by g(z) = g(w) = 0,
g(y) = glw') ={1},9(z) = {2} and g(u) = f(u) for v € V(T") — {z,y, w,w’, 2}, is a 2RDF of T" of
weight less than 7,.2(T"), a contradiction. Thus v,2(T") = i.o(T").

Now let degp(2) =1, i.e. z is a leaf.

Assume f is a vpo(T)-function. By Proposition A, we may assume that f(z) = {1} . Note that
f is an i,9(T)-function because v,2(T) = iro(T). Then f can be extended to an 12RDF on 7" by
assigning () to z and {2} to y. This implies that

Yra(T") <ipa(T') < ipa(T) +1 = 72(T) + 1. (6)

On the other hand, if f; is a v,2(7")-function then by Proposition A, we may assume fi(y) = {1}
and 2 € fi(z). Then fi]y (1) is a 2RDF of T' of weight at most ~,2(7") — 1 implying that ~,o(7T") >
Yr2(T)+1. Tt follows from the last inequality and (6) that v,2(T") = ir2(T") = Yr2(T)+1 = ip2(T)+1.

Next we show that v,2(T") = i,2(T"). Assume h is a v,2(T”)-function that it is not independent.
If |h(2)| > 0 then we may assume that |h(x)| = 0 and |h(y)| = 1, and so h|y () is a v,2(T)-function
which is not independent, a contradiction. Let h(z) = . Then |h(z)| + |h(y)| > 2. If |h(w)] = 0
then |h(x)| = 2 and |h(y)| = 0, and the function h; : V(T) — P({1,2}) defined by h1(z) = {1} and
hi(u) = h(u) if uw € V(T) — {2} is a y2(T)-function which is not independent, a contradiction. If
|h(w)] > 1 then it follows from |h(z)| + |h(y)| > 2 that the function h; : V(T') — P({1,2}) defined
above, is a vpo(T)-function which is not independent, a contradiction. Hence ~,o(T") = iro(T'). O

Lemma 8. If T is a tree with v,2(T) = i,2(T) and T’ is a tree obtained from T by Operation Os,
then v,2(T") = i,.0(T").

Proof. Let z € V(T) be a vertex that has a strong support vertex u in its neighborhood and let
Operation Oy add the path zzyw to T for obtaining T”. Any 2RDF of T can be extended to a 2RDF
for T" by assigning {1,2} to y, and @ to x and w. Since o(T) = i,2(T), we deduce that

Yr2(T') < ir2(T') < ir2(T) +2 = y2(T) + 2. (7)

Let f be a v,2(T")-function. We may assume f(w) = {1}, f(y) =0 and 2 € f(x), by Proposition
A. Also we may assume that |f(u)| = 2, since u is a strong support vertex. Then fl|y (7 is a 2RDF



on T of weight at most v,2(T") — 2, and 80 2(T) < Y2(T") — 2. Tt follows from (7) that
Yr2(T") = ir2(T") = ir2(T) + 2 = y2(T) + 2.

To show that v,o(T") = i,2(T"), suppose h is a v.2(T")-function that it is not independent. Since
u is a strong support vertex, we may assume |h(u)| = 2. Then clearly h(z) = 0 and |h(z)| + |h(y)| +
|h(w)| = 2, and so hly (1) is a ypo(T)-function which is not independent, a contradiction. Hence
Yr2(T") = ir2(T") and the proof is completed. O

The proof of next lemma is similar to the proof of Lemma 5, and therefore omitted.

Lemma 9. If T is a tree with v,2(T) = i,2(T), and T” is a tree obtained from T by Operation Og,
then Yr2 (T) = 7:7-2 (T)

Lemma 10. If T is a tree with v,.o(T) = io(T) and T” is a tree obtained from T by Operation Oy,
then v, (T") = 2 (T").

Proof. Let z be a vertex of T such that every 7,o(T)-function assign () to it, and let = be a leaf
of double star S(1,2) whose support vertex has degree 3. Assume that Operation Q7 adds the
double star S(1,2) and the edge xz to obtain 77 from T. Let V(S(1,2)) = {x,v,vo,u,up} where
N(v) = {x,u,v0} and u € N(up). Any 2RDF of T can be extended to a 2RDF on T by assigning
? to x,u and vy, {1,2} to v and {1} to ug. Since Yp2(T) = ir2(T), we deduce that

Yr2(T") < ira(T") <ir2(T) + 3 = 2(T) + 3. (8)

Let f be a ~.o(T")-function such that f(ug) = {1} and 2 € f(v) by Observation A. Clearly
[f) + |f(uo)| + |f(w)] + | f(vo)] = 3. We may assume that |f(x)| = 0, otherwise we replace f(z)
by 0 and f(z) by f(2)U f(x). Then f|y () is a 2RDF of T, implying that v,o(T) < 7,2(T") — 3. By
(8), we have vpo(T") = iro(T") = vr2(T) + 3 = ira(T) + 3.

