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ABSTRACT. Gromov hyperbolicity grasps the essence of both negatively curved spaces and discrete spaces.
The hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it;
hence, characterizing hyperbolic graphs is a main problem in the theory of hyperbolicity. Since this is a
very ambitious goal, a more achievable problem is to characterize hyperbolic graphs in particular classes of
graphs. The main result in this paper is a characterization of the hyperbolicity of periodic graphs.
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1. INTRODUCTION.

Gromov hyperbolicity grasps the essence of both negatively curved spaces and discrete spaces. As observed
in [5, Section 1.3], the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph
related to it. Characterizing hyperbolic graphs is a main problem in the theory of hyperbolicity; since this is
a very ambitious goal, a more achievable (yet very difficult) problem is to characterize hyperbolic graphs in
particular classes of graphs. The papers [4, 7, 8,9, 11, 12, 25, 27, 32, 30, 31, 37, 39, 2| study the hyperbolicity
of complement of graphs, chordal graphs, periodic planar graphs, planar graphs, strong product graphs, line
graphs, Cartesian product graphs, cubic graphs, short graphs, median graphs, and different generalizations
of chordal graphs; however, characterizations of the hyperbolicity in the corresponding classes are obtained
only in a few of them. In a previous work, [8], periodic planar graphs were considered. In this work we
shall study how hyperbolicity is affected when considering general periodic graphs, not necessarily planar;
a simple characterization of the hyperbolic periodic graphs will be obtained. The key ingredient will be
the speed at which points and their images under an isometry separate. The general setting is much more
complicated than the planar one and the characterization obtained is totally unexpected.

X is a geodesic metric space if for every x,y € X there exists a geodesic joining x and y; denote by
[xy] any of such geodesics (since uniqueness of geodesics is not required, this notation is ambiguous, but
convenient). It is clear that every geodesic metric space is path-connected. If the metric space X is a graph,
[u,v] denotes the edge joining the vertices u and v.

In order to consider a graph G as a geodesic metric space, one must identify any edge [u,v] € E(G) with
the real interval [0,1] (if [ :== L([u, v])); therefore, any point in the interior of any edge is a point of G and, if
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the edge [u, v] is considered as a graph with just one edge, then it is isometric to [0,1]. A connected graph G
is naturally equipped with a distance defined on its points, induced by taking shortest paths in G, inducing
in G the structure of a metric graph. Note that edges can have arbitrary lengths. As usual, the set of vertices
of a graph G will be denoted by V(G).

Let (X,dx) and (Y, dy) be two metric spaces. A map f: X — Y is said to be an («, 3)-quasi-isometric
embedding, with constants a > 1, § > 0 if, for every z,y € X:

a”ldx(z,y) = B < dy(f(2), f(y)) < adx(z,y) + 6.

The function f is e-full if for each y € Y there exists x € X with dy (f(z),y) <e.

A quasi-isometry from X to Y is a map f : X — Y that is an e-full («, §)-quasi-isometric embedding
for some o > 1 and (3, > 0. Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry
f: X — Y. Quasi-isometry is an equivalence relation on metric spaces.

An («, B)-quasigeodesic of a metric space X is an («, 8)-quasi-isometric embedding v : I — X, where
I is an interval of R. A quasigeodesic is an (a, 3)-quasigeodesic for some o > 1, § > 0. Note that a
(1,0)-quasigeodesic is a geodesic. A geodesic line is a geodesic with domain R.

This work deals with periodic graphs. A graph G is periodic if there exist a geodesic line 7y and an
isometry T' of G with the following properties:

(1) Tyo Nyo =0,

(2) G'\ 7o has two connected components,

(3) G\ {7 UTvo} has at least three connected components, two of them, G; and Gs, satisfy 9G; C 7o
and 0Gy C Ty, and the subgraph G* := G \ {G; U G2} is connected and U, czT™(G*) = G.

Such subgraph G* is a period graph of G.

In what follows and throughout the paper, G will denote a periodic graph and G* a period graph of G.
In fact, given a periodic graph G, we will fix a geodesic line vy, an isometry T and their corresponding
period graph G*. By 19 we will denote an arc-length parametrization of vy in G. Let n := T%ny be a
parametrization of T%~, for any k € Z. Also, for any function f : G — R denote by lim SUD, 4 oo 2e0 f (2)5
the limit

limsup f(2) := limsup f(no(t)),

z—-+00,2€70 t——+oo
and analogously for any other limit along the curve.
Our main result is the following:

Theorem 1.1. Let G be a periodic graph.
o If inf.c da(z,Tz) > 0, then G is hyperbolic if only if G* is hyperbolic and ~ lim  dg(z,Tz) = cc.

|z|—00,2E€70
o If inf.c, da(z,Tz) =0, then G is hyperbolic if and only if G* is hyperbolic and G has quasi-exponential
decay.

For the definition of quasi-exponential decay, let G' be a periodic graph with inf.c,, da(2,Tz) = 0, let
no(t) be a parametrization of v and define ®,,(t) as the greatest non-increasing minorant of F'(t), where
F(t) :=dg(no(t), Tno(t)) on [0,00). The graph G has quasi-ezponential decay if there exist a parametrization
1o (t) for which lim;_, o dg (no(t), Tno(t)) = 0o and

(I)Wo (32)
sup S92 — 81
5225120( )(I)no(sl)

< Q.

In what follows, we will write ®,,(¢) as ®(¢).

Note that such condition is satisfied by any exponential function ®(t) = e~%*. Also, on the other hand, if
a positive function ®(t) satisfies this condition, then ®(t) < ke~ on [0, 00) for some k,a > 0. Consequently,
if G has quasi-exponential decay, then lim;_. ., ®(¢) = 0 and liminf; ., F(¢t) = 0. We obtain an equivalent
definition of quasi-exponential decay if we replace 79(t) by no(t — to), i.e., if one considers t > to instead of
t > 0, for any fixed tg.
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The outline of the paper is as follows. Section 2 states some definitions and background used throughout
the paper. In Section 3 some technical and basic results on periodic graphs are presented. Section 4 is
devoted to the proof of the first part of Theorem 1.1. Finally, the proof of the second part is shown in
Section 5.

2. DEFINITIONS AND BACKGROUND.

If X is a geodesic metric space and J = {Ji,J2,...,J,} is a polygon, with sides J; C X, the polygon
J is é-thin if for every = € J; the distance d(z,U;%;J;) < 6. Denote by §(J) the sharp thin constant
of J, i.e., 6(J) := inf{d : J is d-thin}. If 1,209,235 € X, a geodesic triangle T = {x1,x2,23} is the
union of the three geodesics [z1x2], [raxs] and [zsx1]. The space X is J-hyperbolic if every geodesic tri-
angle in X is §-thin. Denote by §(X) the sharp hyperbolicity constant of X, i.e., 6(X) := sup{d(7) :
T is a geodesic triangle in X }. The space X is hyperbolic if X is d-hyperbolic for some 4. Note that if
X is 0-hyperbolic, then every geodesic polygon with n sides is (n — 2)d-thin; in particular, every geodesic
quadrilateral is 2-thin. In the classical references on this subject (see, e.g., [5, 17]) appear several different
definitions of Gromov hyperbolicity, which are equivalent in the sense that if X is d-hyperbolic with respect
to one definition, then it is §’-hyperbolic with respect to another definition (for some ¢’ related to §), see for
example Theorem A in Section 5. The definition that we have chosen has a deep geometric meaning (see,
e.g., [17]).

Let X be a metric space, Y a non-empty subset of X and ¢ a positive number. The e-neighborhood of Y
in X, denoted by V.(Y) is the set {x € X : dx(z,Y) < e}. The Hausdorff distance between two non-empty
subsets Y and Z of X, denoted by Hx (Y, Z) or H(Y, Z), is the number defined by:

inf{e >0:Y CV.(Z) and Z C V.(Y)}.

A useful property of hyperbolic spaces is the invariance of hyperbolicity. Namely, if f : X — Y is an
(a, B)-quasi-isometric embedding between the geodesic metric spaces X and Y, and if Y is d-hyperbolic,
then X is &’-hyperbolic, where ¢’ is a constant which just depends on §, @ and 3. Besides, if f is e-full for
some € > 0 (a quasi-isometry), then X is hyperbolic if and only if Y is hyperbolic. Furthermore, if X is
¢’-hyperbolic, then Y is d-hyperbolic, where ¢ is a constant which just depends on ¢', o, 8 and «.

Given a geodesic metric space X and a closed connected subset Xo C X, the inner distance dx, is defined
by minimizing dx-length of paths contained in Xj.

A subspace X of a geodesic metric space X is an isometric subspace if the inner distance dx, satisfies
that dx,(z,y) = dx(z,y) for all x,y € Xy. If X is an isometric subspace of X then every geodesic in Xy is
also a geodesic in X, and therefore §(Xy) < 6(X).

The following lemma shows that in order to prove the hyperbolicity of a geodesic metric space it suffices
to consider geodesic triangles verifying a useful property (see [34, Lemma 2.1]):

Lemma A. In any geodesic metric space X,
§(X)=sup{8(7T): T is a geodesic triangle that is a simple closed curve }.

Another fundamental property of hyperbolic spaces is their geodesic stability: if X is a J-hyperbolic
geodesic metric space (0 > 0), and « > 1 and § > 0 are given constants, there exists a constant H =
H(d, «, B) such that for any pair of («, 3)-quasigeodesics g, h with the same endpoints, H(g, h) < H.

In view of this stability, one can extend the thinness to quasigeodesic polygons:

Lemma 2.1. Let X be a §-hyperbolic geodesic metric space and P an (o, 3)-quasigeodesic polygon with n
sides in X. Then P is A-thin, where A depends only on n,d, a, 5.

