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Abstract. Gromov hyperbolicity grasps the essence of both negatively curved spaces and discrete spaces.
The hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it;

hence, characterizing hyperbolic graphs is a main problem in the theory of hyperbolicity. Since this is a

very ambitious goal, a more achievable problem is to characterize hyperbolic graphs in particular classes of
graphs. The main result in this paper is a characterization of the hyperbolicity of periodic graphs.
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1. Introduction.

Gromov hyperbolicity grasps the essence of both negatively curved spaces and discrete spaces. As observed
in [5, Section 1.3], the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph
related to it. Characterizing hyperbolic graphs is a main problem in the theory of hyperbolicity; since this is
a very ambitious goal, a more achievable (yet very difficult) problem is to characterize hyperbolic graphs in
particular classes of graphs. The papers [4, 7, 8, 9, 11, 12, 25, 27, 32, 30, 31, 37, 39, 2] study the hyperbolicity
of complement of graphs, chordal graphs, periodic planar graphs, planar graphs, strong product graphs, line
graphs, Cartesian product graphs, cubic graphs, short graphs, median graphs, and different generalizations
of chordal graphs; however, characterizations of the hyperbolicity in the corresponding classes are obtained
only in a few of them. In a previous work, [8], periodic planar graphs were considered. In this work we
shall study how hyperbolicity is affected when considering general periodic graphs, not necessarily planar;
a simple characterization of the hyperbolic periodic graphs will be obtained. The key ingredient will be
the speed at which points and their images under an isometry separate. The general setting is much more
complicated than the planar one and the characterization obtained is totally unexpected.
X is a geodesic metric space if for every x, y ∈ X there exists a geodesic joining x and y; denote by

[xy] any of such geodesics (since uniqueness of geodesics is not required, this notation is ambiguous, but
convenient). It is clear that every geodesic metric space is path-connected. If the metric space X is a graph,
[u, v] denotes the edge joining the vertices u and v.

In order to consider a graph G as a geodesic metric space, one must identify any edge [u, v] ∈ E(G) with
the real interval [0, l] (if l := L([u, v])); therefore, any point in the interior of any edge is a point of G and, if
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the edge [u, v] is considered as a graph with just one edge, then it is isometric to [0, l]. A connected graph G
is naturally equipped with a distance defined on its points, induced by taking shortest paths in G, inducing
in G the structure of a metric graph. Note that edges can have arbitrary lengths. As usual, the set of vertices
of a graph G will be denoted by V (G).

Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −→ Y is said to be an (α, β)-quasi-isometric
embedding, with constants α ≥ 1, β ≥ 0 if, for every x, y ∈ X:

α−1dX(x, y)− β ≤ dY (f(x), f(y)) ≤ αdX(x, y) + β.

The function f is ε-full if for each y ∈ Y there exists x ∈ X with dY (f(x), y) ≤ ε.
A quasi-isometry from X to Y is a map f : X −→ Y that is an ε-full (α, β)-quasi-isometric embedding

for some α ≥ 1 and β, ε ≥ 0. Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry
f : X −→ Y . Quasi-isometry is an equivalence relation on metric spaces.

An (α, β)-quasigeodesic of a metric space X is an (α, β)-quasi-isometric embedding γ : I −→ X, where
I is an interval of R. A quasigeodesic is an (α, β)-quasigeodesic for some α ≥ 1, β ≥ 0. Note that a
(1, 0)-quasigeodesic is a geodesic. A geodesic line is a geodesic with domain R.

This work deals with periodic graphs. A graph G is periodic if there exist a geodesic line γ0 and an
isometry T of G with the following properties:

(1) Tγ0 ∩ γ0 = ∅,
(2) G \ γ0 has two connected components,
(3) G \ {γ0 ∪ Tγ0} has at least three connected components, two of them, G1 and G2, satisfy ∂G1 ⊂ γ0

and ∂G2 ⊂ Tγ0, and the subgraph G∗ := G \ {G1 ∪G2} is connected and ∪n∈ZT
n(G∗) = G.

Such subgraph G∗ is a period graph of G.
In what follows and throughout the paper, G will denote a periodic graph and G∗ a period graph of G.

In fact, given a periodic graph G, we will fix a geodesic line γ0, an isometry T and their corresponding
period graph G∗. By η0 we will denote an arc-length parametrization of γ0 in G. Let ηk := T kη0 be a
parametrization of T kγ0 for any k ∈ Z. Also, for any function f : G→ R denote by lim supz→+∞,z∈γ0 f(z),
the limit

lim sup
z→+∞,z∈γ0

f(z) := lim sup
t→+∞

f(η0(t)),

and analogously for any other limit along the curve.
Our main result is the following:

Theorem 1.1. Let G be a periodic graph.
• If infz∈γ0 dG(z, Tz) > 0, then G is hyperbolic if only if G∗ is hyperbolic and lim

|z|→∞,z∈γ0
dG(z, Tz) =∞.

• If infz∈γ0 dG(z, Tz) = 0, then G is hyperbolic if and only if G∗ is hyperbolic and G has quasi-exponential
decay.

For the definition of quasi-exponential decay, let G be a periodic graph with infz∈γ0 dG(z, Tz) = 0, let
η0(t) be a parametrization of γ0 and define Φη0(t) as the greatest non-increasing minorant of F (t), where
F (t) := dG

(
η0(t), Tη0(t)

)
on [0,∞). The graph G has quasi-exponential decay if there exist a parametrization

η0(t) for which limt→−∞ dG
(
η0(t), Tη0(t)

)
=∞ and

sup
s2≥s1≥0

(s2 − s1)
Φη0(s2)
Φη0(s1)

<∞.

In what follows, we will write Φη0(t) as Φ(t).
Note that such condition is satisfied by any exponential function Φ(t) = e−at. Also, on the other hand, if

a positive function Φ(t) satisfies this condition, then Φ(t) ≤ ke−at on [0,∞) for some k, a > 0. Consequently,
if G has quasi-exponential decay, then limt→∞Φ(t) = 0 and lim inft→∞ F (t) = 0. We obtain an equivalent
definition of quasi-exponential decay if we replace η0(t) by η0(t− t0), i.e., if one considers t ≥ t0 instead of
t ≥ 0, for any fixed t0.
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The outline of the paper is as follows. Section 2 states some definitions and background used throughout
the paper. In Section 3 some technical and basic results on periodic graphs are presented. Section 4 is
devoted to the proof of the first part of Theorem 1.1. Finally, the proof of the second part is shown in
Section 5.

2. Definitions and background.

If X is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon, with sides Jj ⊆ X, the polygon
J is δ-thin if for every x ∈ Ji the distance d(x,∪j 6=iJj) ≤ δ. Denote by δ(J) the sharp thin constant
of J , i.e., δ(J) := inf{δ : J is δ-thin } . If x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the
union of the three geodesics [x1x2], [x2x3] and [x3x1]. The space X is δ-hyperbolic if every geodesic tri-
angle in X is δ-thin. Denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) := sup{δ(T ) :
T is a geodesic triangle in X }. The space X is hyperbolic if X is δ-hyperbolic for some δ. Note that if
X is δ-hyperbolic, then every geodesic polygon with n sides is (n − 2)δ-thin; in particular, every geodesic
quadrilateral is 2δ-thin. In the classical references on this subject (see, e.g., [5, 17]) appear several different
definitions of Gromov hyperbolicity, which are equivalent in the sense that if X is δ-hyperbolic with respect
to one definition, then it is δ′-hyperbolic with respect to another definition (for some δ′ related to δ), see for
example Theorem A in Section 5. The definition that we have chosen has a deep geometric meaning (see,
e.g., [17]).

Let X be a metric space, Y a non-empty subset of X and ε a positive number. The ε-neighborhood of Y
in X, denoted by Vε(Y ) is the set {x ∈ X : dX(x, Y ) ≤ ε}. The Hausdorff distance between two non-empty
subsets Y and Z of X, denoted by HX(Y,Z) or H(Y, Z), is the number defined by:

inf{ε > 0 : Y ⊂ Vε(Z) and Z ⊂ Vε(Y )}.

A useful property of hyperbolic spaces is the invariance of hyperbolicity. Namely, if f : X −→ Y is an
(α, β)-quasi-isometric embedding between the geodesic metric spaces X and Y , and if Y is δ-hyperbolic,
then X is δ′-hyperbolic, where δ′ is a constant which just depends on δ, α and β. Besides, if f is ε-full for
some ε ≥ 0 (a quasi-isometry), then X is hyperbolic if and only if Y is hyperbolic. Furthermore, if X is
δ′-hyperbolic, then Y is δ-hyperbolic, where δ is a constant which just depends on δ′, α, β and ε.

Given a geodesic metric space X and a closed connected subset X0 ⊂ X, the inner distance dX0 is defined
by minimizing dX -length of paths contained in X0.

A subspace X0 of a geodesic metric space X is an isometric subspace if the inner distance dX0 satisfies
that dX0(x, y) = dX(x, y) for all x, y ∈ X0. If X0 is an isometric subspace of X then every geodesic in X0 is
also a geodesic in X, and therefore δ(X0) ≤ δ(X).

The following lemma shows that in order to prove the hyperbolicity of a geodesic metric space it suffices
to consider geodesic triangles verifying a useful property (see [34, Lemma 2.1]):

Lemma A. In any geodesic metric space X,

δ(X) = sup
{
δ(T ) : T is a geodesic triangle that is a simple closed curve

}
.

Another fundamental property of hyperbolic spaces is their geodesic stability: if X is a δ-hyperbolic
geodesic metric space (δ ≥ 0), and α ≥ 1 and β ≥ 0 are given constants, there exists a constant H =
H(δ, α, β) such that for any pair of (α, β)-quasigeodesics g, h with the same endpoints, H(g, h) ≤ H.

In view of this stability, one can extend the thinness to quasigeodesic polygons:

Lemma 2.1. Let X be a δ-hyperbolic geodesic metric space and P an (α, β)-quasigeodesic polygon with n
sides in X. Then P is ∆-thin, where ∆ depends only on n, δ, α, β.

Proof. Let P ′ be a geodesic polygon in X with the same vertices as P . By geodesic stability, the Hausdorff
distance between a quasigeodesic side in P and its corresponding geodesic side in P ′ is less than or equal to
the constant H = H(δ, α, β). By splitting P ′ in n− 2 geodesic triangles, one can check that P ′ is (n− 2)δ-
thin. If p belongs to a side of P , then there exists a point p′ on its corresponding geodesic side on P ′ at
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distance from p less than or equal to H; since P ′ is a geodesic polygon with n sides, there exists a point q′

on the union of the other n− 1 geodesic sides in P ′ at distance from p′ less than or equal to (n− 2)δ; then,
there exists a point q in the union of the corresponding n − 1 quasigeodesic sides in P at distance from q′

less than or equal to H, and dG(p, q) ≤ (n− 2)δ + 2H. Hence, P is ((n− 2)δ + 2H)-thin. �

3. Technical results on periodic graphs.

In this section some definitions and results which will be used throughout the paper are stated.
The following lemmas will be of use in the proof of Theorem 1.1 (see [8, Lemma 3.9] and the proof of [8,

Lemma 3.10]):

Lemma B. Let G be a graph and let γ0 be a geodesic line in G such that G\γ0 has two connected components
G′1, G

′
2. Define G1 := G′1 ∪ γ0 and G2 := G′2 ∪ γ0. If G is δ-hyperbolic, then G1, G2 are δ-hyperbolic. If

G1, G2 are δ-hyperbolic, then G is 120δ-hyperbolic.

A geodesic γ = [xy] with x ∈ T jG∗, y ∈ T kG∗ and j ≤ k is a straight geodesic if γ ∩ T iG∗ is a connected
set for every j ≤ i ≤ k; note that then γ ⊂ ∪ki=jT iG∗.