It now will be shown that v,2(T") = i,.2(T"). Suppose h is a v,o(T”)-function which is not
independent. Clearly >° v (g(1.2)) |2(y)| = 3. If [h(2)] > 0, then hly(r) is a v2(T)-function
assigning non empty set to z which leads to a contradiction. Thus [h(2)] = 0. If -, oy (501 .2)) [R(Y)] =
4, then we change the values of h on V(S(1,2)) U{z} to h(z) = h(ug) = {1}, h(v) = {1,2}, and
h(z) = h(u) = h(vg) = 0, then the new function plays the role of h which has been considered
earlier. Thus we assume that }_ oy, (g1 0)) [R(y)] = 3. Then clearly [h(z)| = 0, and hly(7) is a
~r2(T)-function which is not independent, a contradiction. Hence ~,2(T") = i,2(T"). O

Theorem 11. Each tree T in family F U {K;} satisfies v,2(T") = ip2(T).

Proof. If T = K7, then clearly v,2(T) = i,2(T). Let T € F. Then T is obtained from a star K o
by successive operations 7',..., 7™, where 7¢ € {O1,...,07} if m > 1 and T = K; if m = 0.
The proof is by induction on m. If m = 0, then clearly v,2(K12) = #72(K1,2). Let m > 1 and
that the statement holds for all trees which are obtained from K o by applying m — 1 operations in
{O1,...,07}. Tt follows from Lemmas 4, ..., 10 that v,2(T) = i,2(T). O

Observation 12. If S(p,q) is a double star with ¢ > p > 1 and v,2(S(p,q)) = ir2(S(p,q)), then
p=1and q> 2.

Theorem 13. Let T be a tree of order n. If ,.9(T) = i,2(T), then T € F U {K;}.

Proof. The proof is by induction on n. If n =1 then T'= K;. Let the statement holds for all trees
of order less than n and let T be a tree of order n with ~,2(T) = i,2(T). Since vy2(P2) # ira(FP2),
we may assume that n > 3. If diam(7) = 2 then T is a star and by Observation 3, T € F. If
diam(T") = 3, then T is a double star S(p,q) with ¢ > p > 1. By Observation 12, we have p = 1
and ¢ > 2. Then T can be obtained from K, , by Operation O3 and so T' € F. Therefore, we may
assume that diam(7") > 4.

Let vivy ... v, (k > 5) be a diametral path in T such that |L,,| is as large as possible and root
T at vg. Also suppose among paths with this property we choose a path such that |L,,]| is as large
as possible.



Assume first that deg(ve) > 4. Let f be a ~vpo(T)-function. Then clearly f(ve) = {1,2} and
so f is a 2RDF of T — v;. Since v,2(T) = i2(T), f is also an I2RDF of T — vy, implying that
Yo (T) = ipo(T) > ipo(T —v1) > vp2(T — v1). On the other hand, by Observation 2 (a), T'— v has
a yro-function g that assigns {1,2} to ve. Then g can be extended to a 7,.o(T)-function by assigning
() to vy that yields v,2(T) < Ypo(T — v1). Hence vpo(T) = ipo(T) = ipo(T — v1) = Y2 (T — v1).

We show that v,o(T — v1) = ir2(T — v1). Suppose that there is a v,.2(T — v1)-function g that is
not independent. Since g is a y,2(T — v1)-function, we must have |g(vs)| 4+ Zuewa{vl} lg(u)] = 2.
Now the function & : V(T — v1) — P({1,2}) defined by h(vy) = {1,2},h(u) =0 for u € L,, — {v1}
and h(z) = g(x) otherwise, is a 2RDF of T — v; which in not independent. It is clear that h can
be extended to a ~.o(T)-function which is not independent by assigning @ to v;. This leads to a
contradiction with v,.2(T") = 4,2(T). Thus v,2(T — v1) = ipo(T — v1). It follows from the inductive
hypothesis that T'— v; € F. Now it is clear that T can be obtained from T — v; € F by applying
Operation O;.

