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Abstract. The aim of this paper is to study the process of contact
with adhesion between a piezoelectric body and an obstacle, the so-
called foundation. The material’s behavior is assumed to be electro-
viscoelastic; the process is quasistatic, the contact is modeled by the
Signorini condition. The adhesion process is modeled by a bonding
field on the contact surface. We derive a variational formulation for the
problem and then we prove the existence of a unique weak solution to
the model.The proof is based on a general result on evolution equations
with maximal monotone operators and fixed point arguments.

1. Introduction

A piezoelectric body is one that produces an electric charge when a me-
chanical stress is applied (the body is squeezed or stretched). Conversely, a
mechanical deformation (the body shrinks or expands) is produced when an
electric field is applied. This kind of materials appears usually in the indus-
try as switches in radiotronics, electroacoustics or measuring equipments.
Piezoelectric materials for which the mechanical properties are elastic are
also called electro-elastic materials, and those for which the mechanical prop-
erties are viscoelastic are also called electro-viscoelastic materials. Different
models have been developed to describe the interaction between the electri-
cal and mechanical fields( see, e.g. [2, 14, 16, 17, 18, 19, 29, 30, 31] and the
references therein). General models for elastic materials with piezoelectric
effect, called electro-elastic materials, can be found in [2, 4, 14]. A static fric-
tional contact problem for electric-elastic materials was considered in [1, 15],
under the assumption that the foundation is insulated. Contact problems
involving elasto-piezoelectric materials [1, 15, 28], viscoelastic piezoelectric
materials [5, 25] have been studied.

Adhesion may take place between parts of the contacting surfaces. It
may be intentional, when surfaces are bonded with glue, or unintentional,
as a seizure between very clean surfaces. The adhesive contact is modeled
by a bonding field on the contact surface, denoted in this paper by β; it
describes the pointwise fractional density of active bonds on the contact
surface, and sometimes referred to as the intensity of adhesion. Following
[10], [11], the bonding field satisfies the restrictions 0 ≤ β ≤ 1; when β = 1
at a point of the contact surface, the adhesion is complete and all the bonds
are active; when β = 0 all the bonds are inactive, severed, and there is no
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adhesion; when 0 < β < 1 the adhesion is partial and only a fraction β of
the bonds is active. Basic modelling can be found in [10, 11, 12]. Analysis
of models for adhesive contact can be found in [7, 8] and in the monographs
[24, 27]. An application of the theory of adhesive contact in the medical
field of prosthetic limbs was considered in [22, 23]; there, the importance
of the bonding between the bone-implant and the tissue was outlined, since
debonding may lead to decrease in the persons ability to use the artificial
limb or joint.

In this work we continue in this line of research, where we extend the result
established in [3, 20] for contact problem described with the Signorini con-
ditions into contact problem described with the Signorini conditions with
adhesion where the obstacle is a perfect insulator and the resistance to
tangential motion is generated by the glue, in comparison to which the fric-
tional traction can be neglected. Therefore, the tangential contact traction
depends only on the bonding field and the tangential displacement.

The paper is structured as follows. In Section 2 we present the electro-
viscoelastic contact model with adhesion and provide comments on the con-
tact boundary conditions. In Section 3 we list the assumptions on the data
and derive the variational formulation. In Section 4, we present our main
existence and uniqueness result, Theorem 4.1, which states the unique weak
solvability of the Signorini adhesive contact problem. The proof of the the-
orem is provided in Section 5, where it is carried out in several steps and
is based on a general result on evolution equations with maximal monotone
operators and fixed point theorem.

2. The model

We consider a body made of a piezoelectric material which occupies the
domain Ω ⊂ Rd (d = 2, 3) with a smooth boundary ∂Ω = Γ and a unit
outward normal ν. The body is acted upon by body forces of density f0

and has volume free electric charges of density q0 . It is also constrained
mechanically and electrically on the boundary. To describe these constraints
we assume a partition of Γ into three open disjoint parts Γ1, Γ2 and Γ3, on
the one hand, and a partition of Γ1∪ Γ2 into two open parts Γa and Γb,
on the other hand. We assume that meas Γ1 > 0 and meas Γa > 0; these
conditions allow the use of coercivity arguments in the proof of the unique
solvability of the model. The body is clamped on Γ1 and, therefore, the
displacement field vanishes there. Surface tractions of density f2 act on Γ2.
We also assume that the electrical potential vanishes on Γa and a surface
electrical charge of density q2 is prescribed on Γb. On Γ3 the body is in
adhesive contact with an insulator obstacle, the so-called foundation. The
contact is frictionless and, since the foundation is assume to be rigide, we
model it with the Signorini condition.

We are interested in the deformation of the body on the time interval
[0 T ]. The process is assumed to be quasistatic, i.e. the inertial effects
in the equation of motion are neglected. We denote by x ∈ Ω ∪ Γ and
t ∈ [0 T ] the spatial and the time variable, respectively, and, to simplify
the notation, we do not indicate in what follows the dependence of various
functions on x and t. Here and everywhere in this paper, i, j, k, l = 1, ..., d,
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summation over two repeated indices is implied, and the index that follows
a comma represents the partial derivative with respect to the corresponding
component of x. The dot above variable represents the time derivatives.