Proof. Let P’ be a geodesic polygon in X with the same vertices as P. By geodesic stability, the Hausdorff
distance between a quasigeodesic side in P and its corresponding geodesic side in P’ is less than or equal to
the constant H = H(J, «, 3). By splitting P’ in n — 2 geodesic triangles, one can check that P’ is (n — 2)0-
thin. If p belongs to a side of P, then there exists a point p’ on its corresponding geodesic side on P’ at
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distance from p less than or equal to H; since P’ is a geodesic polygon with n sides, there exists a point ¢’
on the union of the other n — 1 geodesic sides in P’ at distance from p’ less than or equal to (n — 2)J; then,
there exists a point ¢ in the union of the corresponding n — 1 quasigeodesic sides in P at distance from ¢’
less than or equal to H, and dg(p,q) < (n — 2)d + 2H. Hence, P is ((n — 2)d + 2H)-thin. O

3. TECHNICAL RESULTS ON PERIODIC GRAPHS.

In this section some definitions and results which will be used throughout the paper are stated.
The following lemmas will be of use in the proof of Theorem 1.1 (see [8, Lemma 3.9] and the proof of [8,
Lemma 3.10]):

Lemma B. Let G be a graph and let vy be a geodesic line in G such that G\ 7o has two connected components

1, Gy, Define Gy := Gy U~y and Go := Gy U~o. If G is §-hyperbolic, then G1,Gs are é-hyperbolic. If
G1, G4 are §-hyperbolic, then G is 1205-hyperbolic.

A geodesic vy = [zy] with x € TIG*, y € T*G* and j < k is a straight geodesic if v N T*G* is a connected
set for every j < i < k; note that then v C Uf:jTiG*.

The proof of [8, Lemma 3.11] gives:

Lemma C. Let G be a periodic graph such that G* is 6*-hyperbolic and lim|,| o .cy, da(2,Tz) = oc.
Assume also that there exists zg € vy with [20,T20] € E(G) and L([z0,Tz0]) = da(v0, T) > 0. Denote by
v a geodesic joining x € T'G* and y € T*G*, j < k. Then:

(1) There exists a constant M that depends only on G* and a straight geodesic v joining x and y such
that H(v,~") < M.

(2) There exists a constant N that depends only on G* such that if o := Upez[T" 20, T" 1 20] and j+2 < k,
for each j < i < k there exists a point z; € v with dpig-(z;,0 NT'G*) < N.

A geometric consequence of the previous lemma is that two geodesics that start at the same copy of G*
and end at the same copy of G* are at bounded distance in the intermediate copies of G*. Namely,

Lemma 3.1. Under the hypotheses of Lemma C, consider two geodesics 7,7 in G from points x,& € T7G*
to points y, 4 € TFG*, respectively, where k—j > 4. If p € T'G* N~ and q € T*G* N7 with j+2 <i < k—2,
then dg(p,q) < 2M + 6N + 5dy, where dy = L([z0,T20]) = da(Y0,T70) and M, N are the constants in
Lemma C. Furthermore, if v and 4 are straight geodesics, then dg(p,q) < 6N + 5d;.

Proof. By part (1) in Lemma C, it suffices to prove dg(p, ¢) < 6N +5d1 when « and 7 are straight geodesics.
By Lemma C, there exist points z; € T°G* N~ and z; € T°G* N7 so that

dTiG* (Zi,J OTiG*), dTigx (Zi,O' OT’G*) < N

forj+1<i<k-1.
Consider p € T'G* N~ and ¢ € T'G* N7, with j +2 < < k — 2. Then,

da(p, z;) < max{dg(zi—1, 2i),dc(zi, ziv1)} < 2N + 2d;.

And, identically, dg(q, 2;) < 2N + 2d;. Since dg(z;,2;) < 2N + d1, one gets the desired result. O

The following two lemmas will relate distances among points on vy and Typ.
Lemma 3.2. Let G be a periodic graph. Assume that there exist a’ € vg, b’ € Ty such that

de(a’, V) <ui ' (V) =15 (o) = da (¥, Ta').
If a € o so that ny ' (a) < ng*(a’) then, for every b € Ty
da(a,b) = ng " (a) =1 (b).
Furthermore, if n; ' (b) < 1y '(a), then dg(a,b) > dg(a,Ta)/2.
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Remark: By symmetry, if dg(a’,b') < ng*(a’) —ny (b)) and if b € Ty is so that 5y ' (b) < ny ' (V) then
da(a,b) > 17t (b) —ng *(a) for any a € .

Proof. Seeking for a contradiction assume that there exist a € vp and b € Tyo with ny ' (a)—n; ' (b) > dg(a, b)
and 15 (a) < 1y *(a’). Then
da(b, V') < dg(b,a) +dg(a,a’) +dg(a’, )
<g (@) =y (b) + 11 (@) —mg (@) + oy (B) — g ()
= (V) = n ' (b) = da (b)),
which is a contradiction. Thus, 7y (a) — 0y ' (b) < dg(a,b).
0

(
If 7y (b) < gy '(a), notice that dg(b, Ta) = 1y ' (a) — ny ' (b) < dg(a,b). Hence, dg(a,Ta) < dg(a,b) +
dg(b, Ta) < 2dg(a, b) O

The second lemma relating distances among points on the “boundary” of G* states:

Lemma 3.3. Let G be a periodic graph and assume that there exist an unbounded sequence {(,} C 7o
and some constant ¢y with dg(Cn, TCn) < ¢o for everyn € N. Then dg(z1,22) < dg(z1,T22) + co for every
21,22 € Yo. Furthermore, dg(z1,T21) < 2dg(z1,T22)+co and dg(z1,Tv) < da(z1,T21) < 2dg(z1,Tv0)+co.
Proof. Fix 21,29 € 9. Let ng be a fixed arc-length parametrization of v with 1761(21) > ngl(zg). By
hypothesis, there exists n € N with either 75 (¢,) > ng *(21) or 1y ' (¢n) < mg ' (22). Assume that 7y ' (¢,) >
n5 *(21) (the case 75 (Cn) < mp (22) is similar). Hence
dg(Tz2,Tz) + da(T21,TCn) = da(T22,T(n) < da(T'22, 21) + da (21, Cn) + dc(Cn, TCn)
and, since T is an isometry and Ty is a geodesic,
da(z1,22) < dg(z1,T2) +co -
Moreover, dg(z1,T21) < dg(z1,T22) + da(Tz1,T22) < 2dg(z1,T2) + co. O

This last result has two corollaries which will be useful in the proof of the second part of Theorem 1.1.
Both give more specific quantitative relations between distances among points. Namely,

Corollary 3.4. Let G be a periodic graph with inf,c, da(2,T2) = 0. Then dg(z1,22) < dg(z1,T%2) for
every z1,2z2 € Y. Furthermore, dg(z1,Tz1) < 2dg(z1,T22), da(z1,Ty0) < dg(z1,Tz1) < 2dg(z1,Tv) and

1 .
(3.1) g(dg(zl, z9) + im:zlzué{dg(zi,Tzi)}) <dg(z1,Tz) < dg(z1,22) + ZE{%{CZG(ZZ"T%)}'

Proof. In order to prove the inequalities previous to (3.1), it suffices to apply Lemma 3.3 for any ¢y > 0 and
take the limit as cg — 0.

The right hand side of (3.1) follows from the triangle inequality and the fact dg(Tz1,T22) = dg(z1, 22).
The left hand side follows by symmetry and the previous inequalities. O

Some notation is needed for the second corollary. Given z € T™~q, w € T"7, define Dg(z,w) as follows:
if m =n, set Dg(z,w) := dg(z,w); if m < n, then
n—1
Dc'<Z,’LU> ;= inf Z (dg($j,T_1$j+1) +dg(T_1l'j+17.’Ej+1)> +dg(xn,w) R
j=m
where the infimum is taken among all sets of points {xj};’:m with z; € T and z,,, = 2; finally, if m > n

define Dg(z,w) := Dg(w, z). (One can check that the infimum above is in fact a minimum; see, e.g., [6, p.
24)).

Corollary 3.5. Let G be a periodic graph with inf,c. dg(z,Tz) = 0. Then dg(z1,22) < da(z1,T"22) and
Dg(21,T"22)/3 < dg(z1,T"22) < Dg(z1,T"23) for every z1,2z9 € yo and n € Z.



6 A. CANTON, A. GRANADOS, D. PESTANA, AND JOSE M. RODRIGUEZ

Lemma 3.6. Let G be a periodic graph. Assume that there exist an unbounded sequence {(,} C vo and
some constant co with dg(C,, TCn) < co for every n € N. Then, for each arc-length parametrization ng of o
one of the following situations holds:

(1) There exists R € R such that if a € v9, b € Ty (m € Z) with ny *(a),n;}(b) > R then dg(a,b) >

-1 -1
N (D) =1 (@) = co.
(2) For anym >0, a € v, b € T™q then dg(a,b) > 1 (b) — g *(a).
(8) For anym <0, a € v, b€ Ty then dg(a,b) > 0. (b) —ny *(a).
(Recall the notation 1, = T™ o1y for a parametrization of T™~y.)

Proof. Case 1. Suppose that there exists R € R so that

(3.2) de(z,w) 2 g (2) = ny ' (w)]
for all z € no([R,0)) and w € 1 ([R, 00)).