The proof of [8, Lemma 3.11] gives:

Lemma C. Let G be a periodic graph such that G∗ is δ∗-hyperbolic and lim|z|→∞,z∈γ0 dG(z, Tz) = ∞.
Assume also that there exists z0 ∈ γ0 with [z0, T z0] ∈ E(G) and L([z0, T z0]) = dG(γ0, Tγ0) > 0. Denote by
γ a geodesic joining x ∈ T jG∗ and y ∈ T kG∗, j ≤ k. Then:

(1) There exists a constant M that depends only on G∗ and a straight geodesic γ′ joining x and y such
that H(γ, γ′) ≤M .

(2) There exists a constant N that depends only on G∗ such that if σ := ∪n∈Z[Tnz0, T
n+1z0] and j+2 ≤ k,

for each j < i < k there exists a point zi ∈ γ′ with dT iG∗(zi, σ ∩ T iG∗) ≤ N .

A geometric consequence of the previous lemma is that two geodesics that start at the same copy of G∗

and end at the same copy of G∗ are at bounded distance in the intermediate copies of G∗. Namely,

Lemma 3.1. Under the hypotheses of Lemma C, consider two geodesics γ, γ̃ in G from points x, x̃ ∈ T jG∗
to points y, ỹ ∈ T kG∗, respectively, where k− j ≥ 4. If p ∈ T iG∗∩γ and q ∈ T iG∗∩ γ̃ with j+2 ≤ i ≤ k−2,
then dG(p, q) ≤ 2M + 6N + 5d1, where d1 = L([z0, T z0]) = dG(γ0, Tγ0) and M , N are the constants in
Lemma C. Furthermore, if γ and γ̃ are straight geodesics, then dG(p, q) ≤ 6N + 5d1.

Proof. By part (1) in Lemma C, it suffices to prove dG(p, q) ≤ 6N+5d1 when γ and γ̃ are straight geodesics.
By Lemma C, there exist points zi ∈ T iG∗ ∩ γ and z̃i ∈ T iG∗ ∩ γ̃ so that

dT iG∗(zi, σ ∩ T iG∗), dT iG∗(z̃i, σ ∩ T iG∗) ≤ N

for j + 1 ≤ i ≤ k − 1.
Consider p ∈ T iG∗ ∩ γ and q ∈ T iG∗ ∩ γ̃, with j + 2 ≤ i ≤ k − 2. Then,

dG(p, zi) ≤ max{dG(zi−1, zi), dG(zi, zi+1)} ≤ 2N + 2d1.

And, identically, dG(q, z̃i) ≤ 2N + 2d1. Since dG(zi, z̃i) ≤ 2N + d1, one gets the desired result. �

The following two lemmas will relate distances among points on γ0 and Tγ0.

Lemma 3.2. Let G be a periodic graph. Assume that there exist a′ ∈ γ0, b′ ∈ Tγ0 such that

dG(a′, b′) ≤ η−1
1 (b′)− η−1

0 (a′) = dG(b′, Ta′).

If a ∈ γ0 so that η−1
0 (a) ≤ η−1

0 (a′) then, for every b ∈ Tγ0

dG(a, b) ≥ η−1
0 (a)− η−1

1 (b).

Furthermore, if η−1
1 (b) ≤ η−1

0 (a), then dG(a, b) ≥ dG(a, Ta)/2.
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Remark: By symmetry, if dG(a′, b′) ≤ η−1
0 (a′) − η−1

1 (b′) and if b ∈ Tγ0 is so that η−1
1 (b) ≤ η−1

1 (b′) then
dG(a, b) ≥ η−1

1 (b)− η−1
0 (a) for any a ∈ γ0.

Proof. Seeking for a contradiction assume that there exist a ∈ γ0 and b ∈ Tγ0 with η−1
0 (a)−η−1

1 (b) > dG(a, b)
and η−1

0 (a) ≤ η−1
0 (a′). Then

dG(b, b′) ≤ dG(b, a) + dG(a, a′) + dG(a′, b′)

< η−1
0 (a)− η−1

1 (b) + η−1
0 (a′)− η−1

0 (a) + η−1
1 (b′)− η−1

0 (a′)

= η−1
1 (b′)− η−1

1 (b) = dG(b, b′) ,

which is a contradiction. Thus, η−1
0 (a)− η−1

1 (b) ≤ dG(a, b).
If η−1

1 (b) ≤ η−1
0 (a), notice that dG(b, Ta) = η−1

0 (a) − η−1
1 (b) ≤ dG(a, b). Hence, dG(a, Ta) ≤ dG(a, b) +

dG(b, Ta) ≤ 2dG(a, b). �

The second lemma relating distances among points on the “boundary” of G∗ states:

Lemma 3.3. Let G be a periodic graph and assume that there exist an unbounded sequence {ζn} ⊂ γ0

and some constant c0 with dG(ζn, T ζn) ≤ c0 for every n ∈ N. Then dG(z1, z2) ≤ dG(z1, T z2) + c0 for every
z1, z2 ∈ γ0. Furthermore, dG(z1, T z1) ≤ 2dG(z1, T z2)+c0 and dG(z1, Tγ0) ≤ dG(z1, T z1) ≤ 2dG(z1, Tγ0)+c0.

Proof. Fix z1, z2 ∈ γ0. Let η0 be a fixed arc-length parametrization of γ0 with η−1
0 (z1) ≥ η−1

0 (z2). By
hypothesis, there exists n ∈ N with either η−1

0 (ζn) > η−1
0 (z1) or η−1

0 (ζn) < η−1
0 (z2). Assume that η−1

0 (ζn) >
η−1

0 (z1) (the case η−1
0 (ζn) < η−1

0 (z2) is similar). Hence

dG(Tz2, T z1) + dG(Tz1, T ζn) = dG(Tz2, T ζn) ≤ dG(Tz2, z1) + dG(z1, ζn) + dG(ζn, T ζn) ,

and, since T is an isometry and Tγ0 is a geodesic,

dG(z1, z2) ≤ dG(z1, T z2) + c0 .

Moreover, dG(z1, T z1) ≤ dG(z1, T z2) + dG(Tz1, T z2) ≤ 2dG(z1, T z2) + c0. �

This last result has two corollaries which will be useful in the proof of the second part of Theorem 1.1.
Both give more specific quantitative relations between distances among points. Namely,

Corollary 3.4. Let G be a periodic graph with infz∈γ0 dG(z, Tz) = 0. Then dG(z1, z2) ≤ dG(z1, T z2) for
every z1, z2 ∈ γ0. Furthermore, dG(z1, T z1) ≤ 2dG(z1, T z2), dG(z1, Tγ0) ≤ dG(z1, T z1) ≤ 2dG(z1, Tγ0) and

(3.1)
1
3
(
dG(z1, z2) + max

i=1,2
{dG(zi, T zi)}

)
≤ dG(z1, T z2) ≤ dG(z1, z2) + min

i=1,2
{dG(zi, T zi)}.

Proof. In order to prove the inequalities previous to (3.1), it suffices to apply Lemma 3.3 for any c0 > 0 and
take the limit as c0 → 0+.

The right hand side of (3.1) follows from the triangle inequality and the fact dG(Tz1, T z2) = dG(z1, z2).
The left hand side follows by symmetry and the previous inequalities. �

Some notation is needed for the second corollary. Given z ∈ Tmγ0, w ∈ Tnγ0, define DG(z, w) as follows:
if m = n, set DG(z, w) := dG(z, w); if m < n, then

DG(z, w) := inf


n−1∑
j=m

(
dG(xj , T−1xj+1) + dG(T−1xj+1, xj+1)

)
+ dG(xn, w)

 ,

where the infimum is taken among all sets of points {xj}nj=m with xj ∈ T jγ0 and xm = z; finally, if m > n
define DG(z, w) := DG(w, z). (One can check that the infimum above is in fact a minimum; see, e.g., [6, p.
24]).

Corollary 3.5. Let G be a periodic graph with infz∈γ0 dG(z, Tz) = 0. Then dG(z1, z2) ≤ dG(z1, T
nz2) and

DG(z1, T
nz2)/3 ≤ dG(z1, T

nz2) ≤ DG(z1, T
nz2) for every z1, z2 ∈ γ0 and n ∈ Z.
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Lemma 3.6. Let G be a periodic graph. Assume that there exist an unbounded sequence {ζn} ⊂ γ0 and
some constant c0 with dG(ζn, T ζn) ≤ c0 for every n ∈ N. Then, for each arc-length parametrization η0 of γ0

one of the following situations holds:
(1) There exists R ∈ R such that if a ∈ γ0, b ∈ Tmγ0 (m ∈ Z) with η−1

0 (a), η−1
m (b) ≥ R then dG(a, b) ≥

η−1
m (b)− η−1

0 (a)− c0.
(2) For any m ≥ 0, a ∈ γ0, b ∈ Tmγ0 then dG(a, b) ≥ η−1

m (b)− η−1
0 (a).

(3) For any m ≤ 0, a ∈ γ0, b ∈ Tmγ0 then dG(a, b) ≥ η−1
m (b)− η−1

0 (a).
(Recall the notation ηm = Tm ◦ η0 for a parametrization of Tmγ0.)

Proof. Case 1. Suppose that there exists R ∈ R so that

(3.2) dG(z, w) ≥ |η−1
0 (z)− η−1

1 (w)|

for all z ∈ η0([R,∞)) and w ∈ η1([R,∞)).
Let a ∈ γ0 and b ∈ Tmγ0 with η−1

m (b) ≥ η−1
0 (a) ≥ R and m ≥ 0 (if η−1

m (b) < η−1
0 (a), then dG(a, b) ≥

0 > η−1
m (b)− η−1

0 (a)− c0). Let g be a straight geodesic joining a to b and choose points uj ∈ g ∩ T jγ0, for
0 ≤ j ≤ m, with a = u0 and b = um. If η−1

j (uj) ≥ R for 0 ≤ j ≤ m then by (3.2),

dG(a, b) =
m−1∑
j=0

dG(uj , uj+1) ≥
m−1∑
j=0

(
η−1
j+1(uj+1)− η−1

j (uj)
)

= η−1
m (um)− η−1

0 (u0) = η−1
m (b)− η−1

0 (a) .

Otherwise, there exists 0 < j0 < m such that η−1
j (uj) ≥ R for all j0 < j ≤ m and η−1

j0
(uj0) < R. Then,

dG(a, b) =
m−1∑
j=0

dG(uj , uj+1) ≥
m−1∑
j=j0

dG(uj , uj+1) .

By Lemma 3.3,
dG(uj0 , uj0+1) ≥ η−1

j0+1(uj0+1)− η−1
j0

(uj0)− c0 ,
and by (3.2),

dG(uj , uj+1) ≥ η−1
j+1(uj+1)− η−1

j (uj) , j0 < j ≤ m− 1 .

Therefore,

dG(a, b) ≥ η−1
j0+1(uj0+1)− η−1

j0
(uj0)− c0 +

m−1∑
j=j0+1

(
η−1
j+1(uj+1)− η−1

j (uj)
)

= η−1
m (um)− η−1

j0
(uj0)− c0 ≥ η−1

m (b)− η−1
0 (a)− c0 ,

where the last inequality follows from the fact that η−1
j0

(uj0) < R ≤ η−1
0 (a). The same argument works when

m < 0.
Case 2. Suppose that there exist a sequence Rk ↗∞ and sequences zk ∈ η0([Rk,∞)), wk ∈ η1([Rk,∞))

so that d(zk, wk) < η−1
0 (zk)− η−1

1 (wk).
As above, let g be a straight geodesic joining a to b and choose points uj ∈ g ∩ T jγ0, for 0 ≤ j ≤ m, with

a = u0 and b = um. There exists k such that η−1
j (uj) < Rk for every 0 ≤ j ≤ m. By (remark after) Lemma

3.2,
dG(uj , uj+1) ≥ η−1

j+1(uj+1)− η−1
j (uj)

and thus,

dG(a, b) =
m−1∑
j=0

dG(uj , uj+1) ≥
m−1∑
j=0

(
η−1
j+1(uj+1)− η−1

j (uj)
)

= η−1
m (um)− η−1

0 (u0) = η−1
m (b)− η−1

0 (a) .