We denote by Sd the space of second-order symmetric tensors on Rd

(d = 2, 3) and by ”.”, ‖.‖ the inner product and the norm on Sd and Rd,
respectively, that is u.υ = ui υi, ‖υ‖ = (υ.υ)1/2 for u = (ui), υ = (υi) ∈ Rd,
and σ.τ = σij τij , ‖σ‖ = (σ.σ)1/2 for σ = (σij), τ = (τij) ∈ Sd. We also
use the usual notation for the normal components and the tangential parts
of vectors and tensors, respectively, given by υν = υ · ν, υτ = υ − υνν,
σν = σij νi νj , and στ = σν − σνν.

With these assumptions, the classical model for the process is the follow-
ing.

Problem (P). Find a displacement field u : Ω × [0, T ] → Rd, a stress
field σ : Ω× [0, T ]→ Sd, an electric potential ϕ : Ω× [0, T ]→ R, an electric
displacement field D : Ω× [0, T ]→ Rd and a bonding field β : Ω× [0, T ]→ R
such that

σ = Aε(u̇) + Fε(u)− E∗E(ϕ) in Ω× (0, T ) ,(2.1)

D = BE(ϕ) + Eε(u) in Ω× (0, T ) ,(2.2)

Divσ + f0 = 0 in Ω× (0, T ) ,(2.3)

divD = q0 in Ω× (0, T ) ,(2.4)

u = 0 on Γ1 × (0, T ) ,(2.5)

σν = f2 on Γ2 × (0, T ) ,(2.6)  uν ≤ 0,
σν − γνβ2Rν(uν) ≤ 0,
(σν − γνβ2Rν(uν))uν = 0

on Γ3 × (0, T ) ,(2.7)

−στ = pτ (β)Rτ (uτ ) on Γ3 × (0, T ) ,(2.8)

β̇(t) = −(γνβ(t)Rν(uν(t))2 − εa)+ on Γ3 × (0, T ) ,(2.9)

ϕ = 0 on Γa × (0, T ) ,(2.10)

D.ν = q2 on Γb × (0, T ) ,(2.11)

D.ν = 0 on Γ3 × (0, T ) ,(2.12)

u(0) = u0 in Ω,(2.13)

β(0) = β0 on Γ3.(2.14)

We now provide some comments on equations and conditions (2.1)–(2.14).
First, equations (2.1) and (2.2) represent the electro-viscoelastic consti-

tutive law in which σ = (σij) is the stress tensor, ε(u) = (εij(u)) denotes
the linearized strain tensor, E(ϕ) = −∇ϕ is the electric field, A and F are
the viscosity and elasticity operators, respectively, E = (eijk) represents the
third-order piezoelectric tensor, E∗ = (e∗ijk), where e∗ijk = ekij , is its trans-
pose, B =(Bij) denotes the electric permittivity tensor and D = (D1, ..., Dd)
is the electric displacement vector. Details on the constituve equations of
the form (2.1) and (2.2) can be found, for instance, in [1, 2, 13, 21] and the
references therein.
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Next, equations (2.3) and (2.4) are the equilibrium equations for the stress
and electric-displacement fields, respectively, in which “Div” and “div” de-
note the divergence operators for tensor and vector valued functions, respec-
tively.

Conditions (2.5) and (2.6) are the displacement and traction boundary
conditions, whereas (2.10) and (2.11) represent the electric boundary condi-
tions. Note that we need to impose assumption (2.12) for physical reasons.
Indeed, this condition models the case when the obstacle is a perfect insu-
lator and was used in [1, 9, 15, 25, 26]. The evolution of the bonding field
is governed by the differential equation (2.9) with given positive parameters
γν and εa where r+ = max{0, r}.

Condition (2.7) represents the Signorini contact condition with adhesion
where uν is the normal displacement, σν represents the normal stress, γν de-
notes a given adhesion coefficient and Rν is the truncation operator defined
by

Rν(s) =

 −L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does
not offer any additional traction (see [27]).

We assume that the resistance to tangential motion is generated only
by the glue, and is assumed to depend on the adhesion field and on the
tangential displacement, but, again, only up to the bond length L (see (2.8)),
where the truncation operator Rτ is defined by

Rτ (υ) =


υ if ‖υ‖ ≤ L,

L
υ

‖υ‖
if ‖υ‖ > L.

Then, pτ (β) acts as the stiffness or spring constant, increasing with (β), and
the traction is in the direction opposite to the displacement. The maximal
modulus of the tangential traction is pτ (1)L.

Finally, (2.13) and (2.14) represent the initial conditions in which u0 and
β0 are the prescribed initial displacement and bonding fields, respectively.

3. Variational Formulation and Preliminairies

In this section, we list the assumptions on the data and derive a variational
formulation for the contact problem. To this end we need to introduce some
notation and preliminaries.

Everywhere below, we use the classical notation for Lp and Sobolev spaces
associated to Ω and Γ. Moreover, we use the notation L2(Ω)d, H1(Ω)d, H
and H1 for the following spaces

L2(Ω)d = { υ = (υi) | υi ∈ L2(Ω) }, H1(Ω)d = { υ = (υi) | υi ∈ H1(Ω) },
H = { τ = (τij) | τij = τji ∈ L2(Ω) }, H1 = { τ ∈ H | τij,j ∈ L2(Ω) }.