Let a € 49 and b € T™y, with 7, (b) > ny'(a) > R and m > 0 (if ;' (b) < 1 *(a), then dg(a,b) >
0 > 0t (b) — 15t (a) — co). Let g be a straight geodesic joining a to b and choose points u; € g N Ty, for
0<j<m, with a =ug and b = u,,. If n;l(uj) > R for 0 < j < m then by (3.2),

=

m—

m—1
da(uj uin) > Y (5 (i) = 05 (u))) = 1 (um) — 1" (u0) = 1" (b) = 15 ().
=0 =0

Otherwise, there exists 0 < jo < m such that n; Y(uj) > R for all jo < j <m and n;ol (uj,) < R. Then,

m—1 m—1

b) = da(uj,uin) > Y da(ug,uip).
7=0

i=jo
By Lemma 3.3,
de (o, wjog1) =m0ty (wjorn) = m5 " (ws0) — co,
and by (3.2),
de(wjujn) > myty (ujen) =5 Hwy), jo<j<m—1.
Therefore,
m—1
da(a,b) = m s (i) =y (i) —co+ Y (5 (uj1) — 05t (uy)
J=jo+1

= (um) — 15, (5,) — o > 3,1 (B) — 19 (@) — co,
where the last inequality follows from the fact that nj_ol(ujo) < R < ny*(a). The same argument works when
m < 0.
Case 2. Suppose that there exist a sequence Ry / oo and sequences zj € 1o ([Rg,00)), wg € n1([Rk, 0))
so that d(zi,wx) < ng *(zk) — 0y Hwy).
As above, let g be a straight geodesic joining a to b and choose points u; € gN T, for 0 < j < m, with

a = ug and b = u,,. There exists k such that nj_l(uj) < Ry, for every 0 < j < m. By (remark after) Lemma
3.2,

de (g, ujn) > 5 (ujn) = n; * (uy)

and thus
m—1 m—1
da(a,b) =Y da(ujuiin) > > (5 (i) — 0y (w5)) = 00 (wm) = ng *(uo) = 1! (b) = mg (@)
j=0 §=0

Case 3. Suppose that there exist a sequence Ry /" oo, and sequences zi € 1o ([Rg,00)), wi € n1([Rk, 00))
such that d(zp,wy) < ny'(wg) — 1 (2x). Let g be the straight geodesic from a to b and define points
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uj == gNT 7, for 0 < j < |m|, with a = ug and b = wj,,. There exists k such that n:;(uj) < Ry, for
every 0 < j < |m|. By Lemma 3.2,

da(uj,ujpn) = 0= 5y (ujyn) — - (u))

and thus,
|m|—1 |m|—1
do(a,b) = Y da(ujuin) > Y (7] 4 (i) = 075 () = 00 () — 15 (o) = 1, (6) = g *(a) -
=0 =0

d

4. PROOF OF THE FIRST PART OF THEOREM 1.1

This section is devoted to the proof of the first part of Theorem 1.1. For clarity’s sake, we shall begin by
stating some lemmas and claims which will be used along the proof.

The first lemma introduces a new graph, G’ (quasi-isometric to G) which will guarantee the existence of
a transversal geodesic.

Lemma 4.1. Let G be a periodic graph such that dg(vo,Tv0) =: d1 > 0. Fiz z9 € v and define G’ by
adding to G the edges {[T™zo, T" ' 20]}nez with L([T"20, T" 1 2]) = dy for every n € Z. Then, the graphs
G’ and G are quasi-isometric and, moreover, Upez[T™z0, T 120] is a geodesic in G'.

Proof. Tt is clear that U,ez[T"20, T" ' 20] is a geodesic in G’. It will be shown that the inclusion i : G — G’
is a quasi-isometry. Clearly, the inequality dg(x,y) < dg(z,y) holds for every z,y € G.

Consider z,y € G. If x,y are so that d¢ (z,y) = dg(z,y), then there is nothing to prove. If dg (z,y) <
dg(x,y), then there exist m,n € Z such that dg/(z,y) = dg(z, T™z0) + de' (T™20,T"20) + da(T"20,y)-
Hence,

da(z,y) < da(z, T z0) + da(T" 20, T"20) + da(T" 20, y) < da(z,T™20) + |m — n|dc (20, T20) + da(T" 20, y)

d T
< W (da(x,T™20) + |m — nldy + da(T"20,y))
1
d T d T
= M(%:(%Tmzo) +de (T 20, T"20) + da(T" 20, y)) = w dar (z,y) -
1 1
Since L([T"20,T"*'20]) = d; for every n € Z, the map i is (d1/2)-full, and we conclude that G’ and G are
quasi-isometric. O

The next lemma will show that a certain curve on the graph G is a quasi-geodesic.
Lemma 4.2. Let G be a periodic graph such that inf.c,, dg(z,Tz) =: dg > 0. Let { € vy and let o be a

geodesic in G* joining ¢ and T'C. Then, for each m € N the curve o™ := U;n:_ol Tio is an (o, Bo)-quasi-
geodesic in G, with ag, By depending only on dg(¢,TC), do and da(vo, To)-

In fact, the explicit expressions for ag and [y will be obtained in the proof of this lemma.

Proof. Notice that ¢™ is a continuous curve in G joining ¢ and T™(. Define ¢y := dg(¢,T¢). Fix an
arc-length parametrization of ¢™ starting at ¢ and s, € R in the domain of ¢™ with s < t. Clearly
da(o™(t),0™(s)) < L(0™|s4) =t —s. Let j,r € N be so that 0™ (s) € T/o and 0™ (t) € T?*"0. The
following inequality holds
(4.3) t—s<(r+1)L(o)=(r+1)de(¢,T¢) = (r+ 1)co -

For the lower bound, notice first that if dy := d (70, Ty0) > 0,

da(o™(t),0™(s)) = (r — 1)dy = (r + 1)dy — 2d; > ‘Ci; (t—s)—2d .
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Assume next that dg (70, Ty) = 0. Since dy > 0, there exist monotonous unbounded sequences {z},} C 7o
and {w],} C Ty with dg(z,,w]) < do/2. Fix an arc-length parametrization 79 of o such that there
exists a subsequence {z;,, } with limy . 79 1(;;;%) = o0; without loss of generality by replacing {z],} by the

!/

/) = o0. Recall the notation for 7.

subsequence {z/, } if necessary, one can assume that limj,_.c 7 ' (2
Assume that 7y (w!,) — 1y *(2,,) > 0 for infinitely many n's (otherwise, the argument is symmetric). By
choosing a subsequence if necessary, one can assume without loss of generality that 5, ' (w!,) —ny*(2,) >0

for every n. Then,

(@4) () — g () = dawl, T24) > da(zh, T24) — do(zh ) > do — B = L > dg (=), uf).

Let s’ < s <t <t such that 0™ (s’) is the first point of 0™ in 770 and o™ (') is the last point of o™
in 77 "0 then dg(o™(s'),0™(s)) = s — s’ < ¢o and dg (o™ (t'),0™(t)) =t —t < cp. Let T’ be a geodesic
joining 0™ (s’) and o™ (t'). Define zg := 0™ (s") € T, Tpy1 := o™ (t') € T? T+, and let x; be any point
of I'in T4y for 1 < i < 7.

Define Ny, Nao1, Nos, as the sets of indices

Ni={0<i<r: (@) >0 (@)},
Ngl = {O <i<r: UJ_J:Z(CCZ) < 77j_+1i+1(33i+1) and dg(xi,$i+1) > d0/2} y
Nyg:={0<i<r: njjrlz(xz) < n;JrliH(acHl) and dg(z;, zi41) < do/2} .

Then card N1 + card Noy + card Nog = r + 1. For 1 € Ny, 77;.;}1(331) > 77;4}1-+1($z‘+1)~ Take n € N so that
!

no t(zh) > njjrll(xl) Then, by (4.4) the points x; and z;11 are under the hypothesis of Lemma 3.2, and
hence

de(zi, xiq1) > 773111(!131) - 77]11”1(%“1) =da(zit1,Tz;) > do(zi, Ta;) — da(@igr, i) > do — da (i, Tig1)

and conclude dg(x;, 241) > do/2.
If card Ny + card Noy > (r + 1)/2, then
, g d
dg (o™ (s), 0™ (1)) + 2¢0 > da (0™ (s), 0™ (') = > da(wi, xi) > ZO
i=0

(r+1).
Hence, by (4.3),
m m do do
da(o™(t),0™(s)) > —(r+1) —2¢o > —(t —s) — 2¢p .
4 400

Assume now that card Nay > (r 4+ 1)/2. Note that if i € Nag, then

_ _ d d
77j+1i+1($i+1) - nj_&i(%) =dg(zit1,T2;) > dg (i, Tx;) — dg(Tit1, i) > do — ?0 = ?07
and therefore
—1 -1 dO dO
Z (77j+i+1(33i+1) - 77j+i(37i)) 2 X card Nap > Z(r +1).
1€ Na2
Note that
S @) —nk@)) <Y (e @) = nh @) = D0 (@) = il (i)
1€ Nao 1€EN22UN3y i€ENy

since n;_&rﬂ(a:rﬂ) = 77;1(350). Therefore, applying Lemma, 3.2,

Z (4 (@) = ny i (ig)) < Z da(wi, Tit1) < Zda(%xwl) =dg(o™(s"),0™(t"))
1€ Ny 1€ Ny 1=0
<dg(o™(s),c™(t)) + 2¢q -
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Hence,
d d
de(0™(t), 0™ () > —(r+1) — 2co > —(t — 8) — 2cg -
4 460

One concludes that ¢™ is an (ap, Bo)-quasigeodesic (for every m), where oy = ¢o/dy if di > 0 (note that
Co > do > dl), ap = 4Co/d0 if d1 = 0, and ﬁo = maX{Qco,le}. O

With these previous lemmas established, let us proceed to prove the first part of Theorem 1.1, the main
goal of this section.

Proof. (First part of Theorem 1.1). Assume first that G is hyperbolic. Since vy and Ty are geodesic lines, G*
is an isometric subgraph of G'and §(G*) < 0(G). Thus, it remains to show that lim|.| . .e~, da(2,Tz) = oco.