Assume next that deg(vy) = 3. Let u € L,, — {v1}. We claim that v is not a strong support
vertex. Assume to the contrary that vz is a strong support vertex. By Observation 2 (a), T has
a vpo(T)-function f such that f(vs) = {1,2}. Clearly |f(v2)| + |f(v1)| + |f(u)] = 2. Now the
function g : V(T) — P({1,2}) defined by g(ve) = {1,2},g(v1) = g(u) = 0 and g(z) = f(z) for
z € V(T) — {u,v1,v2} is clearly a v,2(T)-function that is not independent, a contradiction with
Yro(T) = 4,2(T). Thus vs is not a strong support vertex. Using Proposition A and an argument
similar to that described above, we deduce that vs is not adjacent to a support vertex of degree 2.
By the choice of the diametral path, we deduce that any child of vs is a leaf or a support vertex of
degree 3 and at most one of them is leaf. This implies that T;,, € F1. Let T/ =T — T,,.

We claim that if vg is a support vertex, then v,o(T" — v4) > 7,2(T"). Let vz be a support vertex
and let to the contrary that v.o(T' — v4) < vr2(T7). Assume h is a v.2(T" — v4)-function and define
g:V(T)— P({1,2}) by g(x) = h(z) for x € V(T") —{v4}, g(x) = {1,2} for x € N[vs] — (L, U{vs})
and g(z) = 0 otherwise. Obviously g is a 7,.o(T)-function that is not independent, a contradiction
with v.2(T) = i,2(T). Thus v2(T" — v4) > vr2(T") when vs is a support vertex.

It will now be shown that v.o(T") = i,2(T"). First we show that v,.o(T") = i,2(T"). Since every
~r2(T")-function can be extended to a 2RDF on T by assigning {1, 2} to the strong support vertices
in Nz, (v3), {1} to the leaf adjacent to vs, if any, and () to the other vertices in T, we deduce that

iTQ(T) = ’YTQ(T) § ’YTQ(TI) + 2k +1 S '1:7«2(T/) + 2k +1 (9)

where k is the number of strong support vertices adjacent to vs in T, and ¢ is the number of leaf
adjacent to vs. On the other hand, let f be a 7.o(T)-function. By Observation 2 (a), we may
assume that f assigns {1,2} to the strong support vertices in T,,. Since v,2(T) = i,2(T), f is an
I2RDF. Then f assigns () to vz and {1} or {2} to the leaf adjacent to vs, if any, and f|y (7 is an
I2RDF on 7" with weight i,2(T) — 2k — t. Thus i,2(T") < i,2(T) — 2k — t. Tt follows from (9) that
ir2(T) = vr2(T) = Y2 (T") + 2k + t = 6,2(T") + 2k + t and hence v,o(T") = i (T").

Now we show that this equality is strong. Suppose h is a v,.o(T")-function that it is not indepen-
dent. We can extend h to a 2RDF on T by assigning {1, 2} to every strong support vertex of Tj,, and
{1} to the leaf adjacent to vs, if any, and () to the other vertices in T, to obtain a ~,.2(T)-function
which is not independent, a contradiction with ~,2(T") = i,2(T). Therefore v,2(T") = ir2(T'). Tt
follows from the induction hypothesis that 77 € F. Then T can be obtained from 7" by applying
Operation Oy and hence T € F.

We thus assume that deg(ve) = 2. Furthermore, we may assume that every child of vs that is a
support vertex, has degree two. We now consider the following three cases on |L,,]|.

Case 1. |L,,| > 2.

Let T" =T — {v1,va}. We show that v,2(T") = i,2(T"). Suppose f is a v,2(T)-function that assigns
{1,2} to vs (Observation 2 (a)). Clearly |f(v1)| + |f(v2)] = 1. Since v2(T) = ir2(T), f is an
ir2(T)-function. Hence |f(v2)| = 0 and f|y (7 is an I2RDF on 7" implying that

Yr2(T") < ip2(T7) < ia(T) — 1= 72(T) — 1. (10)

Now let g be a v,2(T")-function that assigns {1, 2} to vz (Observation 2 (a)). Then g can be extended
to a 2RDF on T by assigning @) to vy and {1} to vy. This yields y,.2(T) < v2(T") + 1, By (10), we



have v,2(T") = ir2(T"). To show that this equality is strong, assume h is a y,2(7”)-function that it is
not independent. We may assume h(vs) = {1,2}. Now one can extend h to a .o(T)-function which
is not independent, by assigning () to v and {1} to vy, a contradiction with ~,2(T) = 4,2(T). Thus
Yr2(T") = imo(T"). By induction hypothesis, 7" € F and so T can be obtain from 7" by Operation
Os.
Case 2. |L,,| =0.
Then any child of v is a support vertex of degree 2. We consider two subcases.