The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with
the canonical inner products given by

(u, υ)L2(Ω)d =
∫

Ω
u · υ dx, (u, υ)H1(Ω)d =

∫
Ω
u · υ dx+

∫
Ω
∇u · ∇υ dx,
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(σ, τ)H =
∫

Ω
σ · τ dx, (σ, τ)H1 =

∫
Ω
σ · τ dx+

∫
Ω

Div σ ·Div τ dx,

and the associated norms ‖·‖L2(Ω)d , ‖·‖H1(Ω)d , ‖·‖H and ‖·‖H1 , respectively.
Here and below we use the notation

∇υ = (υi,j), ε(υ) = (εij(υ)), εij(υ) = 1
2(υi,j + υj,i) ∀ υ ∈ H1(Ω)d,

Div τ = (τij,j) ∀ τ ∈ H1.

For every element υ ∈ H1(Ω)d we also write υ for the trace of υ on Γ and
we denote by υν and υτ the normal and tangential components of υ on Γ.

We now list the assumptions on the problem’s data. The viscosity oper-
ator A and the elasticity operator F are assumed to satisfy the conditions

(3.1)


(a) A : Ω× Sd −→ Sd.
(b) A(x, τ) = (aijkl(x)τkl ) ∀τ ∈ Sd a.e. x ∈ Ω.
(c) aijkl = aklij = ajikl ∈ L∞(Ω).
(d) there exists mA > 0 such that

aijkl τijτkl ≥ mA‖τ‖2, ∀τ = (τij) ∈ Sd, a.e. x ∈ Ω.

(3.2)



(a) F : Ω× Sd → Sd.
(b) There exists LF > 0 such that

‖F(x, τ1)−F(x, τ2)‖ ≤ LF‖τ1 − τ2‖
∀ τ1, τ2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ F(x, τ) is measurable on Ω,
for each τ ∈ Sd.

(d) The mapping x 7→ F(x,0) belongs to H.
The piezoelectric tensor E and the electric permittivity tensor B satisfy

(3.3)

 (a) E : Ω× Sd → Rd.
(b) E(x, τ) = (eijk(x)τjk) ∀τ = (τij) ∈ Sd, a.e. x ∈ Ω.
(c) eijk = eikj ∈ L∞(Ω).

(3.4)


(a) B : Ω× Rd → Rd.
(b) B(x,E) = (Bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.
(c) Bij = Bji ∈ L∞(Ω).
(d) There exists mB > 0 such that Bij(x)EiEj ≥ mB‖E‖2
∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

As in [8] we assume that the tangential contact function satisfies

(3.5)



(a) pτ : Γ3 × R −→ R+.
(b) There exists Lτ > 0 such that
| pτ (x, β1)− pτ (x, β2) |≤ Lτ | β1 − β2 |
∀β1, β2 ∈ R, a.e. x ∈ Γ3.

(c) There exists Mτ > 0 such that
| pτ (x, β) |≤Mτ ∀β ∈ R, a.e. x ∈ Γ3.

(d) For any β ∈ R, x 7→ pτ (x, β) is measurable on Γ3.
(e) The mapping x 7→ pτ (x, 0) belongs to L2(Γ3).

The forces, tractions, volume and surface free charge densities satisfy

f0 ∈W 1,1(0, T ;L2(Ω)d), f2 ∈W 1,1(0, T ;L2(Γ2)d),(3.6)
q0 ∈W 1,1(0, T ;L2(Ω)), q2 ∈W 1,1(0, T ;L2(Γb)).(3.7)
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The adhesion coefficient γν and the limit bound εa satisfy the conditions

(3.8) γν ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3.

Also, we assume that the initial bonding field satisfies

(3.9) β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3.

Moreover, the tensor E and its transpose E∗ satisfy the equality

(3.10) Eσ.υ = σ.E∗υ ∀σ ∈ Sd, υ ∈ Rd

Let now consider the closed subspace of H1(Ω)d defined by

V = { υ ∈ H1(Ω)d | υ = 0 on Γ1 }.
Since meas (Γ1) > 0 and the viscosity tensor satisfies assumption (3.1), it
follows that V is a real Hilbert space endowed with the inner product

(3.11) (u, υ)V = (Aε(u), ε(υ))H,

and let ‖ · ‖V be the associated norm.
We also introduce the following spaces

W = { ψ ∈ H1(Ω) | ψ = 0 on Γa }, W = {D = (Di) |Di ∈ L2(Ω), div D ∈ L2(Ω) }.
Since meas (Γa) > 0 it is well known that W is a real Hilbert space

endowed with the inner product

(ϕ,ψ)W = (∇ϕ,∇ψ)L2(Ω)d ,

and the associated norm ‖ · ‖W . Also we have the following Friedrichs-
Poincaré inequality

(3.12) ‖∇ψ‖L2(Ω)d ≥ cF ‖ψ‖H1(Ω) ∀ψ ∈W,
where cF > 0 is a constant which depends only on Ω and Γa. The space W
is a real Hilbert space endowed with the inner product

(D,E)W =
∫

Ω
D ·E dx+

∫
Ω
div D · div E dx,

and the associated norm ‖ · ‖W . Moreover, by the Sobolev trace theorem,
there exist two positive constants c0 and c̃0 such that

(3.13) ‖υ‖L2(Γ3)d ≤ c0‖υ‖V ∀υ ∈ V , ‖ψ‖L2(Γ3) ≤ c̃0‖ψ‖W ∀ψ ∈W.