Case 3. Suppose that there exist a sequence Rk ↗∞, and sequences zk ∈ η0([Rk,∞)), wk ∈ η1([Rk,∞))
such that d(zk, wk) < η−1

1 (wk) − η−1
0 (zk). Let g be the straight geodesic from a to b and define points
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uj := g ∩ T−jγ0, for 0 ≤ j ≤ |m|, with a = u0 and b = u|m|. There exists k such that η−1
−j (uj) < Rk for

every 0 ≤ j ≤ |m|. By Lemma 3.2,

dG(uj , uj+1) ≥ η−1
−j−1(uj+1)− η−1

−j (uj)

and thus,

dG(a, b) =
|m|−1∑
j=0

dG(uj , uj+1) ≥
|m|−1∑
j=0

(
η−1
−j−1(uj+1)− η−1

−j (uj)
)

= η−1
m (u|m|)− η−1

0 (u0) = η−1
m (b)− η−1

0 (a) .

�

4. Proof of the first part of Theorem 1.1

.
This section is devoted to the proof of the first part of Theorem 1.1. For clarity’s sake, we shall begin by

stating some lemmas and claims which will be used along the proof.
The first lemma introduces a new graph, G′ (quasi-isometric to G) which will guarantee the existence of

a transversal geodesic.

Lemma 4.1. Let G be a periodic graph such that dG(γ0, Tγ0) =: d1 > 0. Fix z0 ∈ γ0 and define G′ by
adding to G the edges {[Tnz0, T

n+1z0]}n∈Z with L([Tnz0, T
n+1z0]) = d1 for every n ∈ Z. Then, the graphs

G′ and G are quasi-isometric and, moreover, ∪n∈Z[Tnz0, T
n+1z0] is a geodesic in G′.

Proof. It is clear that ∪n∈Z[Tnz0, T
n+1z0] is a geodesic in G′. It will be shown that the inclusion i : G→ G′

is a quasi-isometry. Clearly, the inequality dG′(x, y) ≤ dG(x, y) holds for every x, y ∈ G.
Consider x, y ∈ G. If x, y are so that dG′(x, y) = dG(x, y), then there is nothing to prove. If dG′(x, y) <

dG(x, y), then there exist m,n ∈ Z such that dG′(x, y) = dG(x, Tmz0) + dG′(Tmz0, T
nz0) + dG(Tnz0, y).

Hence,
dG(x, y) ≤ dG(x, Tmz0) + dG(Tmz0, T

nz0) + dG(Tnz0, y) ≤ dG(x, Tmz0) + |m− n|dG(z0, T z0) + dG(Tnz0, y)

≤ dG(z0, T z0)
d1

(
dG(x, Tmz0) + |m− n|d1 + dG(Tnz0, y)

)
=
dG(z0, T z0)

d1

(
dG(x, Tmz0) + dG′(Tmz0, T

nz0) + dG(Tnz0, y)
)

=
dG(z0, T z0)

d1
dG′(x, y) .

Since L([Tnz0, T
n+1z0]) = d1 for every n ∈ Z, the map i is (d1/2)-full, and we conclude that G′ and G are

quasi-isometric. �

The next lemma will show that a certain curve on the graph G is a quasi-geodesic.

Lemma 4.2. Let G be a periodic graph such that infz∈γ0 dG(z, Tz) =: d0 > 0. Let ζ ∈ γ0 and let σ be a
geodesic in G∗ joining ζ and Tζ. Then, for each m ∈ N the curve σm :=

⋃m−1
j=0 T jσ is an (α0, β0)-quasi-

geodesic in G, with α0, β0 depending only on dG(ζ, T ζ), d0 and dG(γ0, Tγ0).

In fact, the explicit expressions for α0 and β0 will be obtained in the proof of this lemma.

Proof. Notice that σm is a continuous curve in G joining ζ and Tmζ. Define c0 := dG(ζ, T ζ). Fix an
arc-length parametrization of σm starting at ζ and s, t ∈ R in the domain of σm with s < t. Clearly
dG(σm(t), σm(s)) ≤ L(σm|[s,t]) = t − s. Let j, r ∈ N be so that σm(s) ∈ T jσ and σm(t) ∈ T j+rσ. The
following inequality holds

(4.3) t− s ≤ (r + 1)L(σ) = (r + 1)dG(ζ, T ζ) = (r + 1)c0 .

For the lower bound, notice first that if d1 := dG(γ0, Tγ0) > 0,

dG(σm(t), σm(s)) ≥ (r − 1)d1 = (r + 1)d1 − 2d1 ≥
d1

c0
(t− s)− 2d1 .
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Assume next that dG(γ0, Tγ0) = 0. Since d0 > 0, there exist monotonous unbounded sequences {z′n} ⊂ γ0

and {w′n} ⊂ Tγ0 with dG(z′n, w
′
n) < d0/2. Fix an arc-length parametrization η0 of γ0 such that there

exists a subsequence {z′nk
} with limk→∞ η−1

0 (z′nk
) =∞; without loss of generality by replacing {z′n} by the

subsequence {z′nk
} if necessary, one can assume that limk→∞ η−1

0 (z′n) =∞. Recall the notation for ηk.
Assume that η−1

1 (w′n)− η−1
0 (z′n) ≥ 0 for infinitely many n′s (otherwise, the argument is symmetric). By

choosing a subsequence if necessary, one can assume without loss of generality that η−1
1 (w′n)− η−1

0 (z′n) ≥ 0
for every n. Then,

(4.4) η−1
1 (w′n)− η−1

0 (z′n) = dG(w′n, T z
′
n) ≥ dG(z′n, T z

′
n)− dG(z′n, w

′
n) > d0 −

d0

2
=
d0

2
≥ dG(z′n, w

′
n) .

Let s′ ≤ s ≤ t ≤ t′ such that σm(s′) is the first point of σm in T jσ and σm(t′) is the last point of σm

in T j+rσ; then dG(σm(s′), σm(s)) = s − s′ ≤ c0 and dG(σm(t′), σm(t)) = t′ − t ≤ c0. Let Γ be a geodesic
joining σm(s′) and σm(t′). Define x0 := σm(s′) ∈ T jγ0, xr+1 := σm(t′) ∈ T j+r+1γ0, and let xi be any point
of Γ in T j+iγ0 for 1 ≤ i ≤ r.

Define N1, N21, N22, as the sets of indices

N1 :=
{

0 ≤ i ≤ r : η−1
j+i(xi) ≥ η

−1
j+i+1(xi+1)

}
,

N21 :=
{

0 ≤ i ≤ r : η−1
j+i(xi) < η−1

j+i+1(xi+1) and dG(xi, xi+1) ≥ d0/2
}
,

N22 :=
{

0 ≤ i ≤ r : η−1
j+i(xi) < η−1

j+i+1(xi+1) and dG(xi, xi+1) < d0/2
}
.

Then cardN1 + cardN21 + cardN22 = r + 1. For i ∈ N1, η−1
j+i(xi) ≥ η−1

j+i+1(xi+1). Take n ∈ N so that
η−1

0 (z′n) > η−1
j+i(xi). Then, by (4.4) the points xi and xi+1 are under the hypothesis of Lemma 3.2, and

hence

dG(xi, xi+1) ≥ η−1
j+i(xi)− η

−1
j+i+1(xi+1) = dG(xi+1, Txi) ≥ dG(xi, Txi)− dG(xi+1, xi) ≥ d0 − dG(xi, xi+1)

and conclude dG(xi, xi+1) ≥ d0/2.
If cardN1 + cardN21 ≥ (r + 1)/2, then

dG(σm(s), σm(t)) + 2c0 ≥ dG(σm(s′), σm(t′)) =
r∑
i=0

dG(xi, xi+1) ≥ d0

4
(r + 1) .

Hence, by (4.3),

dG(σm(t), σm(s)) ≥ d0

4
(r + 1)− 2c0 ≥

d0

4c0
(t− s)− 2c0 .

Assume now that cardN22 ≥ (r + 1)/2. Note that if i ∈ N22, then

η−1
j+i+1(xi+1)− η−1

j+i(xi) = dG(xi+1, Txi) ≥ dG(xi, Txi)− dG(xi+1, xi) ≥ d0 −
d0

2
=
d0

2
,

and therefore ∑
i∈N22

(
η−1
j+i+1(xi+1)− η−1

j+i(xi)
)
≥ d0

2
cardN22 ≥

d0

4
(r + 1).

Note that∑
i∈N22

(
η−1
j+i+1(xi+1)− η−1

j+i(xi)
)
≤

∑
i∈N22∪N21

(
η−1
j+i+1(xi+1)− η−1

j+i(xi)
)

=
∑
i∈N1

(
η−1
j+i(xi)− η

−1
j+i+1(xi+1)

)
since η−1

j+r+1(xr+1) = η−1
j (x0). Therefore, applying Lemma 3.2,

∑
i∈N1

(
η−1
j+i(xi)− η

−1
j+i+1(xi+1)

)
≤
∑
i∈N1

dG(xi, xi+1) ≤
r∑
i=0

dG(xi, xi+1) = dG(σm(s′), σm(t′))

≤ dG(σm(s), σm(t)) + 2c0 .
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Hence,

dG(σm(t), σm(s)) ≥ d0

4
(r + 1)− 2c0 ≥

d0

4c0
(t− s)− 2c0 .

One concludes that σm is an (α0, β0)-quasigeodesic (for every m), where α0 = c0/d1 if d1 > 0 (note that
c0 ≥ d0 ≥ d1), α0 = 4c0/d0 if d1 = 0, and β0 = max{2c0, 2d1}. �

With these previous lemmas established, let us proceed to prove the first part of Theorem 1.1, the main
goal of this section.

Proof. (First part of Theorem 1.1). Assume first that G is hyperbolic. Since γ0 and Tγ0 are geodesic lines, G∗

is an isometric subgraph of G and δ(G∗) ≤ δ(G). Thus, it remains to show that lim|z|→∞,z∈γ0 dG(z, Tz) =∞.
Assume that there exists an unbounded sequence {ζn}n≥1 ⊂ γ0 and a constant c0 with dG(ζn, T ζn) ≤ c0

for every n. Choosing a subsequence of {ζn}n≥1 if it is necessary, one can assume that there exists an
arc-length parametrization η0 of γ0 with η−1

0 (ζn) ↗ ∞. Let σn be a geodesic in G∗ joining ζn and Tζn.
Let σmn := ∪m−1

k=0 T
kσn and γn0 be the subcurve of γ0 joining ζn0 and ζn, where n0 is chosen as follows:

if (1) in Lemma 3.6 holds, take n0 with η−1
0 (ζn0) ≥ R; otherwise, take n0 = 1. Hence, by Lemma 4.2,

Qn,m := {γn0 , σmn , Tmγn0 , σmn0
} is an (α0, β0)-quasigeodesic quadrilateral for every n,m, where α0 and β0 do

not depend on n and m.
Since G is hyperbolic, by Lemma 2.1, Qn,m is (2δ(G) + 2H)-thin, with H = H(δ(G), α0, β0) for any n,m.

Let M be a constant with M > 2δ(G) + 2H.
Taking n ∈ N large enough, L(γn0 ) > 2M + 4c0, and taking m = m(n) large enough, dG (γn0 , T

mγn0 ) > M .
Choose a point p ∈ γn0 so that,

(1) dG(p, ζn0) = η−1
0 (p)− η−1

0 (ζn0) > M + 2c0,
(2) dG(p, ζn) = η−1

0 (ζn)− η−1
0 (p) > M + 2c0.

We also have dG(p, Tmγn0 ) ≥ dG(γn0 , T
mγn0 ) > M .