Assume that there exists an unbounded sequence {¢,}n>1 C 70 and a constant ¢y with dg (¢, T¢n) < o
for every n. Choosing a subsequence of {(,}n>1 if it is necessary, one can assume that there exists an
arc-length parametrization 7y of vy with ngl(gn) /" 0. Let g, be a geodesic in G* joining (, and T'C,.
Let o) := UZI:_OlTkan and v{' be the subcurve of 7y joining (,, and (,, where ng is chosen as follows:
if (1) in Lemma 3.6 holds, take ng with ngl(gno) > R; otherwise, take ng = 1. Hence, by Lemma 4.2,
Qum = {10, 00, T™ 5, om } is an (o, fo)-quasigeodesic quadrilateral for every n,m, where ag and 3y do
not depend on n and m.

Since G is hyperbolic, by Lemma 2.1, Q. m is (20(G) + 2H)-thin, with H = H(6(G), ag, Bo) for any n, m.
Let M be a constant with M > 2§(G) + 2H.

Taking n € N large enough, L(v§) > 2M + 4cg, and taking m = m(n) large enough, dg (7§, T™~8) > M.
Choose a point p € 7§ so that,

(1) de(p,Gng) =15 () =15 (Gng) > M + 2co,
(2) da(p.n) =5 " (Gn) =10 " (p) > M + 2co.
We also have dg(p, T™8) > da(W§, T™g) > M.
Let us proceed to show that dg(p, o}, ) > M. Let V™ be the set of points V™" := {(no, Tligs T Cngy -+ s T }
By the triangle inequality, it is enough to show that dg(p, V™) > M + cg.
Case I. Assume that (1) in Lemma 3.6 holds. Since R < 15" (Coo) = 1 (T%Cny) < mp ' (p) for 0 < k < m,
Lemma 3.6 (1) gives,

de(p, T"Cny) =15 (0) — 115 (Gno) — co > M +co,

thus dg(p, V™) > M + co.
Case II. Suppose that (2) in Lemma 3.6 holds. Then,

de(p, T Cne) = 15 (0) — 0 " (T%Cng) =15 (0) — 05 (Gno) > M + 2c0,

thus dg(p, V™) > M + 2¢o > M + ¢p.

Case II1. If (3) in Lemma 3.6 holds, the argument in case II gives the result, taking now m < k < 0.

A similar argument shows also that dg(p,0]') > M. Hence, dg(p, 7™y U oy Uol') > M. Since
M > 26(G) + 2H, the quadrilateral @, ,,, is not (26(G) + 2H)-thin, which is a contradiction. Therefore, G
is not hyperbolic.

Let us prove the converse implication to conclude that G is hyperbolic. Since lim|.| o0 -cq, da(z,T2) =
0o, then dg(vo,Tv) =: di > 0. By Lemma 4.1, without loss of generality one can assume that there
exists a vertex zg € V(G) N~ such that [z, Tz0] € E(G), with L([z0,T20]) = da(v0,Tv) = di, and so
that g 1= Unez[T"20, T 20] is a geodesic in G. Define §* := §(G*) and consider a geodesic triangle
T = {1, 22,23} with z; € TVG* and j; < j» < j3. By Lemma C, one can assume that the geodesics of 7°
are straight. 4

Suppose first that max{ja — j1,43 —j2} < 2. Then, T C U;Z’:'SfszjG* is dp-thin, with dy = (120)%6* since
T7G* is §*-hyperbolic (apply at most four times Lemma B). Otherwise, 7 N (Tjrl% U Tj2+2'yo) #+ 0. If
T N (T9271yg) # 0, choose y; € [z122] N T2 yg and yy € [z123) N T727 1. By Lemma 3.1,

(45) dg(yl, yg) S 6N + 5d1 .
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Analogously, if 7 N (T72%2y) # 0, let 21 € [z123]NT2 270 and 25 € [wows] N T2+ 2. Again, by Lemma
3.1,

(46) dg(zl, ZQ) < 6N +5d; .

Let pe 7. If p € T9G* with j € [j1 +2,jo — 2] U [j2 + 2, j3 — 2], apply Lemma 3.1 to find ¢ € 7YG* on
another side of 7 with dg(p,q) < 6N + 5d;.

Ifp e V6" with j € [j2— 1,j2 + 1], let P C W2\ TIG* Dbe the geodesic polygon formed by 7 N
U;Z’:J;;l_lTjG* and [y1y2] C T7271yg and [2122] C T72+2+) whenever they exist. Thus, P is either a pentagon
or a quadrilateral contained in U?igfszj G* and therefore it is 30g—thin. Therefore, there exists a point
¢’ € P on another side of P so that dg(p,q') < 3. If ¢’ ¢ T, then ¢’ € [y1y2] U [2122] and equations (4.5)
and (4.6) imply that there is ¢ € P N7 on another side of 7 with dg(p, q) < 369 + 6N + 5d;.

If p e TVG* with j € {j1,51 + 1,73 — 1,43}, a similar argument with a triangle (in 771G* U T"'H1G* or
T3=1G* UT73G*) instead of P gives dg(p,q) < 6o + 6N + 5d;.

Hence, 6(7) < 30p + 6N + 5d; and Lemma C gives 6(G) < 2M + 35y + 6N + 5d; . O

5. PROOF OF THE SECOND PART OF THEOREM 1.1

To prove the second part of Theorem 1.1, some auxiliary metric spaces will be defined, and some results
relating these new sets with the original one will be given.

Let G be a periodic graph. Sometimes we will require the arc-length parametrization ny of vy to also
satisfy:
(5.7) 0 = liminf dg (no(t), Tno(t)) < 11?1 sup de (no(t), T'no(t)) < oc.

— 00

Fix tg € R and 1. Define Gy as the geodesic metric space given by G U (UneZ,tzto U”,t), where U, ; is a
segment joining T™no(t) with T 1o (t) of length d(no(t), Tno(t)). Set Gz to be the geodesic metric space
given by (UnEZ T™no([to, oo))) U ( Unez.t>to Un,t). The isometry T can be extended to (G; in an obvious
way; also denote this extension by T'. Define a period graph of G1 as G} := G* U (Utzto UO,t)- Below, the
constant to will be chosen as the constant in Lemma 5.12.

It is clear that GG, Gy are contained in Gy, G U Go = (G1, and G is an isometric subspace of G1; thus
5(G) < 3(Gh).

With these definitions in mind, let us state some results on hyperbolicity.

Lemma 5.1. If a periodic graph G is hyperbolic and satisfies (5.7) and iminf;_, o da(no(t), Tno(t)) > 0,
then G4 is hyperbolic.

Proof. Given any fixed to € R, the hypotheses imply that there exist constants M, m such that dg(no(t), Tno(t)) <
M for every t € [tg, 00) and dg(no(t), Tno(t)) > m for every t € (—o0, to]; then every segment U, ; has length
at most M and D¢ < dg, < (M/m)Dg on UpezT™no([to,00)). Consider the map f : Ga — G defined by
f(z) =T"no(t) for every z € Uy, 1 \ T no(t). By Corollary 3.5, the restriction of f to UnezT™no([to, 00))
(the identity map) is a (3M/m, 0)-quasi-isometric embedding. Since L(U,, ;) < M for every n € Z,t > tg, f
is a quasi-isometric embedding and invariance of hyperbolicity gives the result. O

Lemma 5.2. Consider a periodic graph G satisfying (5.7). Then G* is hyperbolic if and only if G is
hyperbolic.

Proof. By (5.7), there exists a constant M such that dg(no(t), Tno(t)) < M for every t € [tg, c0); then every
segment U, ; has length at most M. The inclusion map i : G* — G7 is a (M/2)-full (1,0)-quasi-isometry,
and thus, the invariance of hyperbolicity gives the result. O

Finally, the last auxiliary space will be defined and its hyperbolicity related to that of G will be stated.
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Given to € R and 7o, define G as the geodesic metric space given by (Unez T"n0([to, 00))) U (Unez,i>t,
Vit), where Vi, is a segment joining T™no(t) with 7™+ 1no(t) of length ®(t), where ® is the greatest non-
increasing minorant of de (no(t), Tno(t)) on [to, 00), i.e., ®(t) = min {dg (no(s), Tno(s)) : s € [to, 1]}

Lemma 5.3. Let G be a periodic graph satisfying (5.7) and sup {tg —t1: D(ty) = P(ta), ta > t1 > to} < 0.
Then Go and G3 are quasi-isometric.

Proof. Consider the map f : G3 — Go defined as the identity on U, czT™no([to, o0)) and as a dilation on
each V,, ¢ with f(V,, ) = Up, for every n € Z,t > 1.

Clearly, f is O-full and dg, (f(x), f(y)) > dg,(x,y) for every x,y € G3. By (5.7), there exists a constant
M such that L(U, ;) < M for every n € Z,t > to. Also L(V, ;) < L(Uy,,) < M for every n € Z,t > 1.
Define N :=sup {to —t; : ®(t1) = D(t2), t2 > t1 > 1o} < 00.

Given zg € T™no([to, 00)) and yo € T™no([to, 00)) with m < n, let v be a geodesic in G5 joining xg and yo
such that v = [z, (£)] UV U---U V21U 0, ()yo] for some ¢ > to. Let ¢’ > ¢ be defined as t' := sup {s :
B(s) = ®(t), s >t} < t+N; thus de, (no(t), Tno(t')) = ®(t') = ®(t) and L(Vi ) = L(Uy,v ) for every k € Z.
Consider the curve «; in G joining z¢ and yo given by v1 1= [Xo0m ()] U Up e U -+ U Up—1.00 U [0 (t)y0);
then da, (f(xo), £(y0)) < L(n) < L(y) +2N = da, (z0,90) + 2N,

Finally, since L(V, ) < L(U,,.) < M for every n € Z,t > tg, given z,y € Gs, then dg,(f(z), f(y)) <
das(,y) + 2N + 2M. O

Lemmas 5.1 and 5.3 and the invariance of hyperbolicity, imply the following result.