Next, we define the two mappings f : [0 T ] −→ V and q : [0 T ] −→ W ,
respectively, by

(f(t), υ)V =
∫

Ω
f0(t) · υ dx+

∫
Γ2

f2(t) · υ da,(3.14)

(q(t), ψ)W =
∫

Ω
q0(t)ψ dx−

∫
Γb

q2(t)ψ da,(3.15)

for all υ ∈ V, ψ ∈W and t ∈ [0, T ]. We note that the definitions of f and q
are based on the Riesz representation theorem. Moreover, it follows from
assumptions (3.6) and (3.7) that

f ∈W 1,1(0, T ;V ),(3.16)
q ∈W 1,1(0, T ;W ).(3.17)
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For Signorini problem, we use the convex subset of admissible displacements
fields given by

Uad = {υ ∈ V/ υν ≤ 0 on Γ3} ,

and we make the regularity assumption

(3.18) u0 ∈ Uad,

on the initial data. Also, we introduce the set

Q = {β ∈ L∞(0, T ;L2(Γ3)) | 0 ≤ β(t) ≤ 1 ∀ t ∈ [0, T ], a.e. on Γ3 }.

Next, we define the functional j : L2(Γ3)× V × V −→ R by

(3.19) j(β, u, υ) =
∫
Γ3

−γνβ2Rν(uν)υνda+
∫
Γ3

pτ (β)Rτ (uτ ) · υτda.

It follows from assumptions (3.5)–(3.8) that the integrals in (3.14), (3.15)
and (3.19) are well defined.

Using a standard procedure based on Green’s formulas and equalities
(3.14), (3.15), (3.19), it is easy to see that if (u, σ, ϕ, β,D) are sufficiently
regular functions which satisfy (2.3)–(2.12) then

(3.20)
u(t) ∈ Uad, (σ(t), ε(υ)−ε(u(t)))H+j(β(t), u(t), υ−u(t) ≥ (f(t), υ−u(t))V ,

(3.21) (D(t),∇ψ)L2(Ω)d + (q(t), ψ)W = 0,

for all υ ∈ Uad, ψ ∈ W and t ∈ [0, T ]. We substitute (2.1) in (3.20), (2.2)
in (3.21), keeping in mind that E(ϕ) = −∇ϕ and use the initial condition
(2.13) to derive the following variational formulation of Problem (P).

Problem (PV ). Find a displacement field u : [0, T ] −→ V , an electric
potential field ϕ : [0, T ] → W and a bonding field β : [0, T ] → L2(Γ3) such
that

(3.22)
u(t) ∈ Uad, (Aε(u̇(t)), ε(υ)− ε(u(t)))H + (Fε(u(t)), ε(υ)− ε(u(t)))H+

(E∗∇ϕ(t), ε(υ)− ε(u(t)))H + j(β(t), u(t), υ − u(t))
≥ (f(t), υ − u(t))V ∀υ ∈ Uad , a.e. t ∈ (0 T ),

(3.23)
(B∇ϕ(t),∇ψ)L2(Ω)d − (Eε(u(t)),∇ψ)L2(Ω)d = (q(t), ψ)W

∀ψ ∈W, ∀ t ∈ [0 T ] ,

(3.24) β̇(t) = −(γνβ(t)Rν(uν(t))2 − εa)+ .a.e. t ∈ (0 T ),

(3.25) u(0) = u0,

(3.26) β(0) = β0.
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4. Existence and Uniqueness Result

Our main existence and uniqueness result is the following.

Theorem 4.1. Assume that (3.1)–(3.9) and (3.18) hold. Then, there exists
a unique solution (u, ϕ, β) to Problem (PV ). Moreover, the solution satisfies

u ∈W 1,∞(0, T ;V ),(4.1)

ϕ ∈W 1,∞(0, T ;W ).(4.2)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩Q.(4.3)

A “quintuple” of functions (u, σ, ϕ, D, β) which satisfies (2.1), (2.2) and
(3.22)–(3.26) is called a weak solution of the contact Problem (P). We
conclude by Theorem 4.1 that, under the assumptions (3.1)–(3.9) and (3.18),
there exists a unique weak solution of Problem (P).

To precise the regularity of the weak solution we note that the constitutive
relations (2.1) and (2.2), the assumptions (3.1)–(3.4) and the regularities
(4.1), (4.2) imply that σ ∈ L∞(0, T ;H), D ∈W 1,∞(0, T ;L2(Ω)d). By taking
υ = u(t) ± ξ, where ξ ∈ C∞0 (Ω)d, in (3.20) and ψ ∈ C∞0 (Ω) in (3.21) and
using the notation (3.14), (3.15), (3.19) we find

Div σ(t) + f0(t) = 0, div D(t) = q0(t),

for all t ∈ [0, T ]. It follows now from the regularities (3.6), (3.7) that Div
σ ∈ L∞(0, T ;L2(Ω)d) and div D ∈W 1,∞(0, T ;L2(Ω)), which shows that

σ ∈ L∞(0, T ;H1),(4.4)
D ∈ W 1,∞(0, T ;W).(4.5)

We conclude that the weak solution (u, σ, ϕ,D, β) of the piezoelectric contact
problem (P) has the regularity (4.1)–(4.5).

