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1 Introduction

The equilibrium problem considered by Blum and Oettli [8] has wide applications in the prob-

lems arising in game theory, economics, operations research, and engineering science. The equi-

librium problem is very general in the sense that it includes the variational inequality problem,

the Nash equilibrium problem, the minimization problem, the fixed point problem and the com-

plementarity problem as special cases (see, for instance, Blum and Oettli [8]). Due to its wide

applications, the equilibrium problem has been studied intensively(see e.g. [5, 6, 8, 20, 28]). The
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vector equilibrium, as a vector extension of the equilibrium problem, has also been studied by

many authors (see e.g. [7, 10, 21, 27]). The study of the vector equilibrium problem was initially

motivated by the earlier works on the vector variational inequalities( [13,14,23,34]). Solvability is

one of the most interesting and important topics in the field of variational inequalities and equilib-

rium problems. A very large number of papers in the literature deal with the existence of solutions

for variational inequalities and equilibrium problems. In order to establish existence results, a

usual and useful assumption is generalized monotonicity (in the Karamardian’s sense [29]) (see,

e.g., [5–8, 13, 14, 20, 23, 29]). In recent years, some authors studied the existence of solutions for

variational inequalities and equilibrium problems by using (S+)-conditions instead of generalized

monotonicity conditions (see e.g. [11,16,21,25]). Recently, Chadli et al [10] extended the concept of

topological pseudomonotonicity [9] to vector-valued bifunctions and derived some existence results

for vector equilibrium problems by using topological pseudomonotonicity instead of generalized

monotonicity and (S+)-conditions.

On the other hand, various systems of variational inequality problems and systems of equilib-

rium problems have been introduced and studied by many authors. Kassay and Kolumbán [30]

introduced a system of variational inequalities and established an existence theorem by using

Ky Fan lemma. Kassay et al [31] further introduced and studied Minty and Stampacchia varia-

tional inequality systems. Fang and Huang [22] established some existence results for systems of

vector equilibriums by using the Kakutani-Fan-Glicksberg fixed point theorem [24]. Ansari and

others [1–3] introduced and studied systems of vector equilibrium problems by using a maximal

element theorem due to Deguire et al [17]. For more works on this topic, we refer the readers

to [12,18,19,32] and the references therein.

Motivated and inspired by the above works, in this paper, we study the solvability of a system of

vector equilibrium problems with topological pseudomonotonicity. We extend the concept of topo-

logical pseudomonotonicity to a family of mappings. We prove existence results for the system of

vector equilibrium problems under topological pseudomonotonicity conditions. As applications, we

obtain existence results for systems of scalar equilibrium problems under topological pseudomono-

tonicity conditions. Our results generalize the results of [10] to the system of vector equilibrium

problems. The rest of this paper is organized as follows: In Section 2, we give some concepts and

notations. In Section 3, we introduce some concepts of topological pseudomonotonicity. Section 4

is devoted to the existence of solutions to the system of vector equilibrium problems.
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2 Preliminaries and Notations

In this section, we recall some concepts and notations. Let Z be a real Hausdorff topological

vector space with an ordering cone C, that is, C is a closed convex cone in Z with intC 6= ∅ and

C 6= Z, where intC denotes the interior of C. Let D be a nonempty subset of a real Hausdorff

topological vector space E.

Definition 2.1. [4] A mapping F : D → 2Z (the family of all nonempty subsets of Z) is said to

be

(1) upper semicontinuous at x ∈ D if for any open set V containing F (x), there exists a neigh-

borhood U of x such that F (U) ⊂ V ;

(2) upper semicontinuous on D if F is upper semicontinuous at every x ∈ D;

(3) closed if the graph GraphF = {(x, u) ∈ D ×X : u ∈ F (x)} of F is closed.

Remark 2.1. If the image of F is contained in a compact subset of Z, then F : D → 2Z is upper

semicontinuous if and only if F is closed.