Lemma 5.4. Let G be a periodic graph satisfying (5.7), liminf,_._ da(no(t), Tno(t)) > 0 and sup {ts —t; :
D(t1) = P(ta), toa >t > to} < o0o. If G is hyperbolic, then G3 is hyperbolic.

Recall the definition of quasi-exponential decay given below Theorem 1.1.

Lemma 5.5. Let G be any periodic graph. If G has quasi-exponential decay, then, for any fized to, sup{ts —
tq: @(tl) = (I)(tg), to >t > to} < oo and (57) holds.

Proof. Fix tg and let K := supg, s, >, (52 — 51)P(52)/®(s1) < 00. If ty > t1 > 1o and &(t;) = P(t2), then
to —t1 = (to — t1)P(t2)/P(t1) < K. Recall that liminf; . F(¢t) = 0 and that ®(¢) < F(t). Given € > 0,
take t. = inf{t € R: ®(s) < ¢ for all s > t}. Clearly, F(t.) = ®(t.) = e. Let t > t.. If F(t) = ®(¢), then
F(t) < e < K +¢. Otherwise F(t) > ®(t) and there exist t1,¢2 such that t. < t; <t <ty and F(t1) =
O(t1) = O(t) = ®(t2) = F(t2) < e. Then, F(t) > F(t1) and, since F' is Lipschitz, F'(t) — F(t1) < 2(t — t1),
F(t) — F(t2) < 2(tg —t), and thus F(t) <ty —t1 + F(t1) < to —t; +¢. Using that to — ¢; < K, one deduces
F(t) < K +¢. Consequently, limsup,_, . F(t) < K < oo and (5.7) holds. O

Given a periodic graph G, a geodesic in G3 is a fundamental geodesic if it is equal to U2, Vi, for some
ny,ng € Z,t > tg. Define £(G3) := sup {L(’y) : v is a fundamental geodesic in Gg}.

Lemma 5.6. Let G be a periodic graph.

(1) If £(G3) = oo, then Gs is not hyperbolic.

(2) £(G3) < oo if and only if sSupg,>g >, (52 — 51)P(s2)/P(s1) < 00. In fact, if supg, > >4, (52 —
51)®(s2)/P(s1) =: K < 00, then £(G3) < 8K.

Proof. (1) Assume first that £(G3) = co. Note that if U2V, ; is a fundamental geodesic, then yratk Voot

n=nq n=ni+k
is also a fundamental geodesic for every k € Z; hence,

£(G3) =sup{L(y) : v=U;2,V,, is a fundamental geodesic in Gs} .

Consider any fixed fundamental geodesic o = U2V, ¢ for some ny € N,t > ¢, with L(c) = ¢. Since
£(G3) = o0, one can find ¢ > ¢+ ¢ such that ¢/ = U2V, 4 is also a fundamental geodesic. Define
o1 :=no([t,t']), o2 := Nny+1([t,t']) and the geodesic quadrilateral @ := {0, 01,02,0'}.

If p = no(t +¢/4), then dg,(p,0) = £/4, dg,(p,0’) > 3£/4; choose s > 0 so that dg,(p,02) = s +
(1 4+ no)®(s + ¢+ £/4). If s > ¢/4, then dg,(p,02) > s > £/4. If 0 < s < £/4, then dg,(p,02) >
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2(s+£/4) —30/4+ (1 + n2)P(s +t + £/4). Since o is a geodesic, £ < 2(s + £/4) + (1 + n2)P(s + t + £/4),
and therefore, dg, (p,02) > € —30/4 = £/4. Hence, 20(G3) > §(Q) > £/4 and we conclude that G5 is not
hyperbolic, since £(G3) = .

(2) Assume now that [ := £(G3) < co. Let s; > to and n € N with n®(s;) > I. Therefore, U}Z Vi s,
is not a geodesic joining no(s1) and 7,(s1); then there exits sg,, > s1 with n®(s1) > 2(s2, — s1) +
n®(s2,n) = da,(M0(s1),mn(s1)). It is possible to choose the sequence {s3,} with sg 41 > s2.,. Hence,
2(s2,n — 51) < n®P(s1), UZ;&V;C&Y” is a fundamental geodesic and n®(s3,,) < I. We conclude that 2(sg, —
51)P(s2,n)/P(s1) < n®(51)P(52,0)/P(s1) <.

Furthermore, da, (10(52,n), Mn+1(52.n)) < (n+1)P(s2,,) < 2nP(s2,) < 2. Since any sub-arc of a geodesic
is again a geodesic, it is clear that 2(s2n41 —S2,n) < 2(S2.n+1—S2,n) + (N+1)P(s2,141) < (+1)D(s2,,) < 21
and then sg 11 < 2., + 1. If 52 € [S2.1,, S2.n41], then
P(s2)
(I)(Sl)

Let ng be the least integer such that ng®(s1) > I. Thus, ng®(s1) = (ng — 1)®(s1) + ®(s1) < I+ D(to)
and 2(s2.n, — 51) < 2(S2,ny — $1) + 0P (52.00) < noP(s1) <1+ D(0). If 52 € [51, S2,n,], then
P(s2)
(I’(Sl)
and we conclude, since £(G3) < oo implies lim,,_, o S2., = 00, that

(s2) 3 1(1 + @(to))}.

< ma {— , =
=T

For the reverse implication, let K := sup,,> > (s2 — 51)®(s2)/®(s1) < oo. Then, any fundamental

geodesic Uy, <p<k, Vn,s satisfies

(I)(52,n) £ Q(SQ,n) zil
D(s1) = 2 1 D(s1) = 2"
(

(52 —81) < (527n+l—51)

1
(s2 —s1) < Sopy — 81 < i(l + ®(to)),

sup S9 — 81
822812750( )(I)(Sl)

o(s)

L( Uk1§n<k2 Vn,s) = (k2 - kl)q)(s) < 8K.
Notice that this means that for a fixed s, a fundamental geodesic cannot cross arbitrarily many 7"v(s). O
Lemma 5.7. Let G be any periodic graph with quasi-exponential decay. Then Gs is hyperbolic.

Proof. Tt will be enough to show this result for triangles whose sides are certain geodesics which will be
introduced below, the canonical geodesics, since any other geodesic of Gz will be close to one of these.
Consider a parametrization 7y of vy satisfying
(5.8) sup (s2 — s1)®(s2)/P(s1) =: K < 0.
s22>81>t0
Let x1,22 € UpezT"no([to, 00)). Without loss of generality, 1 = T™no(t1) and xo = T"2ng(t2) with
ny < ng. Define g(t) :=t —t1 + (ne — ny)®(¢) +t — t2, and let ¢’ be such that

g(t") =inf {g(t) : t > max{ts,t2}}.
Note that this infimum is, in fact, a minimum, and that the curve
Vorws 1= [T1T" 00 (t)] U (Uny <ncng Vo) U [T 10 () 2]
is a geodesic in G with dg, (z1,22) = L(Va,2,) = g(t'), referred to as a canonical geodesic joining x; and
xo. If ny = ng, then v, ., is a segment on T"1~y.

Any other canonical geodesic o in G5 joining 7 and zo will be at a fixed distance from a canonical
geodesic: indeed, if there exists another canonical geodesic with g(¢") = g(¢') (one can assume that t” > t'),
then 8K > (ny —nyp)®(t') =2(t" —t') + (n2 — n1)®@(¢") by Lemma 5.6, and hence ¢ — ¢’ < 4K.

More generally, if o is any geodesic joining z; and x which contains just one fundamental geodesic,
Uni <n<ny Ve, for which tg <t < max{t1,t2} := 7, then ®(7) = ®(¢) and the curve ¢’ := [x1T™ no(7)] U
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(Uny<n<ng Vi,r) U [T™n0(T) 2] is a canonical geodesic. By (5.8), 7 —t < K; since t' — 7 < 4K, t' —t < 5K,
and thus H(o, Ygy4,) < 5K + ®(to)/2.

Finally, if o contains at least two fundamental geodesics, applying the same argument one also gets
H(U> ’7961962) <5K + ¢(t0)/2

Consider a geodesic triangle 7 = {x1, 22,23} in G3 with its vertices lying on U,ezT"79, concretely,
x1 = T™no(t1), o = T™n(t2) and z3 = T"ng(t3) with ny < ny < nz. Let 7y be the geodesic triangle in
G3 given by 7o = {Vay 20, Vaswss Yarws - 1 Zo is 0-thin, then 7 is (§ + 10K + ®(t())-thin.

There exist three fundamental geodesics gi12 := Un,<n<ny Vi,si © Varmer 923 = Uno<n<ng Vn,ss © Vwszs
and ¢13 = Up;<n<ns Vn,ss C Vayzs- Assume that s; < sg < s3 (the other cases are similar). Note that
L(Un1§n<n2Vn,82) < L(Un1§n<ngvn,sl) = L(912) < 8K7 thus L(Un1§n<n3Vn,sz> < 16K and 83 — 82 < 8K.
Clearly, from these estimates, if p lies on one side of 7, then the distance from p to the union of the other
two sides is less than 24K. Any other combination of vertices x1, x2, 3 gives the same estimate.

Hence, §(7y) < 24K and §(7) < 34K + ®(tp). Consequently, if H is any geodesic hexagon in G3 with
every vertex in UpezT™no([to, 00)), then §(H) < 4(34K + ®(tg)) = 136K + 4D(to).

Consider now any fixed geodesic triangle 7 = {x1,z2,23} in G3 that is a simple closed curve. Assume
that x1, 22, 23 & UpnezT"no([to, 00)) (the other cases are similar). For each x; there exist n; € Z and ¢; > 0
such that z; € V,,, +,; let  and 2} be the endpoints of V,,, 1,; since 7 is a simple closed curve, V,,,+, C 7.
Consider the geodesic hexagon H = {z}, 2, x4, 2}, %, x4 }. Since the vertices of H lie on UpezT™no([to, 0)),
0(H) < 136K + 4®(tp).