The proof of Theorem 4.1 will be carried out in several steps and is based
on the following abstract result.

Let X be a real Hilbert space with the inner product (·, ·)X and the
associated norm ‖ · ‖X , and let A : D(A) ⊂ X −→ 2X be a multivalued
operator, where D(A) is the domain of A given by

D(A) = {x ∈ X : Ax 6= ∅} ,
and 2X represents the set of the subsets of X. The graph of A denoted by
Gr(A) is given by

Gr(A) = {(x, y) ∈ X ×X : y ∈ Ax} .
The operator A : X −→ 2X is called

(i) monotone if
∀(x1, y1) ∈ Gr(A), ∀(x2, y2) ∈ Gr(A) : (y1 − y2, x1 − x2)X ≥ 0.

(ii) maximal monotone if A is monotone and there is no monotone
operator B : X −→ 2Xsuch that Gr(A) is a proper subset of Gr(B),
which is equivalent to the following implication
[(y1 − y2, x1 − x2)X ≥ 0, ∀(x1, y1) ∈ Gr(A)]⇒ (x2, y2) ∈ Gr(A).

For a function φ : X −→ ]−∞,+∞] we use the notation D(φ) and ∂φ for
the effective domain and the subdifferential of φ, i.e.

D(φ) = {u ∈ X : φ(u) <∞} ,(4.6)



AN ELECTRO-VISCOELASTIC CONTACT PROBLEM 9

∂φ(u) = {f ∈ X : φ(υ)− φ(u) ≥ (f, υ − u)X ∀υ ∈ X} , ∀u ∈ X.(4.7)

Finally, let φK : X → ]−∞,+∞] denote the indicator function of the set K,
i.e.

φK(υ) =
{

0 if υ ∈ K,
∞ if υ /∈ K.

It can be shown that the subdifferential of the indicator function ∂φK :
X −→ 2X of a closed convex K of the space X is a maximal monotone
operator. We can also show that the sum of a maximal monotone operator
and a single-valued monotone Lipschitz continuous operator is a maximal
monotone operator.

Finally, we use the usual notation for the Lebesgue spaces Lp(0, T ;X) and
Sobolev spaces W k,p(0, T ;X) where 1 ≤ p ≤ ∞ and k ∈ N. We will need
the following result for existence and uniqueness proofs.

Theorem 4.2. Let X be a real Hilbert space and let A : D(A) ⊂ X −→
2X be a multivalued operator such that the operator A + ωIX is maximal
monotone for some real ω. Then, for every f ∈ W 1,1(0, T ;X) and u0 ∈
D(A), there exists a unique function u ∈W 1,∞(0, T ;X) which satisfies

u̇(t) +Au(t) 3 f(t) a.e. t ∈ (0 T ),(4.8)
u(0) = u0.(4.9)

A proof of Theorem 4.2 may be found in ([6], page 32). Here and below
IX is the identity map on X.

5. Proof of Theorem 4.1

We assume in the following that the conditions of Theorem 4.1 hold and
below we denote by c a generic positive constant which is independent of
time and whose value may change from place to place.

By the Riesz representation theorem we can define the following operators
G : W −→W and R : V −→W , respectively, by

(Gϕ,ψ)W = (B∇ϕ,∇ψ)L2(Ω)d ∀ϕ,ψ ∈W,(5.1)

(Rυ, ϕ)W = (Eε(υ),∇ϕ)L2(Ω)d ∀ϕ ∈W, υ ∈ V.(5.2)

We can show that G is a linearly continuous symmetric positive definite
operator. Therefore, G is an invertible operator on W . We can also prove
that R is a linear continuous operator on V . Let R∗ the adjoint of R. Thus,
from (3.10) we can write

(5.3) (R∗ϕ, υ)V = (E∗∇ϕ, ε(υ))H ∀ϕ ∈W, υ ∈ V.
Let t ∈ [0 T ] . By introducing (5.1), (5.2) in (3.23) we get

(5.4) (Gϕ(t), ψ)W = (Ru(t), ψ)W + (q(t), ψ)W ∀ψ ∈W,
where we obtain

Gϕ(t) = Ru(t) + q(t),

for all t ∈ [0, T ]. On the other hand, G is invertible where the previous
equality gives us

(5.5) ϕ(t) = G−1Ru(t) + G−1q(t).
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Now, using (5.3), (5.5) and (3.22) we obtain

(5.6)
u(t) ∈ Uad, (Aε(u̇(t)), ε(υ)− ε(u(t)))H + (Fε(u(t)), ε(υ)− ε(u(t)))H+
(R∗G−1Ru(t), υ − u(t))V + j(β(t), u(t), υ − u(t))V
≥ (f(t)−R∗G−1q(t), υ − u(t))V ∀υ ∈ Uad a.e. t ∈ (0 T ).

Let η ∈ W 1,∞(0, T ;V ) be given. In the first step we prove the following
existence and uniqueness result for the displacement field.