Definition 2.2. [7, 33] A mapping f : D → Z is said to be C-upper semicontinuous on D if it

satisfies one of the following three equivalent conditions:

(i) For any a ∈ Z, the set {x ∈ D : f(x) ∈ a− intC} is open in D (Bianchi et al [7]).

(ii) For any x0 ∈ D and any v ∈ intC, there exists an open neighborhood U of x0 such that

f(x0) ∈ f(x) + v − intC for all x ∈ U)(Tanaka [33]).

(iii) For any x ∈ D, for any v ∈ intC, and any net {xα}α∈Λ in D converging to x ∈ D, there

exists α0 ∈ Λ such that

{f(xβ) : β ≥ α} ⊂ f(x) + v − intC,∀α ≥ α0.

Remark 2.2. (a) The equivalence of conditions (i)-(iii) is shown in Proposition 2.1 of Tanaka [33],

Lemma 2.3 of Bianchi et al [7], and Theorem 2.4 of Chadli et al [10]. (b) f is said to be C-lower

semicontinuous if −f is C-upper semicontinuous. (c) If f is upper semicontinuous, then it is also

C-upper semicontinuous. (d) If Z = R and C = R+, then Definition 2.2 reduces to the definition

of usual upper semicontinuous functions.
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Definition 2.3. A mapping f : D → Z is said to be C-concave-like if for any x1, x2 ∈ D, t ∈ [0, 1],

f(x1) ∈ f(tx1 + (1− t)x2)− C or f(x2) ∈ f(tx1 + (1− t)x2)− C.

Remark 2.3. (1) C-concave-likeness is called C-quasiconcaveness in [15]. (2) When Z = R and

C = R+, Definition 2.3 reduces to the definition of quasiconcave functions.

Definition 2.4. [15] A mapping h : D ×D → Z is said to be

(I) C-quasiconvex-like if for any x, y1, y2 ∈ D, t ∈ [0, 1],

h(x, ty1 + (1− t)y2) ∈ h(x, y1)− C or h(x, ty1 + (1− t)y2) ∈ h(x, y2)− C;

(II) vector 0-diagonally convex if for any finite set {y1, y2, · · · , yn} ⊂ D,

n∑
j=1

tjh(x, yj) /∈ −intC

whenever x =
∑n

j=1 tjyj with tj ≥ 0 and
∑n

j=1 tj = 1.

Remark 2.4. When Z = R and C = R+, (II) of Definition 2.4 reduces to the definition of

0-diagonally convex functions due to Zhou and Chen [35].

In what follows, unless other specified, we always suppose that I is an index set, Ki is a

nonempty, closed and convex subset of a real Hausdorff topological vector space Xi, and Ci is an

ordering cone of a real Hausdorff topological vector space Zi for each i ∈ I. Let X =
∏
i∈I Xi,

K =
∏
i∈I Ki, Xī =

∏
j∈I,j 6=iXj , Kī =

∏
j∈I,j 6=iKj , and Fi : Kī ×Ki ×Ki → Zi be a mapping for

each i ∈ I. The system of vector equilibrium problems is to find x = (xi)i∈I ∈ K such that for

each i ∈ I,

(SV EP ) Fi(xī, xi, yi) 6∈ −intCi, ∀yi ∈ Ki,

where xī = (xj)j∈I,j 6=i ∈ Kī.

Remark 2.5. :

(1) If for each i ∈ I, Zi = R, Ci = R+ and Fi = ϕi, where ϕi : Kī × Ki × Ki → R is a

function, then (SV EP ) reduces to the system of equilibrium problems formulated by finding

x = (xi)i∈I ∈ K such that for each i ∈ I,

(SEP ) ϕi(xī, xi, yi) ≥ 0, ∀yi ∈ Ki.
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(2) If for each i ∈ I, Zi = R, Ci = R+, and Fi(xī, xi, yi) = 〈Ti(xī, xi), yi − xi〉, where Ti :

Kī × Ki → X∗i and X∗i denotes the dual space of Xi, then (SV EP ) reduces to the system

of variational inequality problems formulated by finding x = (xi)i∈I ∈ K such that for each

i ∈ I,

(SV IP ) 〈Ti(xī, xi), yi − xi〉 ≥ 0, ∀yi ∈ Ki.