Given p € T, denote by §(p) the distance from p to the union of the two other sides of T. Assume p lies
on a side of H that is contained in a side of T. Then, d(p) < §(H) + L(V,,, +,) for some i = 1,2,3. Since
L(Vo1,) < ®(t:) < D(ty), then 6(p) < 8(H) + D(ty) < 136K + 5(to).

If p lies on Vy,, 1,, (1 = 1,2,3), then 6(p) < L(Vy, 1) < ®(to). Hence, 6(p) < 136K + 5®(ty) and G3 is
(136 K + 5®(tp))-hyperbolic by Lemma A. O

Let G be a periodic graph with quasi-exponential decay. Fix a < b in {—o00} UZU{oc}. Define G2* C G
as the geodesic metric space given by (Ua§n§b+1 T™no([to, oo))) U ( Ua<n<b,t>to th). Lemmas B and 5.7
have the following consequence.

Corollary 5.8. Let G be any periodic graph with quasi-exponential decay. Then there ezists a constant §
such that G’g’b is d-hyperbolic for every a < b in {—oo} UZ U {oco}.

Next, some results on curves which are shown to be quasi-geodesic are given. The aim will be to construct
a quasi-geodesic quadrilateral with large 6. Recall the definition of Dg(z,w) given before Corollary 3.5.

Let G be a periodic graph. In the next lemma, for ¢ € R and fixed s; < sg, define ¢; as a geodesic in
G joining ng(s2 + t) with Tng(sa + t), ¢; as a geodesic joining ng(s; — t) with Tng(s1 — t), and the curves
fn,t = 7]0([82, So + tD U UTp:U---U Tn_1¢t U Tn’ﬂo([SQ, So + tD, Cn,t = ’170([81, S1 — tD Uy UTs U--- U
T Y4p, UT"ng([s1,51 — t]) parameterized by arc-length.

Lemma 5.9. Let G be a periodic graph with inf,c. dg(z,Tz) = 0. Let s1 < sa and define the constants
c1 :=da(no(s1), Tno(s1)), c2 := da(no(s2), Tno(s2)) and c¢* := max{ci,ca}. Letn € N and ¢ € RT be so that
c*n < 2(s2—s1) and dg(no(s), Tno(s)) > c for all s € [s1,s2]. If r,u > 0 satisfy L(&,,,) = ming>o L(&nt) and
L(Cn) = mingso L(Gy t), then the quadrilateral Q := {no([s1, s2]), &n.r, T™n0([51, 52]), Cnu} s @ (3¢* /e, 2¢*)-
quasigeodesic quadrilateral and 6(Q) > c(n — 2)/12. In particular, if n is the integer part of 2(s2 — s1)/c*,
then 6(Q) > c(s2 — s1)/(6¢*) — ¢/4.

Proof. To show that @ is a quasi-geodesic quadrilateral, it suffices to show that &, , and (,: are quasi-
geodesics. In fact, by symmetry, it is enough to show it just for, e.g., & r-

Let &, ,(s) and &, -(t) be any two points on &,,. Without loss of generality, ¢ > s. Since &, is
parameterized by arc-length, dg(§n,r(5),$n,r (1)) < La(&nrlisg) =1 — s

For the lower bound, suppose &, .(s) € TI1G*, &,.-(t) € T7271G* with 0 < j; < ja
Enr(8),&nr(t) & mo([s2, 82 + 7]) UT™n0([s2, 52 + 7]) (the other cases are similar). Let 1
that gn,r(tl) € Tj170 and fn,r(t2) € TjQVO-

n. Assume that

<
<s<t<tybeso
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Recall the definition of Dg. By Corollary 3.5, it will be enough to bound D¢ below.
Note that D (&n.r(t1), &nr(t2)) = Y02 (da (@), T i) + da(T 211, 3j41)) + da(,, 6o (t2)) for
appropriate {z;}. Choose i so that j; < i < jo and dg(T '@is1, wit1) = ming, <jj, do(T w41, Tj41)-

Consider 7, := T*ny as a parametrization of T%vy for any k € Z. Then
e (En,r (1), T i) + (o — 1) da (T i, @i1) + da (T2 7 i, €n n(t2))
j2—1
(5.9) < Z (de(z;, T i) + da(T i, 2j41)) + da (), En e (t2))
J=i
< (jo — j1)da(no(s2 + 1), Tno(se + 1)) .
If the second inequality in (5.9) is an equality, then Dg (&, (t1), &nr(t2)) = to—t1 and dg (&n v (t1), & r(t2)) >
(t2 —t1)/3. Otherwise, the second inequality in (5.9) is strict.
Define a := 1" (z;+1). Then (5.9) gives that L(&, q—s,) < L(&n,r). Therefore a < s5 by the definition of
&n,r. Also, a > s1, since otherwise L(&,.,) > L(&n.a—s,) > 2(s2 — 51) > con = L(&n,0) > L(&n.r)-
Hence s1 < a < sy and then dg(T w41, 7i11) > ¢ = dg (770(82),T770(32))c/02 and (5.9) gives

Da(&nr(t1),&nr(t2)) > da(&nr(t), T 7 aign) + (2 — 1) da (T w1, wiv1) + da (T2 7 2ig1, £n o (t2))

[ . c . .
> g(h —j1)da(no(s2), Tno(s2)) > . (j2 — 1) de(no(s2 + 1), Tno(sz + 1))
c
= " (ta—ty).
o (t2 — t1)
By Corollary 3.5, (ta — t1)c/(3¢c2) < dg(€nr(t1),&n r(t2)), and, by the triangle inequality,

dc(&n,r(8), Enr(t) = da(&nr(t1), Enr(t2)) — 2c2 2 3L(t2 1)~ 22> o (t— ) — 2.
C2 3co

Any other case gives the same inequality. Thus, &, , is a (3c2/¢, 2¢2)-quasigeodesic.
Finally, let’s estimate §(Q).
Let p be the midpoint in 79([s1, s2]). By Corollary 3.5,

*

S9 — 81 cn

de (p, &n.r N (UT"0)) > da(p,mo(s2)) = >
Therefore,
da(p,énr) > da (p,&nr O (UkT Y0)) — (1/2)de (no(s2 + 1), Tno(s2 + 7))
A (b, Enr 0 (UKT*90)) — (1/2)dc (mo(s2), Tos2)) = & 7%:w'

Similarly, dg(p, Cn,u) > ¢*(n — 2)/4.
As above, D¢ (p, T ([31, $2])) > min{en, (s2 —s1)/2} > min{cn, ¢*n/4} > en/4 and then, by Corollary
3.5, da(p, T™no([s1, $2])) > ¢n/12 and, since ¢ < ¢*, §(Q) > c¢(n — 2)/12. O

For Lemma 5.10 below, it will be useful to keep in mind the definition of fine triangles. Given a geodesic
triangle T' = {x,y, 2z} in a geodesic metric space X, let T be a Euclidean triangle with sides of the same
length than T'. Since there is no possible confusion, denote the corresponding points in 7" and T by the
same letters. The maximum inscribed circle in Tr meets the side [xzy| (respectively [yz], [zz]) in a point
2" (respectively 2/, y') such that d(z,z’") = d(x,v’), d(y,z’) = d(y,2') and d(z,2') = d(z,y’). We call the
points z’,y, 2, the internal points of {x,y,z}. There is a unique isometry f of the triangle {x,y, 2z} onto
a tripod (a star graph with one vertex w of degree 3, and three vertices xg, yo, zo of degree one, such that
d(zg,w) = d(z,2") = d(x,y"), d(yo,w) = d(y, ') = d(y,2’) and d(z29,w) = d(z,z") = d(z,y’)). The triangle
{z,y,2} is 0-fine if f(p) = f(q) implies that d(p,q) < . The space X is d-fine if every geodesic triangle in
X is 0-fine.
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There are two definitions of Gromov hyperbolicity (the second one is the definition of fine space) whose
equivalence will be useful to quantify (see, e.g, [17, Proposition 2.21, p.41)):

Theorem A. Let us consider a geodesic metric space X.
(1) If X is §-hyperbolic, then it is 40-fine.
(2) If X is §-fine, then it is 6-hyperbolic.

Finally, for Lemma 5.10 below, some notation needs to be introduced. Let G be a periodic graph. Fix a
parametrization 7y of 7o and ty € R. Consider points x € T"G*, y € T"t*G*, with n € N, k > 4, so that
if v is a straight geodesic in G from z to y, then there exists z; € vy N T" iy with s; := n;ij(mj) >ty for
2<j<k-1

In G, consider the curves g; := Uy, U[2zj41Tx;] joining x; and 2, for 2 < j <k —2, and the curve
g = [za1] U [z122] U (Uagj<r—2)9;) U [2k—12%] U [2y] joining = and y in G1.

Lemma 5.10. With the above notation, if G satisfies (5.7) and G* is hyperbolic, then g with its arc-length
parametrization is an («, 8)-quasi-geodesic in G1 and He,(9,7) < H, where a, 8 and H are constants
depending just on 6(G7) and M := sup;>,, da(no(t), Tno(t)). In fact, (o, 3) = (3,80(G7) + 6M).

Proof. Let v : [0,lp] — G be an arc-length parametrization of v and let g : [0,]] — G; be an arc-length
parametrization of g; then dg, (g(t1), g(t2)) < |[t1 — to| for every t1,ts € [0,1].

To obtain a lower bound, note that M < co by (5.7); then every segment U, ; with ¢t > ¢, has length at
most M. Fix t1,ts € [0,1] with ¢; < t5. Assume first that g(¢1), g(t2) € T G* for some j with 2 < j < k—2.
Consider the geodesic triangle 7; = {[z;2j11], Un+j,s,, [€j41T2;]} in T"HG;. Since G* is hyperbolic, G7 is
hyperbolic by Lemma 5.2 and the triangle 7; is 46(G*)-fine by Theorem A.