Subcase 2.1. deg(vs) > 3.
Let 25 be a child of vs different from wvs, and let z; be the leaf adjacent to zo. Suppose T =
T — {v1,v2}. We show that v.o(T") = io(T"). Let f be a v.o(T)-function. We may assume
2 € f(vs) by Proposition A. Clearly |f(v1)| + |f(v2)| = 1. Since v,2(T) = ir2(T), f is a im2(T)-
function. Clearly f|y (7 is an I2RDF on T” implying that

Yr2(T') < ir2(T') < ira(T) — 1= y2(T) — 1. (11)

On the other hand, by Proposition A, 77 has a 7,.o(T")-function g such that 2 € g(vs) . Then we
can extend g on T by assigning ) to vo and {1} to v1, to obtain a 2RDF of weight ,2(7”) + 1. Thus
Yr2(T") > 4p2(T) — 1. Tt follows from (11) that v.o(T") = ipe(T).

To show that this equality is strong, assume h is a v,2(T")-function that it is not independent.
First let |h(v3)| > 0. Assume without loss of generality that 2 € h(vs). Then the function A’ :
V(T) — P({1,2}) defined by h'(v1) = {1}, (v2) = 0 and W' (z) = h(z) for z € V(T) — {v1,va}
is a y,2(T)-function that is not independent, a contradiction. Let now |h(vs)] = 0. Then |h(22)| +
|h(21)] = 2. Tf Upen(vg)— {203 1(x) # 0, then we define g : V(T) — P({1,2}) by g(v3) = {1}, 9(22) =
g(ve) = 0,9(z1) = g(v1) = {2} and g(z) = h(z) otherwise, to produce a 7,2(T)-function that is
not independent, a contradiction. Let Uyen(vy)—{z,3(2) = 0. Then to rainbowly dominate vz, we
must have h(z2) = {1,2} and |h(z1)| = 0. Then the function h; : V(T') — P({1,2}) defined by
hi(vs) = {1}, h1(z2) = 0, h1(21) = {2}, and hy(z) = h(z) otherwise, is a y,2(T")-function that is not
independent and |hy(v3)| > 0. This leads to a contradiction as above. Thus v,.2(1") = i,2(T”) and
by inductive hypothesis we have T € F. Now T can be obtained from 7’ by Operation O,.

Subcase 2.2. deg(vz) = 2.

First let deg(vy) = 2. Let T = T — {v1,v2}. We show that v,2(T") = i,2(T"). Let f be a v.o(T)-
function such that f(v;) = {1} and 2 € f(v3) (Proposition A). This implies that |f(vg)| = 0. Since
Yo (T) = ipo(T), [ is an i.9(T)-function. Obviously the function f, restricted to 7", is an I2RDF on
T’ implying that

Yr2(T') < ira(T) < ira(T) — 1= y2(T) — 1. (12)

Now let g be a v,2(T")-function such that g(vs) = {1} by Proposition A. We can extend g to a
~ro(T)-function by assigning @ to v and {2} to vy. This implies that v,2(T) < v.o(T") + 1 and by
(12) we obtain v,2(T") = iro(T").

Now we show that this equality is strong. Assume h is a v,2(T”)-function that is not independent.
If |h(v3)] > 0, then we can extend h to a v,o(T)-function that is not independent by assigning 0 to
vg and {1} to vy if 2 € h(vs) and {2} to vy if 1 € h(vs3), a contradiction with v,2(T") = ir2(T). Let
|h(vs)] = 0. Then to rainbowly dominate vz, we must have h(vs) = {1,2}. Since h is a v2(T")-
function and deg(vs) = 2, we must have |h(vs)] = 0. Then the function hy : V(T) — P({1,2})
defined by hq(vs) = hi(v1) = {1}, hi(vs) = {2}, h1(v2) = hi(vs) = 0 and hy(z) = h(z) otherwise, is
a ypo(T)-function which is not independent, a contradiction with v.o(T) = iro(T). Hence vo(T') =
ir2(T") and by inductive hypothesis, 77 € F. Now T can be obtained from 7" by Operation Oy.