Lemma 5.1. There exists a unique function uη ∈W 1,∞(0, T ;V ) such that

(5.7)
uη(t) ∈ Uad, (Aε(u̇η(t)), ε(υ)− ε(uη(t)))H + (Fε(uη(t)), ε(υ)− ε(uη(t)))H+
(R∗G−1Ruη(t), υ − uη(t))V + (η(t), υ − uη(t))V
≥ (f(t)−R∗G−1q(t), υ − uη(t))V ∀υ ∈ Uad a.e. t ∈ (0 T ),

(5.8) uη(0) = u0.

Proof. Let now the operator L : V → V defined by

(5.9) L(υ) = R∗G−1R(υ), ∀υ ∈ V.
Using the properties of the operators G, R and R∗ we deduce that L is a
continuous linear operator on V . Thus we have

(5.10) ‖Lu1 − Lu2‖V ≤ ‖L‖‖u1 − u2‖V ∀u1, u2 ∈ V.
By the Riesz representation theorem we can define an operator G : V −→ V
by

(5.11) (Gu, υ)V = (Fε(u), ε(υ))H + (Lu, υ)V ∀u, υ ∈ V.
Now, taking into account (3.1), (3.2), (3.11) and (5.11) it follows

(5.12) ‖Gu1 −Gu2‖V ≤ (
LF
mA

+ ‖L‖)‖u1 − u2‖V ∀u1, u2 ∈ V,

that is, G is a Lipschitz continuous operator. Moreover, the operator

G+(
LF
mA

+ ‖L‖)IV : V → V,

is a monotone Lipschitz continuous operator on V .
Let the function f : [0 T ] −→ V given by

(5.13) f(t) = f(t)−R∗G−1q(t)− η(t), ∀t ∈ [0 T ] .

Keeping in mind that η ∈ W 1,∞(0, T ;V ), using (3.16), (3.17) and the fact
that R∗G−1 is linearly continuous, it follows from (5.13) that

(5.14) f ∈W 1,1(0, T ;V ).

Let φUad : V → ]−∞,+∞] denote the indicator function of the set Uad and
let ∂φUad be the subdifferential of φUad . Since Uad is a nonempty, convex,
closed part of V , it follows that ∂φUad is a maximal monotone operator on
V and D(∂φUad) = Uad. Moreover, the sum

∂φUad + G+(
LF
mA

+ ‖L‖)IV : Uad ⊂ V → 2V ,
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is a maximal monotone operator. Thus, conditions (3.18) and (5.14) allow
us to apply Theorem 4.2 with X = V, A = ∂φUad + G :D(A) = Uad ⊂
V → 2V , and ω = LF

mA
+ ‖L‖. We deduce that there exists a unique element

uη ∈W 1,∞(0, T ;V ) such that

u̇η(t) + ∂φUad(uη(t)) + Guη(t) 3 f(t) a.e. t ∈ (0 T ),(5.15)
uη(0) = u0.(5.16)

Since for any elements u, g ∈ V , the following equivalence holds

g ∈ ∂φUad(u)⇔ u ∈ Uad, (g, υ − u)V ≤ 0 ∀ υ ∈ Uad,

the differential inclusion (5.15) is equivalent to the following variational in-
equality

(5.17) uη(t) ∈ Uad, (u̇η(t), υ − uη(t))V + (Guη(t), υ − uη(t))V
≥ (f(t), υ − uη(t))V ∀υ ∈ Uad a.e. t ∈ (0 T ).

We use now (5.17), (5.11), (3.11) to see that uη satisfies the following in-
equality

(5.18)
uη(t) ∈ Uad, (Aε(u̇η(t)), ε(υ)− ε(uη(t)))H + (Fε(uη(t)), ε(υ)− ε(uη(t)))H+
(Luη(t), υ − uη(t))V ≥ (f(t), υ − uη(t))V ∀υ ∈ Uad a.e. t ∈ (0 T ).

It follows now from (5.18), (5.13), (5.9) and (5.16) that uη satisfies (5.7) and
(5.8), which concludes the proof of Lemma 5.1. �

In the second step we use the displacement field uη obtained in Lemma
5.1 to obtain the following existence and uniqueness result for the electric
potential field.

Lemma 5.2. There exists a unique function ϕη ∈W 1,∞(0, T ;W ) such that

(5.19)
(B∇ϕη(t),∇ψ)L2(Ω)d − (Eε(uη(t)),∇ψ)L2(Ω)d = (q(t), ψ)W

∀ψ ∈W, ∀ t ∈ [0 T ] ,

Proof. Let uη ∈W 1,∞(0, T ;V ) be the function defined in Lemma 5.1. Clearly,
equality (5.19) holds from (5.4), (5.2) and (5.1). Moreover, since uη ∈
W 1,∞(0, T ;V ) it follows from (5.5), (3.17) that ϕη ∈ W 1,∞(0, T ;W ). Now,
using (5.5) we deduce that the uniqueness of ϕη follows from the uniqueness
of the function uη. �

In the third step, we use again the displacement field uη obtained in
Lemma 5.1 and we consider the following initial value problem.