(3) If for each i ∈ I, Fi(xī, xi, yi) = Φi(xī, yi)−Φi(xī, xi), where Φi : Kī×Ki → Zi, then (SV EP )

reduces to the vector Nash equilibrium problem formulated by finding x = (xi)i∈I ∈ K such

that for each i ∈ I,

(V NEP ) Φi(xī, yi)− Φi(xī, xi) /∈ −intCi, ∀yi ∈ Ki.

(4) If for each i ∈ I, Zi = R, Ci = R+ and Φi = φi, where φi : Kī × Ki → R is a function,

then (V NEP ) reduces to the classical Nash equilibrium problem formulated by finding x =

(xi)i∈I ∈ K such that for each i ∈ I,

(NEP ) φi(xī, yi) ≥ φi(xī, xi), ∀yi ∈ Ki.

(5) If I is a singleton, then (SV EP ) reduces to the known vector equilibrium problem (V EP ),

which also includes as special cases the classical equilibrium problem and variational inequality

problem.

3 Topological Pseudomonotonicity

In this section, we shall extend the concept of topological pseudomonotonicity to a family of

mappings. First recall some concepts and notations presented in [10,16,21].

Let A be a nonempty subset of a real Hausdorff topological space Z and C ⊂ Z be an ordering

cone. The superior of A with respect to C is defined by

SupA = {z ∈ Ā : A ∩ (z + intC) = ∅}

and the inferior of A with respect to C is defined by

Inf A = {z ∈ Ā : A ∩ (z − intC) = ∅},

where Ā denotes the closure of A.
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As pointed out in [10, 16], the superior and inferior of a subset of Z with respect to C are

extensions of the usual supremum and infimum of a subset of R. If A is a nonempty compact

subset of Z, then both SupA and Inf A are nonempty. Let {zα}α∈Λ be a net in Z. The limit

superior and limit inferior of {zα}α∈Λ (with respect to C) are defined by

Limsup zα = Inf
⋃
α∈Λ

SupSα Liminf zα = Sup
⋃
α∈Λ

Inf Sα,

where Sα = {zβ : β � α}. The limit superior and limit inferior of {zα}α∈Λ (with respect to C)

are also extensions of the usual limit superior and limit inferior of {zα}(see [10,16]).

In the sequel we recall some concepts of topological pseudomonotonicity. Let D be a nonempty

closed subset of a real Hausdorff topological vector space of E.

Definition 3.1. A mapping T : D → E∗ is said to be topological pseudomonotone (or pseu-

domonotone in the sense of Brézis [9]) if for any net {xα} ⊂ D,

xα ⇀ x and lim sup〈Txα, xα − x〉 ≤ 0⇒ 〈Tx, x− y〉 ≤ lim inf〈Txα, xα − y〉,∀y ∈ D,

where ⇀ means weak convergence.

The concept of topological pseudomonotonicity has been generalized to bifunctions.

Definition 3.2. [4,26] A bifunction f : D×D → R is said to be topologically pseudomonotone if

for any net {xα} ⊂ D contained a compact subset of D,

xα → x and lim inf
α

f(xα, x) ≥ 0⇒ f(x, y) ≥ lim sup
α

f(xα, y), ∀y ∈ D.

Chadli et al [10] extended the notion of topological pseudomonotonicity to vector-valued bi-

functions.

Definition 3.3. [10] A vector-valued bifunction f : D ×D → Z is said to be topologically pseu-

domonotone if for any v ∈ intC and any net {xα} in D satisfying

xα → x ∈ D and Liminfα f(xα, x) ∩ (−intC) = ∅,

there is some index α0 such that

{f(xβ, y) : β ≥ α} ⊂ f(x, y) + v − intC,∀α ≥ α0 and ∀y ∈ D.