Next let deg(v4) > 3. By Proposition A, T has a y,o-function f such that f(vy) = {1}, |f(v2)] =0
and 2 € f(v3). Also suppose among ~,2(T)-functions with this property we choose a v,2(T")-function
such that |f(vs)| is as large as possible. If |f(v3)| = 2, then the function ¢y : V(T) — P({1,2})
defined by g1(v1) = {1}, g1(v2) = 0, 91(v3) = {2}, 91(va) = {1} and g1(z) = f(z) for x € V(T) —
{v1, v2, 03,04} is a ypa(T)-function that is not independent, a contradiction. Therefore |f(v3)| = 1.
Since vp2(T) = ir2(T), f is an I12RDF of T and hence f(vs) = 0. This implies that neither vy is
a strong support vertex nor vy has a support vertex of degree 2 in its neighbor. If there is a path
v4y3Yy2y1 in Ty where y3 # vs and deg(y;) = 1, then by the choice of diametral path vy ... v, we



have |L,,| > |Ly,| and |L,,| > |Ly,| that implies deg(y2) = 2 and |L,,| = 0. Hence, if there is a leaf
at distance three from vy in T),, then it plays the same role of v;. Thus we may assume that each
component of T, — v4 is isomorphic to Ps, Kj ¢, (t > 2) or a single vertex, where vy is adjacent to
a leaf of each Ps, the center of K ¢, or the single vertex, respectively.

Assume first that one of the components of T, — vs is Ky 4, (t > 2). That is, vs has a strong
support vertex such as z in its neighbor. Let T/ = T — {v1,v2,v3} and let f be a 7,2(T)-function.
By Observation 2 (a), we may assume f(z) = {1,2}. Since v,o(T) = i,2(T), f is a ir2(T)-function
and hence |f(v4)| = 0. Then clearly |f(vi)| + |f(v2)| + |f(vs)| = 2 and f[y(7/) is an I2RDF on 7"
implying that

Yra(T') <o (T") < ipa(T) = 2 = 7p2(T) — 2. (13)

On the other hand, let f; be a 7,2(T")-function such that fi(z) = {1,2} (Observation 2 (a)). We
can extend f; to a 2RDF on T with weight ~,2(T") + 2 by assigning {2}, § and {1} to v3, v2 and
vy, respectively. Hence v,2(T') < v,2(T") + 2 and by (13), we have v,.2(T") = i,2(T").

If there exists a 7,.o(T")-function h that is not independent, then as above we can extend h to
a vp2(T)-function that is not independent, a contradiction with v.o(T) = ipo(T). Thus v,.o(T') =
iro(T"). Tt follows from inductive hypothesis that 77 € F and so T can be obtained from 7’ by
Operation Os.

Now suppose that vy has no child which is a strong support vertex. We claim that |L,,| < 1.
Let to the contrary that |L,,| > 2. By Proposition A, T has a v,o-function f that f(vy) = {1}
and 2 € f(vs). Since |L,,| > 2, we may assume f(vs) = {1,2} which contradicts the assumption
Yr2(T) = ir2(T). Hence |L,,| < 1. Since deg(vs) > 3, we deduce that T, € Fo. Let T/ =T — T,
and let g be a y,2(T)-function with g(v;) = {1} and 2 € g(v3). By assumption g is an I2RDF of T
and hence g(vy4) = (). Then g|y 7y is an I2RDF of T” implying that

Yr2(T") < ipa(T") <io(T) — 2deg(vs) +2 — t = 7,2(T) — 2deg(vs) +2 — ¢, (14)

where t is number of leaves adjacent to vy.

On the other hand, each ~,.o(7”)-function f, can be extended to a 2RDF of T by assigning {2}
to v3, {1} to vy, each vertex of N(uvg) \ (Ly, U {vs,v3}) and the leaf adjacent to vy, if any, {2} to
every vertex in T, at distance 3 from vy except v1, and () to the other vertices of T;,,. It follows
that v,2(T") > vr2(T) — 2deg(vs) + 2 — t. By (14) we obtain v,.o(T") = i2(T").