Problem Pβη . Find a bonding field βη : [0, T ]→ L2(Γ3) such that

β̇η(t) = −(γνβη(t)Rν(uην(t))2 − εa)+ a.e. t ∈ (0 T ),(5.20)
βη(0) = β0.(5.21)

We obtain the following result.

Lemma 5.3. There exists a unique solution βη to Problem Pβη and it sat-
isfies βη ∈W 1,∞(0, T, L2(Γ3)) ∩Q.
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Proof. Consider the mapping F : [0, T ]× L2(Γ3)→ L2(Γ3) defined by

(5.22) F (t, βη) = −(γνβη(t)Rν(uην(t))2 − εa)+,

for all t ∈ [0, T ] and βη ∈ L2(Γ3). It follows from the properties of the
truncation operator Rν that F is Lipschitz continuous with respect to the
second argument, uniformly in time. Moreover, for any βη ∈ L2(Γ3), the
mapping t 7→ F (t, βη) belongs to L∞(0, T ;L2(Γ3)). Using now a version of
Cauchy-Lipschitz theorem (see, e.g., [27], page 48), we obtain the existence
of a unique function βη ∈ W 1,∞(0, T, L2(Γ3)) which solves (5.20), (5.21).
We note that the restriction 0 ≤ βη ≤ 1 is implicitly included in the Cauchy
problem Pβη . Indeed, (5.20) and (5.21) guarantee that βη(t) ≤ β0 and,
therefore, assumption (3.9) shows that βη(t) ≤ 1 for t ≥ 0, a.e. on Γ3. On
the other hand, if βη(t0) = 0 at t = t0, then it follows from (5.20) and (5.21)
that β̇η(t) = 0 for all t ≥ t0 and therefore, βη(t) = 0 for all t ≥ t0, a.e. on
Γ3. We conclude that 0 ≤ βη(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. Therefore,
from the definition of the set Q, we find that βη ∈ Q, which concludes the
proof of Lemma 5.3. �

Now, for η ∈W 1,∞(0, T ;V ) we denote by uη and βη the functions obtained
in Lemmata 5.1 and 5.3, respectively. We use Riesz ’s representation theorem
to define the function Λη : [0, T ] −→ V by

(5.23) (Λη(t), υ)V = j(βη(t), uη(t), υ),

for all υ ∈ V and t ∈ [0, T ]. We have the following result.

Lemma 5.4. For all η ∈W 1,∞(0, T ;V ) the function Λη belongs to W 1,∞(0, T ;V ).
Moreover, there exists a unique element η∗ ∈W 1,∞(0, T ;V ) such that

(5.24) Λη∗ = η∗.

Proof. Let η ∈W 1,∞(0, T ;V ) and let t1, t2 ∈ [0, T ] . Using (5.23) and (3.19),
we obtain

‖ Λη(t1)− Λη(t2) ‖V≤ c ‖ β2
η(t1)Rν(uην(t1))− β2

η(t2)Rν(uην(t2)) ‖L2(Γ3) +
c ‖ pτ (βη(t1))Rτ (uητ (t1))− pτ (βη(t2))Rτ (uητ (t2)) ‖L2(Γ3) .

Now, keeping in mind (3.5), (3.13), the inequality 0 ≤ βη(t) ≤ 1 and the
properties of the truncation operators Rν and Rτ , we find that

(5.25)
‖ Λη(t1)− Λη(t2) ‖V≤ c ‖ uη(t1)− uη(t2) ‖V +

c ‖ βη(t1)− βη(t2) ‖L2(Γ3) .

Since uη ∈W 1,∞(0, T ;V ) and βη ∈W 1,∞(0, T, L2(Γ3))∩Q, we deduce from
inequality (5.25) that Λη ∈W 1,∞(0, T ;V ).

Let now η1, η2 ∈ W 1,∞(0, T ;V ) and let ui = uηi , u̇i = u̇ηi , βi = βηi for
i = 1, 2. For t ∈ [0, T ] we integrate (5.20) with the initial conditions (5.21)
to obtain

βi(t) = β0 −
t∫

0

(γνβi(s)Rν(uiν(s))2 − εa)+ds.
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Using the definition of Rν , the inequality | Rν(uν) |≤ L, and writing β1 =
β1 − β2 + β2, we get

‖ β1(t)− β2(t) ‖L2(Γ3)≤ c
t∫

0

‖ β1(s)− β2(s) ‖L2(Γ3) ds+

c
t∫

0

‖ u1ν(s)− u2ν(s) ‖L2(Γ3) ds.

By Gronwall ’s inequality, it follows that

‖ β1(t)− β2(t) ‖L2(Γ3)≤ c
t∫

0

‖ u1ν(s)− u2ν(s) ‖L2(Γ3) ds,

and, using (3.13) we obtain

(5.26) ‖ β1(t)− β2(t) ‖L2(Γ3)≤ c
t∫

0

‖ u1(s)− u2(s) ‖V ds.

On the other hand, using arguments similar to those in the proof of (5.25),
we find that

‖ Λη1(t)− Λη2(t) ‖V≤ c ‖ u1(t)− u2(t) ‖V +c ‖ β1(t)− β2(t) ‖L2(Γ3)

Then, by (5.26) we have

(5.27) ‖ Λη1(t)−Λη2(t) ‖V≤ c ‖ u1(t)−u2(t) ‖V +c

t∫
0

‖ u1(s)−u2(s) ‖V ds.