Let us proceed to show that dG(p, σmn0
) > M . Let V m be the set of points V m :=

{
ζn0 , T ζn0 , T

2ζn0 , . . . , T
mζn0

}
.

By the triangle inequality, it is enough to show that dG(p, V m) > M + c0.
Case I. Assume that (1) in Lemma 3.6 holds. Since R ≤ η−1

0 (ζn0) = η−1
k (T kζn0) < η−1

0 (p) for 0 ≤ k ≤ m,
Lemma 3.6 (1) gives,

dG(p, T kζn0) ≥ η−1
0 (p)− η−1

0 (ζn0)− c0 > M + c0 ,

thus dG(p, V m) > M + c0.
Case II. Suppose that (2) in Lemma 3.6 holds. Then,

dG(p, T kζn0) ≥ η−1
0 (p)− η−1

k (T kζn0) = η−1
0 (p)− η−1

0 (ζn0) > M + 2c0 ,

thus dG(p, V m) > M + 2c0 > M + c0.
Case III. If (3) in Lemma 3.6 holds, the argument in case II gives the result, taking now m ≤ k ≤ 0.
A similar argument shows also that dG(p, σmn ) > M . Hence, dG(p, Tmγn0 ∪ σmn0

∪ σmn ) > M . Since
M > 2δ(G) + 2H, the quadrilateral Qn,m is not (2δ(G) + 2H)-thin, which is a contradiction. Therefore, G
is not hyperbolic.

Let us prove the converse implication to conclude that G is hyperbolic. Since lim|z|→∞,z∈γ0 dG(z, Tz) =
∞, then dG(γ0, Tγ0) =: d1 > 0. By Lemma 4.1, without loss of generality one can assume that there
exists a vertex z0 ∈ V (G) ∩ γ0 such that [z0, T z0] ∈ E(G), with L([z0, T z0]) = dG(γ0, Tγ0) = d1, and so
that σ0 := ∪n∈Z[Tnz0, T

n+1z0] is a geodesic in G. Define δ∗ := δ(G∗) and consider a geodesic triangle
T = {x1, x2, x3} with xi ∈ T jiG∗ and j1 ≤ j2 ≤ j3. By Lemma C, one can assume that the geodesics of T
are straight.

Suppose first that max{j2− j1, j3− j2} ≤ 2. Then, T ⊂ ∪j2+2
j=j2−2T

jG∗ is δ0-thin, with δ0 = (120)4δ∗ since
T jG∗ is δ∗-hyperbolic (apply at most four times Lemma B). Otherwise, T ∩

(
T j2−1γ0 ∪ T j2+2γ0

)
6= ∅. If

T ∩
(
T j2−1γ0

)
6= ∅, choose y1 ∈ [x1x2] ∩ T j2−1γ0 and y2 ∈ [x1x3] ∩ T j2−1γ0. By Lemma 3.1,

(4.5) dG(y1, y2) ≤ 6N + 5d1 .
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Analogously, if T ∩
(
T j2+2γ0

)
6= ∅, let z1 ∈ [x1x3]∩T j2+2γ0 and z2 ∈ [x2x3]∩T j2+2γ0. Again, by Lemma

3.1,

(4.6) dG(z1, z2) ≤ 6N + 5d1 .

Let p ∈ T . If p ∈ T jG∗ with j ∈ [j1 + 2, j2 − 2] ∪ [j2 + 2, j3 − 2], apply Lemma 3.1 to find q ∈ T jG∗ on
another side of T with dG(p, q) ≤ 6N + 5d1.

If p ∈ T jG∗ with j ∈ [j2 − 1, j2 + 1], let P ⊂ ∪j2+1
j=j2−1T

jG∗ be the geodesic polygon formed by T ∩
∪j2+1
j=j2−1T

jG∗ and [y1y2] ⊂ T j2−1γ0 and [z1z2] ⊂ T j2+2γ0 whenever they exist. Thus, P is either a pentagon
or a quadrilateral contained in ∪j2+2

j=j2−2T
jG∗ and therefore it is 3δ0−thin. Therefore, there exists a point

q′ ∈ P on another side of P so that dG(p, q′) ≤ 3δ0. If q′ /∈ T , then q′ ∈ [y1y2] ∪ [z1z2] and equations (4.5)
and (4.6) imply that there is q ∈ P ∩ T on another side of T with dG(p, q) ≤ 3δ0 + 6N + 5d1.

If p ∈ T jG∗ with j ∈ {j1, j1 + 1, j3 − 1, j3}, a similar argument with a triangle (in T j1G∗ ∪ T j1+1G∗ or
T j3−1G∗ ∪ T j3G∗) instead of P gives dG(p, q) ≤ δ0 + 6N + 5d1.

Hence, δ(T ) ≤ 3δ0 + 6N + 5d1 and Lemma C gives δ(G) ≤ 2M + 3δ0 + 6N + 5d1 . �

5. Proof of the second part of Theorem 1.1

.
To prove the second part of Theorem 1.1, some auxiliary metric spaces will be defined, and some results

relating these new sets with the original one will be given.
Let G be a periodic graph. Sometimes we will require the arc-length parametrization η0 of γ0 to also

satisfy:

(5.7) 0 = lim inf
t→∞

dG(η0(t), Tη0(t)) ≤ lim sup
t→∞

dG(η0(t), Tη0(t)) <∞.

Fix t0 ∈ R and η0. Define G1 as the geodesic metric space given by G ∪
(
∪n∈Z,t≥t0 Un,t

)
, where Un,t is a

segment joining Tnη0(t) with Tn+1η0(t) of length dG(η0(t), Tη0(t)). Set G2 to be the geodesic metric space
given by

(
∪n∈Z T

nη0([t0,∞))
)
∪
(
∪n∈Z,t≥t0 Un,t

)
. The isometry T can be extended to G1 in an obvious

way; also denote this extension by T . Define a period graph of G1 as G∗1 := G∗ ∪
(
∪t≥t0 U0,t

)
. Below, the

constant t0 will be chosen as the constant in Lemma 5.12.
It is clear that G,G2 are contained in G1, G ∪ G2 = G1, and G is an isometric subspace of G1; thus

δ(G) ≤ δ(G1).
With these definitions in mind, let us state some results on hyperbolicity.

Lemma 5.1. If a periodic graph G is hyperbolic and satisfies (5.7) and lim inft→−∞ dG(η0(t), Tη0(t)) > 0,
then G2 is hyperbolic.

Proof. Given any fixed t0 ∈ R, the hypotheses imply that there exist constantsM,m such that dG(η0(t), Tη0(t)) ≤
M for every t ∈ [t0,∞) and dG(η0(t), Tη0(t)) ≥ m for every t ∈ (−∞, t0]; then every segment Un,t has length
at most M and DG ≤ dG2 ≤ (M/m)DG on ∪n∈ZT

nη0([t0,∞)). Consider the map f : G2 → G defined by
f(x) = Tnη0(t) for every x ∈ Un,t \ Tn+1η0(t). By Corollary 3.5, the restriction of f to ∪n∈ZT

nη0([t0,∞))
(the identity map) is a (3M/m, 0)-quasi-isometric embedding. Since L(Un,t) ≤M for every n ∈ Z, t ≥ t0, f
is a quasi-isometric embedding and invariance of hyperbolicity gives the result. �

Lemma 5.2. Consider a periodic graph G satisfying (5.7). Then G∗ is hyperbolic if and only if G∗1 is
hyperbolic.

Proof. By (5.7), there exists a constant M such that dG(η0(t), Tη0(t)) ≤M for every t ∈ [t0,∞); then every
segment Un,t has length at most M . The inclusion map i : G∗ → G∗1 is a (M/2)-full (1, 0)-quasi-isometry,
and thus, the invariance of hyperbolicity gives the result. �

Finally, the last auxiliary space will be defined and its hyperbolicity related to that of G will be stated.
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Given t0 ∈ R and η0, define G3 as the geodesic metric space given by
(
∪n∈Z T

nη0([t0,∞))
)
∪
(
∪n∈Z,t≥t0

Vn,t
)
, where Vn,t is a segment joining Tnη0(t) with Tn+1η0(t) of length Φ(t), where Φ is the greatest non-

increasing minorant of dG
(
η0(t), Tη0(t)

)
on [t0,∞), i.e., Φ(t) = min

{
dG
(
η0(s), Tη0(s)

)
: s ∈ [t0, t]

}
.

Lemma 5.3. Let G be a periodic graph satisfying (5.7) and sup
{
t2− t1 : Φ(t1) = Φ(t2), t2 ≥ t1 ≥ t0

}
<∞.

Then G2 and G3 are quasi-isometric.

Proof. Consider the map f : G3 → G2 defined as the identity on ∪n∈ZT
nη0([t0,∞)) and as a dilation on

each Vn,t with f(Vn,t) = Un,t for every n ∈ Z, t ≥ t0.
Clearly, f is 0-full and dG2(f(x), f(y)) ≥ dG3(x, y) for every x, y ∈ G3. By (5.7), there exists a constant

M such that L(Un,t) ≤ M for every n ∈ Z, t ≥ t0. Also L(Vn,t) ≤ L(Un,t) ≤ M for every n ∈ Z, t ≥ t0.
Define N := sup

{
t2 − t1 : Φ(t1) = Φ(t2), t2 ≥ t1 ≥ t0

}
<∞.

Given x0 ∈ Tmη0([t0,∞)) and y0 ∈ Tnη0([t0,∞)) with m ≤ n, let γ be a geodesic in G3 joining x0 and y0

such that γ = [x0ηm(t)]∪Vm,t ∪ · · · ∪Vn−1,t ∪ [ηn(t)y0] for some t ≥ t0. Let t′ ≥ t be defined as t′ := sup
{
s :

Φ(s) = Φ(t), s ≥ t
}
≤ t+N ; thus dG3

(
η0(t′), Tη0(t′)

)
= Φ(t′) = Φ(t) and L(Vk,t) = L(Uk,t′) for every k ∈ Z.

Consider the curve γ1 in G2 joining x0 and y0 given by γ1 := [x0ηm(t′)] ∪ Um,t′ ∪ · · · ∪ Un−1,t′ ∪ [ηn(t′)y0];
then dG2(f(x0), f(y0)) ≤ L(γ1) ≤ L(γ) + 2N = dG3(x0, y0) + 2N .

Finally, since L(Vn,t) ≤ L(Un,t) ≤ M for every n ∈ Z, t ≥ t0, given x, y ∈ G3, then dG2(f(x), f(y)) ≤
dG3(x, y) + 2N + 2M . �

Lemmas 5.1 and 5.3 and the invariance of hyperbolicity, imply the following result.

Lemma 5.4. Let G be a periodic graph satisfying (5.7), lim inft→−∞ dG(η0(t), Tη0(t)) > 0 and sup
{
t2− t1 :

Φ(t1) = Φ(t2), t2 ≥ t1 ≥ t0
}
<∞. If G is hyperbolic, then G3 is hyperbolic.

Recall the definition of quasi-exponential decay given below Theorem 1.1.

Lemma 5.5. Let G be any periodic graph. If G has quasi-exponential decay, then, for any fixed t0, sup{t2−
t1 : Φ(t1) = Φ(t2), t2 ≥ t1 ≥ t0} <∞ and (5.7) holds.