Remark 3.1. As pointed out by Chadli [10], Definition 3.3 generalizes Definitions 3.1 and 3.2 in

a natural way.
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Now we extend the concept of topological pseudomonotonicity to a family of mappings.

Definition 3.4. Let I be an index set and Ψi : Kī×Ki×Ki → Zi be a mapping for all i ∈ I. We

say that {Ψi}i∈I is topologically pseudomonotone if for any net {xα} = {(xi)αi∈I} ⊂ K satisfying

xα → x = (xi)i∈I ∈ K and LiminfαΨi(xαī , x
α
i , xi) ∩ (−intCi) = ∅, ∀i ∈ I,

and for any i0 ∈ I and any vi0 ∈ intCi0, there exists α0 such that

{Ψi0(xβ
ī0
, xβi0 , yi0) : β ≥ α} ⊂ Ψi0(xī0 , xi0 , yi0) + vi0 − intCi0 , ∀α ≥ α0 and ∀yi0 ∈ Ki0 .

Remark 3.2. (1) If for each i ∈ I, Zi = R, Ci = R+, then Definition 3.4 reduces to the

definition of topological pseudomonotonicity for a family of functions {ϕi}i∈I , i.e., {ϕi}i∈I

is said to be topologically pseudomonotone if for any net {xα} = {(xi)αi∈I} ⊂ K satisfying

xα → x = (xi)i∈I ∈ K and lim inf
α

ϕi(xαī , x
α
i , xi) ≥ 0, ∀i ∈ I,

and for any i0 ∈ I and any εi0 > 0, there exists α0 such that

ϕi0(xαī0 , x
α
i0 , yi0) < ϕi0(xī0 , xi0 , yi0) + εi0 ,∀α ≥ α0 and ∀yi0 ∈ Ki0 ,

where ϕi : Kī ×Ki ×Ki → R is a function for all i ∈ I.

(2) If for each i ∈ I, Zi = R, Ci = R+, and Ψi(xī, xi, yi) = 〈Ti(xī, xi), yi − xi〉, where Ti :

Kī×Ki → X∗i , then Definition 3.4 reduces to the definition of topological pseudomonotonicity

for {Ti}i∈I , i.e., {Ti}i∈I is said to be topologically pseudomonotone if for any net {xα} =

{(xi)αi∈I} ⊂ K satisfying

xα → x = (xi)i∈I ∈ K and lim inf
α
〈Ti(xαī , x

α
i ), xi − xαi 〉 ≥ 0,∀i ∈ I,

for any i0 ∈ I and any εi0 > 0, there exists α0 such that

〈Ti0(xαī0 , x
α
i0), yi0 − xαi0〉 < 〈Ti0(xī0 , xi0), yi0 − xi0〉+ εi0 ,∀α ≥ α0 and yi0 ∈ Ki0 .

(3) If I is a singleton, then Definition 3.4 coincides with Definition 3.3.

4 Existence Results

In this section we study the existence of solutions to (SV EP ) by using topological pseudomono-

tonicity. First we need the following lemmas.
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Lemma 4.1. See Lemma 3.6 of [10] and Lemma 3.1 of [21]. Let D be a nonempty, compact and

convex subset of a real Hausdorff topological vector space E and C be an ordering cone of a real

Hausdorff topological space Z. Let f : D×D → Z be a mapping satisfying the following conditions:

(1) For every y ∈ D, f(·, y) is C-upper semicontinuous;

(2) f is vector 0-diagonally convex;

(3) For every y ∈ D, f(·, y) is C-concave-like.

Then the problem formulated by finding x̄ ∈ D such that

f(x̄, y) 6∈ −intC, ∀y ∈ D

admits a nonempty, compact and convex solution set.