Next, we use (5.17) and (5.13) to find that

(u̇1(t)− u̇2(t), u1(t)− u2(t))V ≤ (η2(t)− η1(t), u1(t)− u2(t))V
+ (Gu2(t)−Gu1(t), u1(t)− u2(t))V ,

using Cauchy–Schwarz inequality and (5.12) we obtain

(u̇1(t)− u̇2(t), u1(t)− u2(t))V ≤ ‖η1(t)− η2(t)‖V ‖u1(t)− u2(t)‖V
+ ( LFmA + ‖L‖)‖u1(t)− u2(t)‖2V .

We integrate this inequality with respect to time and use the initial condi-
tions u1 (0) = u2 (0) = u0 to find that

1
2 ‖ u1(t)− u2(t) ‖2V≤

t∫
0

‖η1(s)− η2(s)‖V ‖u1(s)− u2(s)‖V ds

+ ( LFmA + ‖L‖)
t∫

0

‖u1(s)− u2(s)‖2V ds.

Applying the inequality

ab ≤ 1
2
a2 +

1
2
b2 a, b ∈ R,

we find that

1
2 ‖ u1(t)− u2(t) ‖2V≤

1
2

t∫
0

‖η1(s)− η2(s)‖2V ds+ 1
2

t∫
0

‖u1(s)− u2(s)‖2V ds

+ ( LFmA + ‖L‖)
t∫

0

‖u1(s)− u2(s)‖2V ds,



14 NADHIR CHOUGUI AND SALAH DRABLA

where we obtain

‖ u1(t)−u2(t) ‖2V≤ c
t∫

0

‖η1(s)−η2(s)‖2V ds+c

t∫
0

‖u1(s)−u2(s)‖2V ds,

and, after a Gronwall argument, we obtain

(5.28) ‖ u1(t)− u2(t) ‖2V≤ c
t∫

0

‖η1(s)− η2(s)‖2V ds.

Using (5.27) we find that

‖ Λη1(t)− Λη2(t) ‖2V≤ c2 ‖ u1(t)− u2(t) ‖2V + c2(
t∫

0

‖ u1(s)− u2(s) ‖V ds)2+

2c ‖ u1(t)− u2(t) ‖V ·c
t∫

0

‖ u1(s)− u2(s) ‖V ds,

‖ Λη1(t)− Λη2(t) ‖2V≤ c2 ‖ u1(t)− u2(t) ‖2V +c2(
t∫

0

‖ u1(s)− u2(s) ‖V ds)2+

c2 ‖ u1(t)− u2(t) ‖2V +c2(
t∫

0

‖ u1(s)− u2(s) ‖V ds)2,

‖ Λη1(t)− Λη2(t) ‖2V≤ 2c2 ‖ u1(t)− u2(t) ‖2V + 2 c2(
t∫

0

‖ u1(s)− u2(s) ‖V ds)2.

Using Cauchy–Schwarz inequality we find

(5.29) ‖ Λη1(t)−Λη2(t) ‖2V≤ c ‖ u1(t)−u2(t) ‖2V +c

t∫
0

‖ u1(s)−u2(s) ‖2V ds

We combine now (5.28) and (5.29) to see that

(5.30) ‖ Λη1(t)− Λη2(t) ‖2V≤ c
t∫

0

‖η1(s)− η2(s)‖2V ds ∀ t ∈ [0 T ] .

Reiterating this inequality n times yields

(5.31) ‖ Λnη1(t)− Λnη2(t) ‖2L∞(0,T ;V )≤
cnTn

n!
‖η1(t)− η2(t)‖2L∞(0,T ;V ).

which implies that, for n sufficiently large, a power Λn of Λ is a contraction
in the Banach space L∞(0, T ;V ). Then, there exists a unique element η∗ ∈
L∞(0, T ;V ) such that Λnη∗ = η∗ and η∗ is also the unique fixed point of Λ,
i.e Λη∗ = η∗. The regularity η∗ ∈W 1,∞(0, T ;V ) follows from the regularity
Λη∗ ∈ W 1,∞(0, T ;V ), which concludes the proof. �

Now, we have all the ingredients necessary to prove Theorem 4.1.

Proof. of Theorem 4.1. Existence. Let η∗ ∈ W 1,∞(0, T ;V ) be the fixed
point of the operator Λ and let (u, ϕ, β) be the functions defined in Lemmata
5.1, 5.2 and 5.3, respectively, for η = η∗, i.e u = uη∗ , ϕ = ϕη∗ , β = βη∗ .
Clearly, equalities (3.23), (3.24) and (3.26) hold from Lemmata 5.2 and 5.3.
Moreover, since Λη∗ = η∗ it follows from (5.7), (5.5), (5.3), (5.8) and (5.23)
that (3.22) and (3.25) hold, too. The regularity of the solution expressed in
(4.1), (4.2) and (4.3) follows from Lemmata 5.1, 5.2 and 5.3, respectively.
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Uniqueness. The uniqueness of the solution follows from the uniqueness
of the fixed point of Λ and the uniqueness part in Lemmata 5.1, 5.2 and
5.3. �
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