Proof. Fix t0 and let K := sups2≥s1≥t0(s2 − s1)Φ(s2)/Φ(s1) < ∞. If t2 ≥ t1 ≥ t0 and Φ(t1) = Φ(t2), then
t2 − t1 = (t2 − t1)Φ(t2)/Φ(t1) ≤ K. Recall that lim inft→∞ F (t) = 0 and that Φ(t) ≤ F (t). Given ε > 0,
take tε = inf{t ∈ R : Φ(s) ≤ ε for all s ≥ t}. Clearly, F (tε) = Φ(tε) = ε. Let t > tε. If F (t) = Φ(t), then
F (t) ≤ ε < K + ε. Otherwise F (t) > Φ(t) and there exist t1, t2 such that tε ≤ t1 < t < t2 and F (t1) =
Φ(t1) = Φ(t) = Φ(t2) = F (t2) ≤ ε. Then, F (t) > F (t1) and, since F is Lipschitz, F (t) − F (t1) ≤ 2(t − t1),
F (t)− F (t2) ≤ 2(t2 − t), and thus F (t) ≤ t2 − t1 +F (t1) ≤ t2 − t1 + ε. Using that t2 − t1 ≤ K, one deduces
F (t) ≤ K + ε. Consequently, lim supt→∞ F (t) ≤ K <∞ and (5.7) holds. �

Given a periodic graph G, a geodesic in G3 is a fundamental geodesic if it is equal to ∪n2
n=n1

Vn,t for some
n1, n2 ∈ Z, t ≥ t0. Define L(G3) := sup

{
L(γ) : γ is a fundamental geodesic in G3

}
.

Lemma 5.6. Let G be a periodic graph.
(1) If L(G3) =∞, then G3 is not hyperbolic.
(2) L(G3) < ∞ if and only if sups2≥s1≥t0(s2 − s1)Φ(s2)/Φ(s1) < ∞. In fact, if sups2≥s1≥t0(s2 −

s1)Φ(s2)/Φ(s1) =: K <∞, then L(G3) ≤ 8K.

Proof. (1) Assume first that L(G3) =∞. Note that if ∪n2
n=n1

Vn,t is a fundamental geodesic, then ∪n2+k
n=n1+kVn,t

is also a fundamental geodesic for every k ∈ Z; hence,

L(G3) = sup{L(γ) : γ = ∪n2
n=0Vn,t is a fundamental geodesic in G3} .

Consider any fixed fundamental geodesic σ = ∪n2
n=0Vn,t for some n2 ∈ N, t ≥ t0, with L(σ) = `. Since

L(G3) = ∞, one can find t′ ≥ t + ` such that σ′ = ∪n2
n=0Vn,t′ is also a fundamental geodesic. Define

σ1 := η0([t, t′]), σ2 := ηn2+1([t, t′]) and the geodesic quadrilateral Q := {σ, σ1, σ2, σ
′}.

If p = η0(t + `/4), then dG3(p, σ) = `/4, dG3(p, σ′) ≥ 3`/4; choose s ≥ 0 so that dG3(p, σ2) = s +
(1 + n2)Φ(s + t + `/4). If s > `/4, then dG3(p, σ2) ≥ s > `/4. If 0 ≤ s ≤ `/4, then dG3(p, σ2) ≥



12 A. CANTÓN, A. GRANADOS, D. PESTANA, AND JOSÉ M. RODRÍGUEZ

2(s + `/4) − 3`/4 + (1 + n2)Φ(s + t + `/4). Since σ is a geodesic, ` ≤ 2(s + `/4) + (1 + n2)Φ(s + t + `/4),
and therefore, dG3(p, σ2) ≥ ` − 3`/4 = `/4. Hence, 2δ(G3) ≥ δ(Q) ≥ `/4 and we conclude that G3 is not
hyperbolic, since L(G3) =∞.

(2) Assume now that l := L(G3) < ∞. Let s1 ≥ t0 and n ∈ N with nΦ(s1) > l. Therefore, ∪n−1
k=0Vk,s1

is not a geodesic joining η0(s1) and ηn(s1); then there exits s2,n > s1 with nΦ(s1) > 2(s2,n − s1) +
nΦ(s2,n) = dG3(η0(s1), ηn(s1)). It is possible to choose the sequence {s2,n} with s2,n+1 ≥ s2,n. Hence,
2(s2,n − s1) < nΦ(s1), ∪n−1

k=0Vk,s2,n is a fundamental geodesic and nΦ(s2,n) ≤ l. We conclude that 2(s2,n −
s1)Φ(s2,n)/Φ(s1) < nΦ(s1)Φ(s2,n)/Φ(s1) ≤ l.

Furthermore, dG3(η0(s2,n), ηn+1(s2,n)) ≤ (n+1)Φ(s2,n) ≤ 2nΦ(s2,n) ≤ 2l. Since any sub-arc of a geodesic
is again a geodesic, it is clear that 2(s2,n+1−s2,n) < 2(s2,n+1−s2,n)+(n+1)Φ(s2,n+1) ≤ (n+1)Φ(s2,n) ≤ 2l
and then s2,n+1 < s2,n + l. If s2 ∈ [s2,n, s2,n+1], then

(s2 − s1)
Φ(s2)
Φ(s1)

< (s2,n + l − s1)
Φ(s2,n)
Φ(s1)

≤ l

2
+ l

Φ(s2,n)
Φ(s1)

≤ 3l
2
.

Let n0 be the least integer such that n0Φ(s1) > l. Thus, n0Φ(s1) = (n0 − 1)Φ(s1) + Φ(s1) ≤ l + Φ(t0)
and 2(s2,n0 − s1) < 2(s2,n0 − s1) + n0Φ(s2,n0) ≤ n0Φ(s1) ≤ l + Φ(t0). If s2 ∈ [s1, s2,n0 ], then

(s2 − s1)
Φ(s2)
Φ(s1)

≤ s2,n0 − s1 ≤
1
2
(
l + Φ(t0)

)
,

and we conclude, since L(G3) <∞ implies limn→∞ s2,n =∞, that

sup
s2≥s1≥t0

(s2 − s1)
Φ(s2)
Φ(s1)

≤ max
{3l

2
,

1
2
(
l + Φ(t0)

)}
.

For the reverse implication, let K := sups2≥s1≥t0(s2 − s1)Φ(s2)/Φ(s1) < ∞. Then, any fundamental
geodesic ∪k1≤n<k2Vn,s satisfies

(k2 − k1)Φ(s) ≤ 2K + (k2 − k1)Φ(s+ 2K) + 2K ≤ 4K + (k2 − k1)K
Φ(s)
2K

,

L
(
∪k1≤n<k2 Vn,s

)
= (k2 − k1)Φ(s) ≤ 8K.

Notice that this means that for a fixed s, a fundamental geodesic cannot cross arbitrarily many Tnγ0(s). �

Lemma 5.7. Let G be any periodic graph with quasi-exponential decay. Then G3 is hyperbolic.

Proof. It will be enough to show this result for triangles whose sides are certain geodesics which will be
introduced below, the canonical geodesics, since any other geodesic of G3 will be close to one of these.

Consider a parametrization η0 of γ0 satisfying

(5.8) sup
s2≥s1≥t0

(s2 − s1)Φ(s2)/Φ(s1) =: K <∞.

Let x1, x2 ∈ ∪n∈ZT
nη0([t0,∞)). Without loss of generality, x1 = Tn1η0(t1) and x2 = Tn2η0(t2) with

n1 ≤ n2. Define g(t) := t− t1 + (n2 − n1)Φ(t) + t− t2, and let t′ be such that

g(t′) = inf
{
g(t) : t ≥ max{t1, t2}

}
.

Note that this infimum is, in fact, a minimum, and that the curve

γx1x2 := [x1T
n1η0(t′)] ∪ (∪n1≤n<n2Vn,t′) ∪ [Tn2η0(t′)x2]

is a geodesic in G3 with dG3(x1, x2) = L(γx1x2) = g(t′), referred to as a canonical geodesic joining x1 and
x2. If n1 = n2, then γx1x2 is a segment on Tn1γ0.

Any other canonical geodesic σ in G3 joining x1 and x2 will be at a fixed distance from a canonical
geodesic: indeed, if there exists another canonical geodesic with g(t′′) = g(t′) (one can assume that t′′ ≥ t′),
then 8K ≥ (n2 − n1)Φ(t′) = 2(t′′ − t′) + (n2 − n1)Φ(t′′) by Lemma 5.6, and hence t′′ − t′ ≤ 4K.

More generally, if σ is any geodesic joining x1 and x2 which contains just one fundamental geodesic,
∪n1≤n<n2Vn,t, for which t0 ≤ t < max{t1, t2} := τ , then Φ(τ) = Φ(t) and the curve σ′ := [x1T

n1η0(τ)] ∪
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(∪n1≤n<n2Vn,τ ) ∪ [Tn2η0(τ)x2] is a canonical geodesic. By (5.8), τ − t ≤ K; since t′ − τ ≤ 4K, t′ − t ≤ 5K,
and thus H(σ, γx1x2) ≤ 5K + Φ(t0)/2.

Finally, if σ contains at least two fundamental geodesics, applying the same argument one also gets
H(σ, γx1x2) ≤ 5K + Φ(t0)/2.

Consider a geodesic triangle T = {x1, x2, x3} in G3 with its vertices lying on ∪n∈ZT
nγ0, concretely,

x1 = Tn1η0(t1), x2 = Tn2η0(t2) and x3 = Tn3η0(t3) with n1 ≤ n2 ≤ n3. Let T0 be the geodesic triangle in
G3 given by T0 = {γx1x2 , γx2x3 , γx1x3}. If T0 is δ-thin, then T is (δ + 10K + Φ(t0))-thin.

There exist three fundamental geodesics g12 := ∪n1≤n<n2Vn,s1 ⊆ γx1x2 , g23 := ∪n2≤n<n3Vn,s2 ⊆ γx2x3

and g13 := ∪n1≤n<n3Vn,s3 ⊆ γx1x3 . Assume that s1 ≤ s2 ≤ s3 (the other cases are similar). Note that
L(∪n1≤n<n2Vn,s2) ≤ L(∪n1≤n<n2Vn,s1) = L(g12) ≤ 8K; thus L(∪n1≤n<n3Vn,s2) ≤ 16K and s3 − s2 ≤ 8K.
Clearly, from these estimates, if p lies on one side of T0, then the distance from p to the union of the other
two sides is less than 24K. Any other combination of vertices x1, x2, x3 gives the same estimate.

Hence, δ(T0) ≤ 24K and δ(T ) ≤ 34K + Φ(t0). Consequently, if H is any geodesic hexagon in G3 with
every vertex in ∪n∈ZT

nη0([t0,∞)), then δ(H) ≤ 4(34K + Φ(t0)) = 136K + 4Φ(t0).
Consider now any fixed geodesic triangle T = {x1, x2, x3} in G3 that is a simple closed curve. Assume

that x1, x2, x3 /∈ ∪n∈ZT
nη0([t0,∞)) (the other cases are similar). For each xi there exist ni ∈ Z and ti ≥ 0

such that xi ∈ Vni,ti ; let x′i and x′′i be the endpoints of Vni,ti ; since T is a simple closed curve, Vni,ti ⊂ T .
Consider the geodesic hexagon H = {x′1, x′′1 , x′2, x′′2 , x′3, x′′3}. Since the vertices of H lie on ∪n∈ZT

nη0([t0,∞)),
δ(H) ≤ 136K + 4Φ(t0).

Given p ∈ T , denote by δ(p) the distance from p to the union of the two other sides of T . Assume p lies
on a side of H that is contained in a side of T . Then, δ(p) ≤ δ(H) + L(Vni,ti) for some i = 1, 2, 3. Since
L(Vni,ti) ≤ Φ(ti) ≤ Φ(t0), then δ(p) ≤ δ(H) + Φ(t0) ≤ 136K + 5Φ(t0).

If p lies on Vni,ti , (i = 1, 2, 3), then δ(p) ≤ L(Vni,ti) ≤ Φ(t0). Hence, δ(p) ≤ 136K + 5Φ(t0) and G3 is
(136K + 5Φ(t0))-hyperbolic by Lemma A. �

Let G be a periodic graph with quasi-exponential decay. Fix a ≤ b in {−∞}∪Z∪{∞}. Define Ga,b3 ⊆ G3

as the geodesic metric space given by
(
∪a≤n≤b+1 T

nη0([t0,∞))
)
∪
(
∪a≤n≤b,t≥t0 Vn,t

)
. Lemmas B and 5.7

have the following consequence.