If his a v, (T")-function that is not independent, then we can easily extend h to a v,.o(T)-function
that is not independent, a contradiction with v,o(T) = iro(T). Thus v.o(T") = i2(T”). By inductive
hypothesis, we have T' € F. It can be easily seen that v.o(T" — v5) > v2(T') if vy is a support
vertex. Now T can be obtained from 7" by Operation Og.

Case 3. |L,,| =1.
Let w be the leaf adjacent to vs. We consider the following subcases.

Subcase 3.1. deg(vs) > 3.

Then vs has a child 2o # vy that is a support vertex of degree 2. Let z; be the leaf adjacent to
z9. Set T' =T — {vy,v2}. We show that v,2(T") = i,2(T"). Assume that f is a ,2(T)-function.
We may assume that f(v;) = {1} and 2 € f(v3) by Proposition A. Clearly |f(v2)] = 0. Since
Yr2(T) = ir2(T), f is an I2RDF of T. Now f|y (7 is an I2RDF of T" of weight v,2(T) — 1 which
implies that

Yr2(T') < ir2(T') < ipa(T) — 1= y2(T) — 1. (15)

On the other hand, if fi is a v.o(T")-function, then we may assume that 2 € f;(v3) by Proposition
A, and so fi can be extended to a 2RDF of T' of weight ~,2(T") 4+ 1 by assigning (} to ve and {1} to
vy implying that v.2(T) < v.2(T') + 1. By (15) we obtain v,o(T") = ir2(T").

To show that this equality is strong, suppose h is a v,2(T")-function which is not independent.
We may assume |h(vz)| > 0, for otherwise we must have |h(w)| = 1 and |h(z2)| + |h(21)| = 2 and
the function g : V(") — P({1,2}) by g(vs) = {1}, g(22) = 0,9(21) = g(w) = {2} and g(z) = h(x)
otherwise, is a 7,2 (T")-function with the desired property. Then we can easily extend h to a v.o(T)-
function that is not independent, a contradiction with v,2(T") = i2(T'). Thus v,2(T") = i,2(T") and
by inductive hypothesis, 77 € F. Now T can be obtained from 71" by Operation Q.



Subcase 3.2. deg(vs) = 3.

First let deg(vy) > 3. Let f be a 7,.o(T)-function. By Corollary 1, we may assume f(v3) =
{1,2}. Since v,2(T) = i,2(T), f is an I2RDF of T. Then |f(v4)] = 0 and |f(v1)] = 1. If 1 €
UzeN(va)—{vs} (%) (the case 2 € Uzen(vy)—{v,}f(7) is similar), then the function f; : V(T) —
P({1,2}) defined by fi(v1) = fi(w) = {1}, fi(vs) = {2}, f1(v2) = 0 and fi(z) = f(x) otherwise, is a
¥r2(T)-function which is not independent, a contradiction with v,2(T") = iy2(T"). Thus [Uye n[v,]—fuvs}
f(z)| = 0. This implies that v4 has no child with depth 0 or 1. Assume that v4 has a child z with
depth 2. Then any leaf of T, at distance two from z plays the same role of v;, and thus by the
previous arguments, we may assume that T, ~ T,, and as above we can define a v,2(T)-function
g such that g(z) = g(vs) = {1,2} which leads to a contradiction. Thus deg(v4) = 2. Suppose
T =T —T,,. We show that i,o(T") = v2(T"). Let f be a v.o(T)-function that assigns {1, 2} to v
and () to vg, according to Corollary 1. Note that f is also an I2RDF of T because i,2(T) = v,2(T).
Then f|y (7 is an I2RDF on 7" implying that

Yr2(T') < in2(T') < ir2(T) — 3 = y2(T) — 3. (16)

On the other hand, every ~,o(T")-function can be extended to a 2RDF of T by assigning {1} to vy, ()
to w2, v4, w and {1, 2} to vs, and thus v,2(T") < v,2(T")+3. It follows from (16) that v,.2(T") = ir2(1").

If there is a 7,2(7")-function g that is not independent then as above, we can extend it to a
~r2(T)-function that is not independent, a contradiction. Thus 4,2(T") = 4,2(T”). By the inductive
hypothesis, 7" € F and T can be obtained from T’ by Operation O; and the proof is completed. [

Now we are ready to state the main theorem of this paper.
Theorem 14. Let T be a tree. Then i,9(T) = v,2(T) if and only if T € FU {K;}.
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