Lemma 4.2. Let D be a nonempty, compact and convex subset of a real Hausdorff topological vector

space E and C be an ordering cone of a real Hausdorff topological space Z. Let f : D×D → Z be

a mapping satisfying the following conditions:

(1) f(x, x) /∈ −intC for all x ∈ D;

(2) For every y ∈ D, f(·, y) is C-upper semi-continuous;

(3) f is C-quasiconvex-like;

(4) For every y ∈ D, f(·, y) is C-concave-like.

Then the problem formulated by finding x̄ ∈ D such that

f(x̄, y) 6∈ −intC, ∀y ∈ D

admits a nonempty, compact and convex solution set.

Proof. The conclusion follows from the same arguments of the proofs of Lemma 3.9 of [10] and

Lemma 3.1 of [21]. �

Theorem 4.1. Let Fi : Kī ×Ki ×Ki → Zi be a mapping for all i ∈ I. Assume that

(1) for each i ∈ I and for all x = (xi)i∈I ∈ K, Fi(xī, ·, xi) is Ci-upper semicontinuous on the

convex hull of every nonempty finite subset of Ki;

(2) for each i ∈ I and for all xī ∈ Kī, Fi(xī, ·, ·) is vector 0-diagonally convex;
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(3) for each i ∈ I and for all x = (xi)i∈I ∈ K, Fi(xī, ·, xi) is Ci-concave-like;

(4) for each i ∈ I and for all xi ∈ Ki, Fi(·, ·, xi) is Ci-upper semicontinuous on the convex hull

of every nonempty finite subset of K;

(5) for each i ∈ I, there is a nonempty compact set Ai ⊂ Ki, and there is a nonempty, compact

and convex set Bi ⊂ Ki such that if xi ∈ Ki ∩ Aci , where Aci denotes the complement of Ai

in Xi, then Fi(xī, xi, yi) ∈ −intCi for some yi ∈ Bi;

(6) {Fi}i∈I is topologically pseudomonotone.

Then (SV EP ) is solvable.

Proof. Set

M = {M ⊂ K : M =
∏
i∈I

Mi with Mi being the convex hull of a finite subset of Ki for all i ∈ I}.

For given M ∈M and z = (zi)i∈I ∈ K, consider the following problems:

(AP )iM find xi ∈Mi such that Fi(zī, xi, yi) 6∈ −intCi, ∀yi ∈Mi.

It follows from conditions (1)-(3) and Lemma 4.1 that for each i ∈ I, (AP )iM has a nonempty,

compact and convex solution set. For each i ∈ I, define a multivalued mapping T iM : Mī → 2Mi by

T iM (zī) = {xi ∈Mi : Fi(zī, xi, yi) 6∈ −intCi,∀yi ∈Mi}, ∀zī ∈Mī.

Then for any i ∈ I and any zī ∈ Mī, T iM (zī) is nonempty, compact and convex. Furthermore, for

each i ∈ I, it is easy to verify that T iM has a closed graph from condition (4). By Remark 2.1, T iM

is upper semicontinuous for all i ∈ I. Define TM : M → 2M by

TM (z) = (T iM (zī))i∈I , ∀z = (zi)i∈I ∈M.

By the above arguments, TM is upper semicontinous with nonempty, compact and convex values.

By Kakutani-Fan-Glicksberg fixed point theorem (see [24]), TM has a fixed point u on M , i.e.,

there exists u = (ui)i∈I ∈M such that for each i ∈ I,

Fi(uī, ui, yi) 6∈ −intCi,∀yi ∈Mi.

For any M =
∏
i∈IMi ∈M, let

SM = {u = (ui)i∈I ∈M : Fi(uī, ui, yi) 6∈ −intCi, ∀yi ∈Mi, ∀i ∈ I}
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and

NM = {u = (ui)i∈I ∈ A =
∏
i∈I

Ai : Fi(uī, ui, yi) 6∈ −intCi,∀yi ∈ co(Mi ∪Bi), ∀i ∈ I},

where co denotes the convex hull operator. By the above arguments, SM is nonempty. We also

have SM̃ ⊂ NM by condition (5), where M̃ =
∏
i∈I M̃i with M̃i = co(Mi ∪ Bi). Thus NM is

nonempty compact for all M ∈ M, where NM being the closure of NM . Let M j =
∏
i∈IM

j
i ∈

M, j = 1, 2, · · · , n and L =
∏
i∈I Li with Li being the convex hull of ∪nj=1M

j
i for all i ∈ I. It is

easy to see that NL ⊂ ∩nj=1NMj . Hence {NM : M ∈ M} has the finite intersection property. It

follows that

∩M∈MNM 6= ∅.