Corollary 5.8. Let G be any periodic graph with quasi-exponential decay. Then there exists a constant δ
such that Ga,b3 is δ-hyperbolic for every a ≤ b in {−∞} ∪ Z ∪ {∞}.

Next, some results on curves which are shown to be quasi-geodesic are given. The aim will be to construct
a quasi-geodesic quadrilateral with large δ. Recall the definition of DG(z, w) given before Corollary 3.5.

Let G be a periodic graph. In the next lemma, for t ∈ R and fixed s1 < s2, define φt as a geodesic in
G joining η0(s2 + t) with Tη0(s2 + t), ψt as a geodesic joining η0(s1 − t) with Tη0(s1 − t), and the curves
ξn,t := η0([s2, s2 + t]) ∪ φt ∪ Tφt ∪ · · · ∪ Tn−1φt ∪ Tnη0([s2, s2 + t]), ζn,t := η0([s1, s1 − t]) ∪ ψt ∪ Tψt ∪ · · · ∪
Tn−1ψt ∪ Tnη0([s1, s1 − t]) parameterized by arc-length.

Lemma 5.9. Let G be a periodic graph with infz∈γ0 dG(z, Tz) = 0. Let s1 < s2 and define the constants
c1 := dG(η0(s1), Tη0(s1)), c2 := dG(η0(s2), Tη0(s2)) and c∗ := max{c1, c2}. Let n ∈ N and c ∈ R+ be so that
c∗n ≤ 2(s2−s1) and dG(η0(s), Tη0(s)) ≥ c for all s ∈ [s1, s2]. If r, u ≥ 0 satisfy L(ξn,r) = mint≥0 L(ξn,t) and
L(ζn,u) = mint≥0 L(ζn,t), then the quadrilateral Q := {η0([s1, s2]), ξn,r, Tnη0([s1, s2]), ζn,u} is a (3c∗/c, 2c∗)-
quasigeodesic quadrilateral and δ(Q) ≥ c(n − 2)/12. In particular, if n is the integer part of 2(s2 − s1)/c∗,
then δ(Q) ≥ c(s2 − s1)/(6c∗)− c/4.

Proof. To show that Q is a quasi-geodesic quadrilateral, it suffices to show that ξn,r and ζn,t are quasi-
geodesics. In fact, by symmetry, it is enough to show it just for, e.g., ξn,r.

Let ξn,r(s) and ξn,r(t) be any two points on ξn,r. Without loss of generality, t ≥ s. Since ξn,r is
parameterized by arc-length, dG(ξn,r(s), ξn,r(t)) ≤ LG(ξn,r|[s,t]) = t− s.

For the lower bound, suppose ξn,r(s) ∈ T j1G∗, ξn,r(t) ∈ T j2−1G∗ with 0 ≤ j1 < j2 ≤ n. Assume that
ξn,r(s), ξn,r(t) /∈ η0([s2, s2 + r]) ∪ Tnη0([s2, s2 + r]) (the other cases are similar). Let t1 ≤ s ≤ t ≤ t2 be so
that ξn,r(t1) ∈ T j1γ0 and ξn,r(t2) ∈ T j2γ0.
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Recall the definition of DG. By Corollary 3.5, it will be enough to bound DG below.
Note that DG(ξn,r(t1), ξn,r(t2)) =

∑j2−1
j=j1

(
dG(xj , T−1xj+1) + dG(T−1xj+1, xj+1)

)
+ dG(xj2 , ξn,r(t2)) for

appropriate {xj}. Choose i so that j1 ≤ i < j2 and dG(T−1xi+1, xi+1) = minj1≤j<j2 dG(T−1xj+1, xj+1).
Consider ηk := T kη0 as a parametrization of T kγ0 for any k ∈ Z. Then

(5.9)

dG(ξn,r(t1), T j1−i−1xi+1) + (j2 − j1) dG(T−1xi+1, xi+1) + dG(T j2−i−1xi+1, ξn,r(t2))

≤
j2−1∑
j=j1

(
dG(xj , T−1xj+1) + dG(T−1xj+1, xj+1)

)
+ dG(xj2 , ξn,r(t2))

≤ (j2 − j1) dG
(
η0(s2 + r), Tη0(s2 + r)

)
.

If the second inequality in (5.9) is an equality, thenDG(ξn,r(t1), ξn,r(t2)) = t2−t1 and dG(ξn,r(t1), ξn,r(t2)) ≥
(t2 − t1)/3. Otherwise, the second inequality in (5.9) is strict.

Define a := η−1
i+1(xi+1). Then (5.9) gives that L(ξn,a−s2) < L(ξn,r). Therefore a < s2 by the definition of

ξn,r. Also, a > s1, since otherwise L(ξn,r) > L(ξn,a−s2) > 2(s2 − s1) ≥ c2n = L(ξn,0) ≥ L(ξn,r).
Hence s1 < a < s2 and then dG(T−1xi+1, xi+1) ≥ c = dG

(
η0(s2), Tη0(s2)

)
c/c2 and (5.9) gives

DG(ξn,r(t1), ξn,r(t2)) ≥ dG(ξn,r(t1), T j1−i−1xi+1) + (j2 − j1) dG(T−1xi+1, xi+1) + dG(T j2−i−1xi+1, ξn,r(t2))

≥ c

c2
(j2 − j1) dG

(
η0(s2), Tη0(s2)

)
≥ c

c2
(j2 − j1) dG

(
η0(s2 + r), Tη0(s2 + r)

)
=

c

c2
(t2 − t1) .

By Corollary 3.5, (t2 − t1)c/(3c2) ≤ dG(ξn,r(t1), ξn,r(t2)), and, by the triangle inequality,

dG(ξn,r(s), ξn,r(t)) ≥ dG(ξn,r(t1), ξn,r(t2))− 2c2 ≥
c

3c2
(t2 − t1)− 2c2 ≥

c

3c2
(t− s)− 2c2 .

Any other case gives the same inequality. Thus, ξn,r is a (3c2/c, 2c2)-quasigeodesic.
Finally, let’s estimate δ(Q).
Let p be the midpoint in η0([s1, s2]). By Corollary 3.5,

dG
(
p, ξn,r ∩ (∪kT kγ0)

)
≥ dG(p, η0(s2)) =

s2 − s1

2
≥ c∗n

4
.

Therefore,

dG(p, ξn,r) ≥ dG
(
p, ξn,r ∩ (∪kT kγ0)

)
− (1/2)dG

(
η0(s2 + r), Tη0(s2 + r)

)
≥ dG

(
p, ξn,r ∩ (∪kT kγ0)

)
− (1/2)dG

(
η0(s2), Tη0(s2)

)
≥ c∗n

4
− c∗

2
=
c∗(n− 2)

4
.

Similarly, dG(p, ζn,u) ≥ c∗(n− 2)/4.
As above, DG(p, Tnη0([s1, s2])) ≥ min{cn, (s2 − s1)/2} ≥ min{cn, c∗n/4} ≥ cn/4 and then, by Corollary

3.5, dG(p, Tnη0([s1, s2])) ≥ cn/12 and, since c ≤ c∗, δ(Q) ≥ c(n− 2)/12. �

For Lemma 5.10 below, it will be useful to keep in mind the definition of fine triangles. Given a geodesic
triangle T = {x, y, z} in a geodesic metric space X, let TE be a Euclidean triangle with sides of the same
length than T . Since there is no possible confusion, denote the corresponding points in T and TE by the
same letters. The maximum inscribed circle in TE meets the side [xy] (respectively [yz], [zx]) in a point
z′ (respectively x′, y′) such that d(x, z′) = d(x, y′), d(y, x′) = d(y, z′) and d(z, x′) = d(z, y′). We call the
points x′, y′, z′, the internal points of {x, y, z}. There is a unique isometry f of the triangle {x, y, z} onto
a tripod (a star graph with one vertex w of degree 3, and three vertices x0, y0, z0 of degree one, such that
d(x0, w) = d(x, z′) = d(x, y′), d(y0, w) = d(y, x′) = d(y, z′) and d(z0, w) = d(z, x′) = d(z, y′)). The triangle
{x, y, z} is δ-fine if f(p) = f(q) implies that d(p, q) ≤ δ. The space X is δ-fine if every geodesic triangle in
X is δ-fine.
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There are two definitions of Gromov hyperbolicity (the second one is the definition of fine space) whose
equivalence will be useful to quantify (see, e.g, [17, Proposition 2.21, p.41]):

Theorem A. Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-fine.
(2) If X is δ-fine, then it is δ-hyperbolic.

Finally, for Lemma 5.10 below, some notation needs to be introduced. Let G be a periodic graph. Fix a
parametrization η0 of γ0 and t0 ∈ R. Consider points x ∈ TnG∗, y ∈ Tn+kG∗, with n ∈ N, k ≥ 4, so that
if γ is a straight geodesic in G from x to y, then there exists xj ∈ γ ∩ Tn+jγ0 with sj := η−1

n+j(xj) ≥ t0 for
2 ≤ j ≤ k − 1.

In G1, consider the curves gj := Un+j,sj
∪ [xj+1Txj ] joining xj and xj+1 for 2 ≤ j ≤ k− 2, and the curve

g := [xx1] ∪ [x1x2] ∪ (∪(2≤j≤k−2)gj) ∪ [xk−1xk] ∪ [xky] joining x and y in G1.

Lemma 5.10. With the above notation, if G satisfies (5.7) and G∗ is hyperbolic, then g with its arc-length
parametrization is an (α, β)-quasi-geodesic in G1 and HG1(g, γ) ≤ H, where α, β and H are constants
depending just on δ(G∗1) and M := supt≥t0 dG(η0(t), Tη0(t)). In fact, (α, β) = (3, 8δ(G∗1) + 6M).

Proof. Let γ : [0, l0] → G be an arc-length parametrization of γ and let g : [0, l] → G1 be an arc-length
parametrization of g; then dG1(g(t1), g(t2)) ≤ |t1 − t2| for every t1, t2 ∈ [0, l].

To obtain a lower bound, note that M < ∞ by (5.7); then every segment Un,t with t ≥ t0 has length at
most M . Fix t1, t2 ∈ [0, l] with t1 < t2. Assume first that g(t1), g(t2) ∈ Tn+jG∗1 for some j with 2 ≤ j ≤ k−2.
Consider the geodesic triangle Tj = {[xjxj+1], Un+j,sj

, [xj+1Txj ]} in Tn+jG∗1. Since G∗ is hyperbolic, G∗1 is
hyperbolic by Lemma 5.2 and the triangle Tj is 4δ(G∗1)-fine by Theorem A.

Let [a0, b0] := γ−1([xjxj+1]), [a, b] := g−1(gj) and c := g−1(Txj). By the triangle inequality, b0−a0 ≤ b−a,
thus one can choose c1, c2 ∈ [a, b] such that c − c1 = c2 − c > 0 satisfying (c1 − a) + (b − c2) = b0 − a0.
Finally, pick c0 ∈ [a0, b0] with c1 − a = c0 − a0 and b− c2 = b0 − c0.

Define u : [a, b]→ [a0, b0] as the piecewise linear continuous function

u(t) :=


t− a+ a0, if t ∈ [a, c1],
c0, if t ∈ (c1, c2),
t− b+ b0, if t ∈ [c2, b].

Since Tj is 4δ(G∗1)-fine, dG1(g(t), γ(u(t))) ≤ 4δ(G∗1) + c− c1 ≤ 4δ(G∗1) +M .
Therefore, by the triangle inequality,

dG1(g(t1), g(t2)) ≥ dG1(γ(u(t1)), γ(u(t2)))− 8δ(G∗1)− 2M = u(t2)− u(t1)− 8δ(G∗1)− 2M

≥ t2 − t1 − (c2 − c1)− 8δ(G∗1)− 2M ≥ t2 − t1 − 8δ(G∗1)− 4M.