Let [ag, bo] := v ([zjzj11]), [a,b] := g~ (g;) and ¢ := g~ *(Tz;). By the triangle inequality, by—ay < b—a,
thus one can choose ¢1,ca € [a,b] such that ¢ — ¢; = ¢ — ¢ > 0 satisfying (1 — a) + (b — ¢2) = by — ao.
Finally, pick ¢o € [ag, bg] with ¢; —a = cg —ap and b — c3 = by — ¢p.

Define u : [a, b] — [ag, bp] as the piecewise linear continuous function

t—a+ ag, ift € [a,c],
u(t) := < co, ift € (c1,c2),
t— b+ by, ift e [Cg,b].

Since 7; is 46(G7)-fine, dg, (g(t), v(u(t))) < 46(GF) +c—c1 < 40(Gy) + M.
Therefore, by the triangle inequality,
da, (9(t1), 9(t2)) = da, (v(u(tr)), y(u(tz))) — 80(G1) — 2M = u(ta) — u(tr) — 85(Gy) — 2M
2 tz - tl - (CQ - Cl) - 85(67”1‘) —2M 2 t2 - tl - 85(67”1() —4M.
Since [zx1] U [z122] and [xp_12%] U [2xy] are geodesics in G1, the above inequality also holds if g(t1), g(t2) €
TGy for some j € {0,1,k —1,k}.

Assume now that g(t1) € T"T1 G5 and g(t2) € T"H2G% with j; < jo. Let ri,ry € [t1,t2] such that
g(r1) = xj,41 and g(r2) = xj,. The previous argument with the function w provides tj,t5 satisfying
V(t) € TG, A(t5) € TG, dg, (9(t),y(t)) < 46(GY) + M, de, (9(t2),7(t3)) < 46(GY) + M,
da, (v(t7), xj,41) > 11 —t1 — 2M and dg, (v(t5),z,,) > ta — ro — 2M. Now, using Corollary 3.5,

da, (9(t1), 9(t2)) = da, (v(11),7(t3)) — 80(GT) — 2M
=dg, (W(tT)v xj1+1) + dg, (leJrlv ‘TJQ) +dg, (’y(té), zb) - 85(GT) —2M

1
21"1—t1—2M—|—§(7'2—7‘1)—|—t2—TQ—QM—SCS(GT)_QM

> % (fs — t1) — 88(GY) — 6M,
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and we conclude that g is a (3,80(G7) 4+ 6M)-quasi-geodesic in G;. Since G7 is hyperbolic, the geodesic
stability gives that He, (95, [zj2j+1]) = Hrntias (95, [2j741]) < H for 2 < j < k —2, where H is a constant
depending just on §(G7) and M. Hence, He, (g9,7) < H. O

Remark 5.11. The argument in the proof of Lemma 5.10 proves, in fact, a more general result. On the
one hand, the conclusion holds (with the same constants) if one replaces g; by [x;xj41] for any subset of
{2 < j < k—2}. On the other hand, the conclusion also holds (with the same constants) for non-straight
geodesics: it suffices to consider each connected subcurve of ¥ N T"HIG* joining Ty with T™ T+,
instead of [x;xj41] (if a connected subcurve of y N T G* joins two points in T" I~y one can replace it, in
order to obtain g, by the geodesic contained in T™ I~y with the same endpoints; in a similar way, if it joins
two points in T 1y one can replace it by the geodesic contained in Ty, with the same endpoints).

Lemma 5.12. Consider a periodic graph G and a parametrization ny of o satisfying both (5.7) and
lim;—, oo dg(no(t), Tno(t)) = oo. If G* is hyperbolic, then there exists a constant ty with the following
properties:

(1) If z € Ty, y € T g and [zy] is a geodesic in T"G* joining them, then there exist p, s, s, so that
p € [zy] and sy, s, > to + 66(G*) with da(p, T"no(sx)) < 26(G*) and de(p, T no(sy)) < 26(G*).

(2) Let v = [zy] be a geodesic in G, with x € T"(G*), y € T" *(G*) and k > 3. Let x; € T" i~y N4,
2<j<k—1. Then z; =T ny(s;) with s; >ty for2 < j <k—1.

Proof. (1) Given x € Ty and y € Ty, since liminf;_, 4 o da(no(t), Tno(t)) = 0, there exists ¢ large
enough such that the geodesic [T™no(t)T™ 1no(t)] in T"G* satisfies dg ([zy], [T"no(t)T™ o (t)]) > 26(G*).
Consider the geodesic quadrilateral Q := {x,y, T" 1 no(t), T"no(t)} in T"G*, that is 26(G*)-thin. Then for
every q € [zy] one has dg(q, [xT™n(t)]U[yT" 0o (t)]) < 26(G*). Hence, there exist a point p € [zy] such that
de(p, [#T™no(t)]) < 26(G*) and dg(p, [yT™no(t)]) < 26(G*). Choose s, s, such that dg(p, T"no(ss)) <
26(G*) and dg(p, T 'no(sy)) < 26(G*). Then dg(T™no(sz), T no(sy)) < 46(G*) and by Corollary 3.4,
A6 (T"o(52), T o(52)) < 2da(T™10(52), T™ 1) < 2d6(Tno(52), T io(s,)) < 85(G*).

A symmetric argument gives dg (T™no(sy), T o (sy)) < 86(G*). Since limy_. oo di (1o (t), Tno(t)) = oo,
there exists a constant ¢y such that deg(no(t), Tno(t)) > 80(G*) for every t < to + 65(G*); hence, s;,s, >
to + 66(G™).

(2) Fix z; = T no(s;) with 2 < j < k—1. By (1), there exist p € [zj_12;,]NT" T 71G*, p' € [xjzj41]N
TnHiG* and s,8" > tog + 66(G*) such that dg(p, T no(s)) < 28(G*) and dg(p’, T ino(s')) < 26(G*).

By symmetry, assume that s > s’. Assume also that s; < &', since otherwise s; > s’ >ty + 65(G*). Thus

de(p.p') < da(p. T no(s)) + da (T no(s), T"no(s")) + da (T no(s'), p')
< 45(G*) + dG (TnJrjnO(S)v TnJrjnO(S/)),

de (25, T"no(s") + da (T no(s"), T ne(s)) = da(x;, T no(s)) < da(zj,p) + da(p, T no(s))
<dg(zj,p) +25(G*) < da(p',p) +26(G*) < 65(G*) + de (T Hmo(s), T o (s')),

and thus dg (z;, T"no(s)) < 66(G*). Since 66(G*) > dg(zj, T no(s')) = s’ —s; > to+65(G*) — s, one
gets s; > tp. O

Lemma 5.13. Let G be a periodic graph with quasi-exponential decay and G* hyperbolic. Then there exists
a constant N such that Hg(g1,92) < N for every geodesics g1, g2 in G with the same endpoints and g1 C 7o.

Proof. Consider first the case g C U;j»T7G*. Define ny := max{j € Z: go N T7G* # 0}. Let {g;,...,9;"}
be the connected components of go N7T7G* and G := {g;| 1<i<r;,0<j<ns}.

If no = 0, then Hg(g1,92) < H(6(G*),1,0), where H is the function of the geodesic stability (see the
paragraph after Lemma A).

If ny > 0, for each g/,_, define ~},, as follows: if g, joins T"2no(s") and T™2no(t") with s* < ¢*, then 7}, :=
T™n0([s",t']). Let g5 be the geodesic in Up<j<n,—177G* obtained from g, by replacing each g%, by 7/,;
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then He (g2, 95) < H(6(G*),1,0). In a similar way one can find a geodesic g5 contained in Up<j<p,—277G*
with Ha(ge, g4) < 2H(6(G*),1,0) (if ng > 2). Hence, if ny < 2, then Ha(g1,92) < 3H(6(G*),1,0). Assume
now that ny > 3.

For each g§ € G with 1 < j < ny — 2, define 73 as follows: if gj' joins T7nqg(s 1) and Tj'*‘lno(t;) with
sh < th, then 7} := Tjno([sj,t;]) WU s if s > th, then ~} := TIno([t}, s5]) UU;, o if g joins T7no(s%) and
Tno(ts) with s5 < t5, then ~% := Tjno([sj,t;]); if g% joins T7*1ng(s%) and Tjﬂno(t;) with st <t then
i =T/ no([s5,4]). Define I as the set of indices 1 < i < ro such that gj joins Tro(sf) and Trno(ty) with
st < th; define 'yd = Tno([s,ty]) for every i € I. By Lemma 5.5, the relation (5.7) holds and then, by
Lemma 5.12, s], tz > to, where tg is the constant in Lemma 5.12, and therefore *y; C G1. By Remark 5.11,
He, (95,7%) < Ho, where Hy is a constant depending just on 6(G7) and on sup,s, da(no(t), Tro(t)).

Define 72 := (g5 \ ((U§’212 UZ195) U (Vier g9))) U (U272 U vi) U (User 26 Therefore, He, (92,72) <
Hy, := Hy+2H(46(GY),1,0).

By Remark 5.11, v, is an (a, §)- qua51geode51c in Gy (with its arc-length parametrlzatlon) where «, 8 are
the constants in Lemma 5.10. Let 74 :=y5 N ( ynz 2 TJG*) C G4. Note that +4 is connected and joins two
points in T7yg. Since dg, < dg, on Ga, ¥4 is also an ( , 3)-quasigeodesic in Gs.