Let u∗ = (u∗i )i∈I ∈ ∩M∈MNM . We assert that u∗ is a solution of (SV EP ). Assume by contradic-

tion that there exist i0 ∈ I and yi0 ∈ Ki0 such that

Fi0(u∗ī0 , u
∗
i0 , yi0) ∈ −intCi0 .

Let y = (yi)i∈I ∈ K and M̂ =
∏
i∈I M̂i ∈ M with M̂i = co{u∗i , yi} for all i ∈ I. Since u∗ ∈ NM̂ ,

there exists a net {uα} = {(ui)αi∈I} ∈ NM̂ such that uα → u∗. It follows that for each i ∈ I,

Fi(uαī , u
α
i , u

∗
i ) 6∈ −intCi, ∀α.

Hence

LiminfFi(uαī , u
α
i , u

∗
i ) ∩ (−intCi) = ∅, ∀i ∈ I.

By condition (6), for i0 ∈ I and vi0 = −Fi0(u∗
ī0
, u∗i0 , yi0) ∈ intCi0 , there exists α0 such that

{Fi0(uβ
ī0
, uβi0 , yi0) : β ≥ α} ⊂ Fi0(u∗ī0 , u

∗
i0 , yi0)− Fi0(u∗ī0 , u

∗
i0 , yi0)− intCi0 = −intCi0 ,∀α ≥ α0.

This is a contradiction since

Fi0(uαī0 , u
α
i0 , yi0) 6∈ −intCi0 ,∀α.

Thus u∗ is a solution of (SV EP ). �

By using Lemma 4.2 and similar proof as in Theorem 4.1, we obtain the following result.

Theorem 4.2. Let Fi : Kī ×Ki ×Ki → Zi be a mapping for all i ∈ I. Assume that

(1) for each i ∈ I and for all x = (xi)i∈I ∈ K, Fi(xī, xi, xi) 6∈ −intCi;

(2) for each i ∈ I and for all x = (xi)i∈I ∈ K, Fi(xī, ·, xi) is Ci-upper semicontinuous on the

convex hull of every nonempty finite subset of Ki;
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(3) for each i ∈ I and for all xī ∈ Kī, Fi(xī, ·, ·) is Ci-quasiconvex-like;

(4) for each i ∈ I and for all x = (xi)i∈I ∈ K, Fi(xī, ·, xi) is Ci-concave-like;

(5) for each i ∈ I and for all xi ∈ Ki, Fi(·, ·, xi) is Ci-upper semicontinuous on the convex hull

of every nonempty finite subset of K;

(6) for each i ∈ I, there is a nonempty compact set Ai ⊂ Ki, and there is a nonempty, compact

and convex set Bi ⊂ Ki such that if xi ∈ Ki ∩ Aci , then Fi(xī, xi, yi) ∈ −intCi for some

yi ∈ Bi;

(7) {Fi}i∈I is topologically pseudomonotone.

Then (SV EP ) is solvable.