Since [xx1]∪ [x1x2] and [xk−1xk]∪ [xky] are geodesics in G1, the above inequality also holds if g(t1), g(t2) ∈
Tn+jG∗1 for some j ∈ {0, 1, k − 1, k}.

Assume now that g(t1) ∈ Tn+j1G∗1 and g(t2) ∈ Tn+j2G∗1 with j1 < j2. Let r1, r2 ∈ [t1, t2] such that
g(r1) = xj1+1 and g(r2) = xj2 . The previous argument with the function u provides t∗1, t

∗
2 satisfying

γ(t∗1) ∈ Tn+j1G∗1, γ(t∗2) ∈ Tn+j2G∗1, dG1(g(t1), γ(t∗1)) ≤ 4δ(G∗1) + M , dG1(g(t2), γ(t∗2)) ≤ 4δ(G∗1) + M ,
dG1(γ(t∗1), xj1+1) ≥ r1 − t1 − 2M and dG1(γ(t∗2), xj2) ≥ t2 − r2 − 2M . Now, using Corollary 3.5,

dG1(g(t1), g(t2)) ≥ dG1(γ(t∗1), γ(t∗2))− 8δ(G∗1)− 2M

= dG1(γ(t∗1), xj1+1) + dG1(xj1+1, xj2) + dG1(γ(t∗2), xj2)− 8δ(G∗1)− 2M

≥ r1 − t1 − 2M +
1
3

(r2 − r1) + t2 − r2 − 2M − 8δ(G∗1)− 2M

≥ 1
3

(t2 − t1)− 8δ(G∗1)− 6M,
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and we conclude that g is a (3, 8δ(G∗1) + 6M)-quasi-geodesic in G1. Since G∗1 is hyperbolic, the geodesic
stability gives that HG1(gj , [xjxj+1]) = HTn+jG∗1

(gj , [xjxj+1]) ≤ H for 2 ≤ j ≤ k− 2, where H is a constant
depending just on δ(G∗1) and M . Hence, HG1(g, γ) ≤ H. �

Remark 5.11. The argument in the proof of Lemma 5.10 proves, in fact, a more general result. On the
one hand, the conclusion holds (with the same constants) if one replaces gj by [xjxj+1] for any subset of
{2 ≤ j ≤ k − 2}. On the other hand, the conclusion also holds (with the same constants) for non-straight
geodesics: it suffices to consider each connected subcurve of γ ∩ Tn+jG∗ joining Tn+jγ0 with Tn+j+1γ0

instead of [xjxj+1] (if a connected subcurve of γ ∩ Tn+jG∗ joins two points in Tn+jγ0 one can replace it, in
order to obtain g, by the geodesic contained in Tn+jγ0 with the same endpoints; in a similar way, if it joins
two points in Tn+j+1γ0 one can replace it by the geodesic contained in Tn+j+1γ0 with the same endpoints).

Lemma 5.12. Consider a periodic graph G and a parametrization η0 of γ0 satisfying both (5.7) and
limt→−∞ dG(η0(t), Tη0(t)) = ∞. If G∗ is hyperbolic, then there exists a constant t0 with the following
properties:

(1) If x ∈ Tnγ0, y ∈ Tn+1γ0 and [xy] is a geodesic in TnG∗ joining them, then there exist p, sx, sy so that
p ∈ [xy] and sx, sy ≥ t0 + 6δ(G∗) with dG(p, Tnη0(sx)) ≤ 2δ(G∗) and dG(p, Tn+1η0(sy)) ≤ 2δ(G∗).

(2) Let γ = [xy] be a geodesic in G, with x ∈ Tn(G∗), y ∈ Tn+k(G∗) and k ≥ 3. Let xj ∈ Tn+jγ0 ∩ γ,
2 ≤ j ≤ k − 1. Then xj = Tn+jη0(sj) with sj ≥ t0 for 2 ≤ j ≤ k − 1.

Proof. (1) Given x ∈ Tnγ0 and y ∈ Tn+1γ0, since lim inft→+∞ dG(η0(t), Tη0(t)) = 0, there exists t large
enough such that the geodesic [Tnη0(t)Tn+1η0(t)] in TnG∗ satisfies dG([xy], [Tnη0(t)Tn+1η0(t)]) > 2δ(G∗).
Consider the geodesic quadrilateral Q := {x, y, Tn+1η0(t), Tnη0(t)} in TnG∗, that is 2δ(G∗)-thin. Then for
every q ∈ [xy] one has dG(q, [xTnη0(t)]∪[yTn+1η0(t)]) ≤ 2δ(G∗). Hence, there exist a point p ∈ [xy] such that
dG(p, [xTnη0(t)]) ≤ 2δ(G∗) and dG(p, [yTn+1η0(t)]) ≤ 2δ(G∗). Choose sx, sy such that dG(p, Tnη0(sx)) ≤
2δ(G∗) and dG(p, Tn+1η0(sy)) ≤ 2δ(G∗). Then dG(Tnη0(sx), Tn+1η0(sy)) ≤ 4δ(G∗) and by Corollary 3.4,
dG(Tnη0(sx), Tn+1η0(sx)) ≤ 2dG(Tnη0(sx), Tn+1γ0) ≤ 2dG(Tnη0(sx), Tn+1η0(sy)) ≤ 8δ(G∗).

A symmetric argument gives dG(Tnη0(sy), Tn+1η0(sy)) ≤ 8δ(G∗). Since limt→−∞ dG(η0(t), Tη0(t)) =∞,
there exists a constant t0 such that dG(η0(t), Tη0(t)) > 8δ(G∗) for every t < t0 + 6δ(G∗); hence, sx, sy ≥
t0 + 6δ(G∗).

(2) Fix xj = Tn+jη0(sj) with 2 ≤ j ≤ k− 1. By (1), there exist p ∈ [xj−1xj ]∩Tn+j−1G∗, p′ ∈ [xjxj+1]∩
Tn+jG∗ and s, s′ ≥ t0 + 6δ(G∗) such that dG(p, Tn+jη0(s)) ≤ 2δ(G∗) and dG(p′, Tn+jη0(s′)) ≤ 2δ(G∗).

By symmetry, assume that s ≥ s′. Assume also that sj < s′, since otherwise sj ≥ s′ ≥ t0 + 6δ(G∗). Thus

dG(p, p′) ≤ dG
(
p, Tn+jη0(s)

)
+ dG

(
Tn+jη0(s), Tn+jη0(s′)

)
+ dG

(
Tn+jη0(s′), p′

)
≤ 4δ(G∗) + dG

(
Tn+jη0(s), Tn+jη0(s′)

)
,

dG
(
xj , T

n+jη0(s′)
)

+ dG
(
Tn+jη0(s′), Tn+jη0(s)

)
= dG

(
xj , T

n+jη0(s)
)
≤ dG

(
xj , p

)
+ dG

(
p, Tn+jη0(s)

)
≤ dG

(
xj , p

)
+ 2δ(G∗) ≤ dG

(
p′, p

)
+ 2δ(G∗) ≤ 6δ(G∗) + dG

(
Tn+jη0(s), Tn+jη0(s′)

)
,

and thus dG
(
xj , T

n+jη0(s′)
)
≤ 6δ(G∗). Since 6δ(G∗) ≥ dG

(
xj , T

n+jη0(s′)
)

= s′− sj ≥ t0 + 6δ(G∗)− sj , one
gets sj ≥ t0. �

Lemma 5.13. Let G be a periodic graph with quasi-exponential decay and G∗ hyperbolic. Then there exists
a constant N such that HG(g1, g2) ≤ N for every geodesics g1, g2 in G with the same endpoints and g1 ⊂ γ0.

Proof. Consider first the case g2 ⊂ ∪j≥0T
jG∗. Define n2 := max{j ∈ Z : g2 ∩ T jG∗ 6= ∅}. Let {g1

j , . . . , g
rj

j }
be the connected components of g2 ∩ T jG∗ and G := {gij | 1 ≤ i ≤ rj , 0 ≤ j ≤ n2}.

If n2 = 0, then HG(g1, g2) ≤ H(δ(G∗), 1, 0), where H is the function of the geodesic stability (see the
paragraph after Lemma A).

If n2 > 0, for each gin2
, define γin2

as follows: if gin2
joins Tn2η0(si) and Tn2η0(ti) with si ≤ ti, then γin2

:=
Tn2η0([si, ti]). Let g′2 be the geodesic in ∪0≤j≤n2−1T

jG∗ obtained from g2 by replacing each gin2
by γin2

;



GROMOV HYPERBOLICITY OF PERIODIC GRAPHS 17

then HG(g2, g
′
2) ≤ H(δ(G∗), 1, 0). In a similar way one can find a geodesic g′′2 contained in ∪0≤j≤n2−2T

jG∗

with HG(g2, g
′′
2 ) ≤ 2H(δ(G∗), 1, 0) (if n2 ≥ 2). Hence, if n2 ≤ 2, then HG(g1, g2) ≤ 3H(δ(G∗), 1, 0). Assume

now that n2 ≥ 3.
For each gij ∈ G with 1 ≤ j ≤ n2 − 2, define γij as follows: if gij joins T jη0(sij) and T j+1η0(tij) with

sij ≤ tij , then γij := T jη0([sij , t
i
j ]) ∪ Uj,tij ; if sij > tij , then γij := T jη0([tij , s

i
j ]) ∪ Uj,si

j
; if gij joins T jη0(sij) and

T jη0(tij) with sij ≤ tij , then γij := T jη0([sij , t
i
j ]); if gij joins T j+1η0(sij) and T j+1η0(tij) with sij ≤ tij , then

γij := T j+1η0([sij , t
i
j ]). Define I as the set of indices 1 ≤ i ≤ r0 such that gi0 joins Tη0(si0) and Tη0(ti0) with

si0 ≤ ti0; define γi0 := Tη0([si0, t
i
0]) for every i ∈ I. By Lemma 5.5, the relation (5.7) holds and then, by

Lemma 5.12, sij , t
i
j ≥ t0, where t0 is the constant in Lemma 5.12, and therefore γij ⊂ G1. By Remark 5.11,

HG1(gij , γ
i
j) ≤ H0, where H0 is a constant depending just on δ(G∗1) and on supt≥t0 dG(η0(t), Tη0(t)).

Define γ2 :=
(
g′′2 \

((
∪n2−2
j=1 ∪

jr
i=1g

i
j

)
∪
(
∪i∈I gi0

)))
∪
(
∪n2−2
j=1 ∪

jr
i=1γ

i
j

)
∪
(
∪i∈I γi0

)
. Therefore, HG1(g2, γ2) ≤

H1 := H0 + 2H(δ(G∗1), 1, 0).
By Remark 5.11, γ2 is an (α, β)-quasigeodesic in G1 (with its arc-length parametrization), where α, β are

the constants in Lemma 5.10. Let γ′2 := γ2 ∩
(
∪n2−2
j=1 T jG∗

)
⊂ G2. Note that γ′2 is connected and joins two

points in Tγ0. Since dG1 ≤ dG2 on G2, γ′2 is also an (α, β)-quasigeodesic in G2.
By Lemma 5.5, sup

{
t2 − t1 : Φ(t1) = Φ(t2), t2 ≥ t1 ≥ t0

}
< ∞ and (5.7) holds. Hence, by Lemma

5.3, there exists a quasi-isometry f−1 : G2 → G3 and there also exist constants α′, β′, which just depend
on G, such that f−1(γ′2) is an (α′, β′)-quasigeodesic in G3. Note that G3 is hyperbolic by Lemma 5.7;
therefore, if γ′3 ⊂ Tγ0 is the geodesic joining the endpoints of f−1(γ′2) in G3, then HG3(γ′3, f

−1(γ′2)) ≤
H3 := H(δ(G3), α′, β′). Since f is the identity map on ∪n∈ZT

nη0([t0,∞)), f(γ′3) ⊂ Tγ0 is a geodesic in
G2 joining the endpoints of γ′2; since f is a quasi-isometry, there exists a constant H4, which just depend
on G, such that HG2(f(γ′3), γ′2) ≤ H4. Since dG1 ≤ dG2 on G2, HG1(f(γ′3), γ′2) ≤ H4. Define γ3 :=
(γ2 \ γ′2) ∪ f(γ′3) ⊂ G; then HG1(γ3, γ2) = HG1(f(γ′3), γ′2) ≤ H4 and HG(g2, γ3) = HG1(g2, γ3) ≤ H1 + H4.
Since γ3 is a geodesic in G∗ with the same endpoints that g1, one gets HG(γ3, g1) ≤ H(δ(G∗), 1, 0) and
HG(g1, g2) ≤ H1 +H4 +H(δ(G∗), 1, 0).