By Lemma 5.5, sup {t2 — 11 P(t1) = P(ta), ta > t1 > to} < oo and (5.7) holds. Hence, by Lemma
5.3, there exists a quasi-isometry f~! : G5 — Gz and there also exist constants o', 3’, which just depend
on G, such that f=1(v4) is an (o/, 3')-quasigeodesic in G3. Note that G3 is hyperbolic by Lemma 5.7;
therefore, if 44 C Ty is the geodesic joining the endpoints of f=1(v4) in G3, then Hea, (v, f71(75)) <
H; = H( (G3),d, ). Since f is the identity map on UnezT™no([to, 0)), f(74) C Ty is a geodesic in
G+ joining the endpoints of vj; since f is a quasi-isometry, there exists a constant Hy4, which just depend
on G, such that He,(f(74),7%5) < Hys. Since dg, < dg, on Ga, He, (f(74),74) < Hy. Define 5 :=
(72 \72) U f(73) C G; then He, (73,72) = Ha, (f(15),72) < Ha and He(g2,73) = Hay (92,73) < Hi + Ha.
Since ~3 is a geodesic in G* with the same endpoints that g;, one gets Ha(vs,91) < H(6(G*),1,0) and
He(g1,92) < Hi + Hy + H(5(G¥), 1,0). 4

Hence, if go C U;>0T7 G* the lemma holds with N = Hy+Hs+H(6(G*),1,0). If go C Uj<oT?G*, the same
result holds by symmetry. The general case follows by applying these two cases to the connected components
92,155 92,m of g2 N UjZOTjG* and to the closure of the connected components of go \ U}":lggJ. [l

Corollary 5.14. Let G be a periodic graph with quasi-exponential decay and G* hyperbolic. Then for each
geodesic v in G there exists a straight geodesic ' with the same endpoints and Ha(7y,v') < N, where N is
the constant in Lemma 5.13.

Proof. Fix a geodesic v : [a,b] — G with y(a) € T™G*, v(b) € T™G* and n; < ng. Assume that
v N T™ryy # () (otherwise, we consider T™ 1y instead of T"17g) and that v N T2 F 1y, # ) (otherwise,
we consider T"27y, instead of T"2%17). Define inductively sj,t; (m < j < ng + 1) as follows: s,, :=
min{t € [a,b] : Y(t) € T™ v}, tn, := max{t € [a,b] : y(t) € T™ o}, sj := min{t € (t;—1,b] : v(t) € Ty},
t; :=max{t € (t;—1,b] : v(t) € TVvo}. We define also 7j = [y(s;)v(t;)] C Tivg for ny < j <ng+ 1.

By Lemma 5.13, He(([s),t;]),77) < N. Then o := (v \ U2 y([s;,1,])) U (U721 49) is a straight

]'fbl Jj=n1

geodesic in G and that Hg(y,7) < N. O
Finally, let us show the proof of the second part of Theorem 1.1.

Proof. (Second part of Theorem 1.1). Assume that G is hyperbolic. Lemma B implies that G* is also
hyperbolic.

Since inf e, dg(z,Tz) = 0, without loss of generality one can consider only arc-length parametrizations g
of 7o for which liminf; ., dg (770(75), Tno(t)) = 0. Fix one of these. It will be shown that lim;_, o, F(t) = oo,
where F(t) := dg(no(t), Tno(t)). Indeed,

(a) Assume that liminf, ., F'(t) = 0. Then there exists a sequence of positive numbers {c} converging
to 0 and two sequences {s1x},{s2x} C R such that limy_.o s2 % = 00, liMg_00o S165 = —00, F(s1) =
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F(so) = cg, F(t) > ¢ for every t € [s1,k, s2,1] and every k. Therefore, Lemmas 2.1 and 5.9 imply that G
is not hyperbolic.

(b) If 0 < liminf; ,_ F'(¢) and limsup,_,_ . F(t) < oo, one can also easily construct quasi-geodesic
quadrilaterals @ with 6(Q) arbitrarily large, and thus G is not hyperbolic (by lemmas 2.1 and 5.9). (The
Cayley graph of Z?, for which 1 < F(t) < 3, is a basic example of this situation.)

(c) Assume that liminf; , . F(t) < co and limsup,_, . F(t) = co. Note that F' is a Lipschitz function;
in fact, |F(t1) — F(t2)| < 2Jt; — t2|. Fix a constant ¢ > liminf, , o F(t). There exist two sequences
{s1.6}; {s2,k} € R~ such that F(s1 ) = F(sor) = ¢, F(t) > c for every t € [s1,s2%] and F(t;) > k
for some ¢, € [s1,k,52,k], for every k. Since F' is 2-Lipschitz, sox — s1x > k — ¢ for every k and then
limy— oo (82,5 — $1,5) = 00. Therefore, Lemmas 2.1 and 5.9 give that G is not hyperbolic.

Thus, lim;—, o, F(t) = 0.

The argument in (c) also gives limsup,_, . F'(t) < oo since liminf;, .| . F(t) = 0; then (5.7) holds.

Assume that G has not quasi-exponential decay, so supg, s >o(s2 — 51)®(s2)/®(s1) = co. By Lemma
5.6, £(G3) = oo and G3 is not hyperbolic and, by Lemma 5.4, since G is hyperbolic, sup {tg —t1: P(ty) =
®(ta), t2 > t1 > 0} = oo. Consider to > t; > 0 with ®(¢;) = ®(t2) < ®(0) which are maximal in the following
sense: ®(t; —e) > ®(¢1) and P(t2) > D(t2 + ) for every € > 0. Therefore, ®(t1) = F(t1) = D(t2) = F(t2)
and F(t) > F(t;) = F(t2) for every t € [t1,t2]. Lemma 5.9 (taking ¢; = co = ¢* = ¢ = F(t1) < ®(0))
provides a (3,2®(0))-quasigeodesic quadrilateral @ with 6(Q) > (t2 — t1)/6 — ®(0)/4. Hence, Lemma 2.1
shows that G is not hyperbolic. This is a contradiction. Therefore G has quasi-exponential decay.

Let us show the other direction by assuming that G* is hyperbolic and G has quasi-exponential decay.
By Lemma 5.5, sup{ts — t1 : ®(t1) = D(t2), ta > t1 > to} < oo for any fixed tg, and (5.7) holds.

Fix any geodesic triangle 7y := {21, 22,23} in G, with z; € T"G* for 1 <i < 3 and n; < ny < nz. One
just needs to deal with the case n; +4 < no < n3 — 4; the other cases are similar and simpler.

By Corollary 5.14, without loss of generality, assume that the geodesics of 7y are straight.

By Lemma 5.12 there exists a constant ty such that if € 7y N T"vg with either ny +2 <n <ns — 1 or
ng +2 <n <ng—1, then (T"n)"*(z) > to. Consider the geodesic metric spaces G and G5 defined after
(5.7) (with this constant tg) and recall G; = G U Ga; since G is an isometric subspace of Gy, 7y is also a
geodesic triangle in G.

Since (T™ng) Y(x) > to if # € To N T™yy with either ny +2 < n < ng—1lorny +2 <n < n3z — 1,
and the geodesics of 7y are straight, by Lemma 5.10, there exist (a, 3)-quasigeodesics gi2,¢g13 and gos
in Gy such that g;; joins z; and z;, and Hg,(gi5,[2:2;]) < H, where H only depends on 6(G7) and
Vo= SUPysy, da(no(t), Tno(t)), a = 3 and B = 85(G7) + 6v (recall that Gy is hyperbolic by Lemma
5.2). Furthermore, g12 = [2122] in T™GF U TG U T™271GT U TGy, goz = [2223] in T™2G% U
TretlGrUTs—1GEUT™GY, g13 = [z123] in TG UTM MG UT 2~ 1GUT™ G UT™ G UT™~1G U
TG, g12 0 (Uny+1<n<n,—1T"GY) C Ga, 923 N (Unyt1<n<ns—11"GT) C Gz, 913N {(Un, +1<n<n,—1T"GT) U
(Unpt1<n<ns—1T"G3)} C Go. Then 7y := {g12, g13, 923} is an (o, B)-quasi-geodesic triangle in G;.

Define G2(77) and G5(77) as the geodesic metric spaces given by

Go(Th) =T G UT" ' G U (Uny41<ncna—1,5t0 Unyt) UT™ G UT™ G UT™ T Gy
U (Unyt1<n<ng—1,t5to Uny) UT™ G UT™GY,

G3(T1) =T G UT" ' G U (Uny1<ncna—1,5t0 Vo) VT 'GUT™ G UT™ MGy
U (Ungt1cncng—1,t5t0 Vat) UT™ TG UT™GY.

Note that G2(77) is contained in Gj.

By Corollary 5.8 there exists a constant §, which does not depend on nq, nsy, ns, 7y, such that the subspaces
Uny+1<n<ns—1,t>t0 Vit ad Upytlcn<ns—1,6>t, Va,t are 6-hyperbolic.

Since G* is hyperbolic, by Lemma 5.2 there exists a constant §*, which does not depend on ni,ns, ns, 7o,
such that G7F is 6*-hyperbolic. By Lemma B, T G;UT™ 1 GY, T2~ 1GiUT™ G UT™ TGt and T~ 1GY U
T"s G5 are (120)26*-hyperbolic. Hence, by Lemma B, G3(7;) is (120)* max{d, (120)26* }-hyperbolic.
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As in the proof of Lemma 5.3, one can check that G3(77) and G2(77) are quasi-isometric (with constants
which just depend on G*); thus, by invariance of hyperbolicity, there exists a constant d, which does not
depend on ny, ns, ns3, 7o, such that Go(77) is do-hyperbolic. Since 77 is also an («, §)-quasi-geodesic triangle in
G2(T1) C Gy, T; is d4-thin, where &) is a constant that does not depend on ny, na, ng, Zg. Since dg, < dG, (1)
we have that 7; is also d5-thin in Gy. Since He, (9i5, [2i%;]) < H, the triangle 7 is (05 + 2H)-thin in G;.
Since 7y C G and G is an isometric subspace of Gy, the geodesic triangle 7y is also (05 + 2H)-thin in G. O

(1]
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