Corollary 4.1. Let ϕi : Kī ×Ki ×Ki → R be a function for all i ∈ I. Assume that

(1) for each i ∈ I and for all x = (xi)i∈I ∈ K, ϕi(xī, ·, xi) is upper semicontinuous on the convex

hull of every nonempty finite subset of Ki;

(2) for each i ∈ I and for all xī ∈ Kī, ϕi(xī, ·, ·) is 0-diagonally convex;

(3) for each i ∈ I and for all x = (xi)i∈I ∈ K, ϕi(xī, ·, xi) is quasiconcave;

(4) for each i ∈ I and xi ∈ Ki, ϕi(·, ·, xi) is upper semicontinuous on the convex hull of every

nonempty finite subset of K;

(5) for each i ∈ I, there is a nonempty compact set Ai ⊂ Ki, and there is a nonempty, compact

and convex set Bi ⊂ Ki such that if xi ∈ Ki ∩Aci , then ϕi(xī, xi, yi) < 0 for some yi ∈ Bi;

(6) {ϕi}i∈I is topologically pseudomonotone.

Then (SEP ) is solvable.

Proof. The conclusion follows directly from Theorem 4.1. �

Corollary 4.2. Let ϕi : Kī ×Ki ×Ki → R be a function for all i ∈ I. Assume that

(1) for each i ∈ I and for all x = (xi)i∈I ∈ K, ϕi(xī, xi, xi) ≥ 0;

(2) for each i ∈ I and for all x = (xi)i∈I ∈ K, ϕi(xī, ·, xi) is upper semicontinuous on the convex

hull of every nonempty finite subset of Ki;
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(3) for each i ∈ I and for all x = (xi)i∈I ∈ K, ϕi(xī, xi, ·) is quasiconvex;

(4) for each i ∈ I and for all x = (xi)i∈I ∈ K, ϕi(xī, ·, xi) is quasiconcave;

(5) for each i ∈ I and for all xi ∈ Ki, ϕi(·, ·, xi) is upper semicontinuous on the convex hull of

every nonempty finite subset of K;

(6) for each i ∈ I, there is a nonempty compact set Ai ⊂ Ki, and there is a nonempty, compact

and convex set Bi ⊂ Ki such that if xi ∈ Ki ∩Aci , then ϕi(xī, xi, yi) < 0 for some yi ∈ Bi;

(7) {ϕi}i∈I is topologically pseudomonotone.

Then (SEP ) is solvable.

Proof. The conclusion follows directly from Theorem 4.2. �

Remark 4.1. The approach used in the proof of Theorem 4.1 is quite different from those in

[1–3,18,19,22,32], where some existence results for (SV EP ) and (SEP ) with different assumptions

were also established.

Acknowledgement

The author would like to to thank the referees and the editor for their helpful comments and

suggestions which lead to improvements of this paper. The author would like to thank Dr Y.P.

Fang for his helpful discussion when preparing this paper. This work was partially supported

by the National Science Foundation of China (11201042, 11171046) and the Scientific Research

Foundation of CUIT (J201216, KYTZ201128).

References

[1] Ansari, Q.H., Chan, W.K., Yang, X.Q., The system of vector quasi-equilibrium problems with

applications, J. Global Opti. 29(1)(2004), 45-57.

[2] Ansari, Q.H., Schaible, S., Yao, J.C., System of vector equilibrium problems and its applica-

tions, J. Optim. Theory Appl. 107(3)(2000), 547-557.

[3] Ansari, Q.H., Schaible, S., Yao, J.C., The system of generalized vector equilibrium problems

with applications, J. Global Optim. 22(2002), 3-16.

12



[4] Aubin, J.P., Mathematical Methods of Game and Economic Theory, North-Holland, Amster-

dam, (1982).

[5] Bianchi, M., and Schaible, S., Generalized monotone bifunctions and equilibrium problems,J.

Optim. Theory Appl. 90(1996), 31-43.

[6] Bianchi, M., and Pini, R., Coercivity conditions for equilibrium problems, J. Optim. Theory

Appl. 124(1)(2005), 79-92.

[7] Bianchi, M., Hadjisavvas, N., and Schaible, S., Vector equilibrium problems with generalized

monotone bifunctions, J. Optim. Theory Appl. 92(3)(1997), 527-542.

[8] Blum, E., and Oettli, W., From optimization and variational inequalities to equilibrium prob-

lems, The Mathematical Student 63(1994),123-145.
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