Hence, if g2 ⊂ ∪j≥0T
jG∗ the lemma holds with N = H1+H4+H(δ(G∗), 1, 0). If g2 ⊂ ∪j<0T

jG∗, the same
result holds by symmetry. The general case follows by applying these two cases to the connected components
g2,1, . . . , g2,m of g2 ∩ ∪j≥0T

jG∗ and to the closure of the connected components of g2 \ ∪mj=1g2,j . �

Corollary 5.14. Let G be a periodic graph with quasi-exponential decay and G∗ hyperbolic. Then for each
geodesic γ in G there exists a straight geodesic γ′ with the same endpoints and HG(γ, γ′) ≤ N , where N is
the constant in Lemma 5.13.

Proof. Fix a geodesic γ : [a, b] → G with γ(a) ∈ Tn1G∗, γ(b) ∈ Tn2G∗ and n1 ≤ n2. Assume that
γ ∩ Tn1γ0 6= ∅ (otherwise, we consider Tn1+1γ0 instead of Tn1γ0) and that γ ∩ Tn2+1γ0 6= ∅ (otherwise,
we consider Tn2γ0 instead of Tn2+1γ0). Define inductively sj , tj (n1 ≤ j ≤ n2 + 1) as follows: sn1 :=
min{t ∈ [a, b] : γ(t) ∈ Tn1γ0}, tn1 := max{t ∈ [a, b] : γ(t) ∈ Tn1γ0}, sj := min{t ∈ (tj−1, b] : γ(t) ∈ T jγ0},
tj := max{t ∈ (tj−1, b] : γ(t) ∈ T jγ0}. We define also γj := [γ(sj)γ(tj)] ⊂ T jγ0 for n1 ≤ j ≤ n2 + 1.

By Lemma 5.13, HG(γ([sj , tj ]), γj) ≤ N . Then γ′ :=
(
γ \ ∪n2+1

j=n1
γ([sj , tj ])

)
∪
(
∪n2+1
j=n1

γj
)

is a straight
geodesic in G and that HG(γ, γ′) ≤ N . �

Finally, let us show the proof of the second part of Theorem 1.1.

Proof. (Second part of Theorem 1.1). Assume that G is hyperbolic. Lemma B implies that G∗ is also
hyperbolic.

Since infz∈γ0 dG(z, Tz) = 0, without loss of generality one can consider only arc-length parametrizations η0

of γ0 for which lim inft→+∞ dG
(
η0(t), Tη0(t)

)
= 0. Fix one of these. It will be shown that limt→−∞ F (t) =∞,

where F (t) := dG(η0(t), Tη0(t)). Indeed,
(a) Assume that lim inft→−∞ F (t) = 0. Then there exists a sequence of positive numbers {ck} converging

to 0 and two sequences {s1,k}, {s2,k} ⊂ R such that limk→∞ s2,k = ∞, limk→∞ s1,k = −∞, F (s1,k) =
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F (s2,k) = ck, F (t) ≥ ck for every t ∈ [s1,k, s2,k] and every k. Therefore, Lemmas 2.1 and 5.9 imply that G
is not hyperbolic.

(b) If 0 < lim inft→−∞ F (t) and lim supt→−∞ F (t) < ∞, one can also easily construct quasi-geodesic
quadrilaterals Q with δ(Q) arbitrarily large, and thus G is not hyperbolic (by lemmas 2.1 and 5.9). (The
Cayley graph of Z2, for which 1 ≤ F (t) ≤ 3

2 , is a basic example of this situation.)
(c) Assume that lim inft→−∞ F (t) <∞ and lim supt→−∞ F (t) =∞. Note that F is a Lipschitz function;

in fact, |F (t1) − F (t2)| ≤ 2|t1 − t2|. Fix a constant c > lim inft→−∞ F (t). There exist two sequences
{s1,k}, {s2,k} ⊂ R− such that F (s1,k) = F (s2,k) = c, F (t) ≥ c for every t ∈ [s1,k, s2,k] and F (tk) ≥ k
for some tk ∈ [s1,k, s2,k], for every k. Since F is 2-Lipschitz, s2,k − s1,k ≥ k − c for every k and then
limk→∞(s2,k − s1,k) =∞. Therefore, Lemmas 2.1 and 5.9 give that G is not hyperbolic.

Thus, limt→−∞ F (t) =∞.
The argument in (c) also gives lim supt→+∞ F (t) <∞ since lim inft→+∞ F (t) = 0; then (5.7) holds.
Assume that G has not quasi-exponential decay, so sups2≥s1≥0(s2 − s1)Φ(s2)/Φ(s1) = ∞. By Lemma

5.6, L(G3) =∞ and G3 is not hyperbolic and, by Lemma 5.4, since G is hyperbolic, sup
{
t2 − t1 : Φ(t1) =

Φ(t2), t2 ≥ t1 ≥ 0
}

=∞. Consider t2 > t1 > 0 with Φ(t1) = Φ(t2) < Φ(0) which are maximal in the following
sense: Φ(t1 − ε) > Φ(t1) and Φ(t2) > Φ(t2 + ε) for every ε > 0. Therefore, Φ(t1) = F (t1) = Φ(t2) = F (t2)
and F (t) ≥ F (t1) = F (t2) for every t ∈ [t1, t2]. Lemma 5.9 (taking c1 = c2 = c∗ = c = F (t1) < Φ(0))
provides a (3, 2Φ(0))-quasigeodesic quadrilateral Q with δ(Q) ≥ (t2 − t1)/6 − Φ(0)/4. Hence, Lemma 2.1
shows that G is not hyperbolic. This is a contradiction. Therefore G has quasi-exponential decay.

Let us show the other direction by assuming that G∗ is hyperbolic and G has quasi-exponential decay.
By Lemma 5.5, sup{t2 − t1 : Φ(t1) = Φ(t2), t2 ≥ t1 ≥ t0} <∞ for any fixed t0, and (5.7) holds.

Fix any geodesic triangle T0 := {z1, z2, z3} in G, with zi ∈ TniG∗ for 1 ≤ i ≤ 3 and n1 ≤ n2 ≤ n3. One
just needs to deal with the case n1 + 4 ≤ n2 ≤ n3 − 4; the other cases are similar and simpler.

By Corollary 5.14, without loss of generality, assume that the geodesics of T0 are straight.
By Lemma 5.12 there exists a constant t0 such that if x ∈ T0 ∩ Tnγ0 with either n1 + 2 ≤ n ≤ n2 − 1 or

n2 + 2 ≤ n ≤ n3 − 1, then (Tnη0)−1(x) ≥ t0. Consider the geodesic metric spaces G1 and G2 defined after
(5.7) (with this constant t0) and recall G1 = G ∪ G2; since G is an isometric subspace of G1, T0 is also a
geodesic triangle in G1.

Since (Tnη0)−1(x) ≥ t0 if x ∈ T0 ∩ Tnγ0 with either n1 + 2 ≤ n ≤ n2 − 1 or n2 + 2 ≤ n ≤ n3 − 1,
and the geodesics of T0 are straight, by Lemma 5.10, there exist (α, β)-quasigeodesics g12, g13 and g23

in G1 such that gij joins zi and zj , and HG1(gij , [zizj ]) ≤ H, where H only depends on δ(G∗1) and
ν := supt≥t0 dG(η0(t), Tη0(t)), α = 3 and β = 8δ(G∗1) + 6ν (recall that G∗1 is hyperbolic by Lemma
5.2). Furthermore, g12 = [z1z2] in Tn1G∗1 ∪ Tn1+1G∗1 ∪ Tn2−1G∗1 ∪ Tn2G∗1, g23 = [z2z3] in Tn2G∗1 ∪
Tn2+1G∗1 ∪Tn3−1G∗1 ∪Tn3G∗1, g13 = [z1z3] in Tn1G∗1 ∪Tn1+1G∗1 ∪Tn2−1G∗1 ∪Tn2G∗1 ∪Tn2+1G∗1 ∪Tn3−1G∗1 ∪
Tn3G∗1, g12 ∩ (∪n1+1<n<n2−1T

nG∗1) ⊂ G2, g23 ∩ (∪n2+1<n<n3−1T
nG∗1) ⊂ G2, g13 ∩ {(∪n1+1<n<n2−1T

nG∗1)∪
(∪n2+1<n<n3−1T

nG∗1)} ⊂ G2. Then T1 := {g12, g13, g23} is an (α, β)-quasi-geodesic triangle in G1.
Define G2(T1) and G3(T1) as the geodesic metric spaces given by

G2(T1) := Tn1G∗1 ∪ Tn1+1G∗1 ∪
(
∪n1+1<n<n2−1,t≥t0 Un,t

)
∪ Tn2−1G∗1 ∪ Tn2G∗1 ∪ Tn2+1G∗1

∪
(
∪n2+1<n<n3−1,t≥t0 Un,t

)
∪ Tn3−1G∗1 ∪ Tn3G∗1,

G3(T1) := Tn1G∗1 ∪ Tn1+1G∗1 ∪
(
∪n1+1<n<n2−1,t≥t0 Vn,t

)
∪ Tn2−1G∗1 ∪ Tn2G∗1 ∪ Tn2+1G∗1

∪
(
∪n2+1<n<n3−1,t≥t0 Vn,t

)
∪ Tn3−1G∗1 ∪ Tn3G∗1.

Note that G2(T1) is contained in G1.
By Corollary 5.8 there exists a constant δ, which does not depend on n1, n2, n3, T0, such that the subspaces

∪n1+1<n<n2−1,t≥t0Vn,t and ∪n2+1<n<n3−1,t≥t0Vn,t are δ-hyperbolic.
Since G∗ is hyperbolic, by Lemma 5.2 there exists a constant δ∗, which does not depend on n1, n2, n3, T0,

such that G∗1 is δ∗-hyperbolic. By Lemma B, Tn1G∗1∪Tn1+1G∗1, Tn2−1G∗1∪Tn2G∗1∪Tn2+1G∗1 and Tn3−1G∗1∪
Tn3G∗1 are (120)2δ∗-hyperbolic. Hence, by Lemma B, G3(T1) is (120)4 max{δ, (120)2δ∗}-hyperbolic.
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As in the proof of Lemma 5.3, one can check that G3(T1) and G2(T1) are quasi-isometric (with constants
which just depend on G∗); thus, by invariance of hyperbolicity, there exists a constant δ2 which does not
depend on n1, n2, n3, T0, such that G2(T1) is δ2-hyperbolic. Since T1 is also an (α, β)-quasi-geodesic triangle in
G2(T1) ⊂ G1, T1 is δ′2-thin, where δ′2 is a constant that does not depend on n1, n2, n3, T0. Since dG1 ≤ dG2(T1),
we have that T1 is also δ′2-thin in G1. Since HG1(gij , [zizj ]) ≤ H, the triangle T0 is (δ′2 + 2H)-thin in G1.
Since T0 ⊂ G and G is an isometric subspace of G1, the geodesic triangle T0 is also (δ′2 + 2H)-thin in G. �
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[38] Touŕıs, E., Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces, J. Math. Anal. Appl. 380 (2011),
865-881.

[39] Wu, Y. and Zhang, C., Chordality and hyperbolicity of a graph, Electr. J. Comb. 18 (2011), P43.


