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Abstract

In this paper, we show that the blow-up phenomenon of smooth solutions to the
compressible Navier-Stokes-Poisson (N-S-P) equations in ℝ2, under the assumption
that the initial density has compact support. The proof is based on some useful phys-
ical quantities. In particular, our result is valid for both isentropic and isothermal
case.
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1 Introduction

This paper is concerned with the blow-up phenomena of smooth solutions to the
Cauchy problem for the following Navier-Stokes-Poisson (N-S-P) system in two dimen-
sional case⎧⎨⎩

∂𝑡𝜌+ div(𝜌𝑢) = 0,
∂𝑡(𝜌𝑢) + div(𝜌𝑢⊗ 𝑢) +∇𝑃 (𝜌) = 𝜇Δ𝑢+ (𝜇+ 𝜆)∇div𝑢+ 𝜅𝜌∇Φ, (𝑥, 𝑡) ∈ ℝ2 × ℝ+

−ΔΦ = 𝜌,
(1.1)

with initial data

𝜌∣𝑡=0 = 𝜌0(𝑥), 𝑢∣𝑡=0 = 𝑢0(𝑥). (1.2)

The unknown functions 𝜌(𝑥, 𝑡), 𝑢(𝑥, 𝑡), 𝑃 and Φ denote the density, velocity field, pres-
sure and potential of underlying force respectively. Generally speaking, the pressure 𝑃
depends on the density and temperature of fluid. However, there are physically relevant
situations that we assume the fluid flow is barotropic, i.e., the pressure depends only on
the density. This is the case when either the temperature or the entropy is supposed to
be constant. The typical expression is

𝑃 (𝜌) = 𝜌𝛾 (𝛾 ≥ 1), (1.3)
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where 𝛾 = 1 stands for the isothermal case, and 𝛾 > 1 represents the adiabatic constant
in the isentropic regime. We introduce the viscous stress tensor 𝑇 as

div𝑇 = 𝜇Δ𝑢+ (𝜇+ 𝜆)∇div𝑢.

The coefficient 𝜅, which signifies the property of the forcing, is repulsive if 𝜅 > 0 and
attractive if 𝜅 < 0. The coefficients 𝜇 and 𝜆 represent shear coefficient viscosity of the
fluid and the second viscosity coefficient respectively. As the fluid is assumed to be
Newtonian, the two Lamé viscosity coefficients satisfy

𝜇 > 0, 𝜇+ 𝜆 ≥ 0. (1.4)

The compressible N-S-P system can be used to describe many models if we consider
different potential force. For example, (1.1) is the self-gravitation model if Φ is the grav-
itational potential force, and the semiconductor model if Φ is the electrostatic potential
force. In the literatures, there have been a lot of studies on the N-S-P by physicists and
mathematicians because of its physical importance and mathematical challenges. For
these results, please refer to [5, 11, 12] and reference therein.

The blow-up of smooth solutions to the evolutionary equations arising in the mathe-
matical fluid mechanics has been the subject of many theoretical studies. More precisely,
Sideris [7] showed the life span of 𝐶1 solution to the compressible Euler equations was
finite when the initial data is constant outside a bounded set and the initial flow velocity
has compact supports. In 1998, Xin [9] used a different method to prove the blow-up
result for the compressible Navier-Stokes equations, under two basic hypotheses: the
support of the density grows sublinearly in time and the entropy is bounded below. In
2004, Cho [7] extended Xin’s result to the case of fluids with positive heat conduction.
Recently, Xin and Yan [10] introduced the concept of isolated mass group to remove the
condition that the initial density has compact support and the smooth solution has finite
total energy and obtained a new blow-up result. Inspired by the above pioneering work,
many authors study the blow-up phenomena for the N-S-P equations. Jiang and Tan [6]
obtained blow-up result of the compressible reactive self-gravitating gas with chemical
kinetics equations in ℝ3. Xie [8] showed blow-up result of smooth solutions to the full
compressible N-S-P in ℝ3.

However, all the previous work are concerned with the non-isentropic case, which
the energy equation plays an important role. By virtue of the energy equation and the
adiabatic exponent 𝛾 > 1, we can easily obtain that the density 𝜌 is compactly supported
all the time. While the methods used above cannot be applied to our N-S-P model
straightforwardly. On the one hand, it is difficult to obtain the fact that compact support
of the initial data will not change in time. On the other hand, it is hard to construct
the function as the total energy has a negative part when 𝜅 > 0. To overcome the above
mentioned difficulties, we use some useful physical quantities in the radially symmetric
case, proving the blow-up for both isothermal (i.e.𝛾 = 1) and isentropic (i.e.𝛾 > 1) case
whether 𝜅 > 0 or 𝜅 < 0. In some senses, we improve the corresponding previous result
[3], which prove the isothermal compressible Naiver-Stokes equations for two-dimensional
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case. For simplicity of presentation, we introduce the following physical quantities:

𝑚(𝑡) =

∫
ℝ2

𝜌(𝑥, 𝑡)𝑑𝑥, (1.5)

𝑀(𝑡) =

∫
ℝ2

𝜌(𝑥, 𝑡)∣𝑥∣2𝑑𝑥, (1.6)

𝐹 (𝑡) =

∫
ℝ2

𝜌(𝑥, 𝑡)𝑢(𝑥, 𝑡) ⋅ 𝑥𝑑𝑥, (1.7)

which represent the total mass, second moment and radial component of momentum
respectively.

Throughout this paper, we always assume 𝑚(0) > 0 and 𝐹 (0) > 0. Moreover,
we assume that the initial density 𝜌0 has compact support, i.e., there exists a positive
constant 𝑅 such that

supp𝜌0 ⊂ 𝐵𝑅, (1.8)

where 𝐵𝑅 denotes the ball in ℝ2 centered at origin with radius 𝑅.
Our main results can be summarized as follows.

Theorem 1.1. Let (𝜇, 𝜆) satisfy (1.4), 𝜅 ∕= 0, 𝛾 ≥ 1 and (𝜌, 𝑢) ∈ 𝐶1([0, 𝑇 ],𝐻𝑚(ℝ2))(𝑚 >
2) is a spherically symmetric solution to the compressible N-S-P system (1.1) with initial
data 𝜌0(𝑥) has compact support. Assume the initial data are spherically symmetric, i.e.

𝜌0(𝑥) = 𝜌0(∣𝑥∣), 𝑢0(𝑥) = 𝑥

∣𝑥∣𝑢0(∣𝑥∣).

Then, the lifespan of the solution (𝜌, 𝑢) is finite.

In the following theorem, we point out that the function constructed by Xin in [9]
can be applied to the N-S-P model under the special coefficient 𝜅.

Theorem 1.2. Let (𝜇, 𝜆) satisfy (1.4), 𝜅 = −1, 𝛾 > 2 and (𝜌, 𝑢) ∈ 𝐶1([0, 𝑇 ],𝐻𝑚(ℝ2))
(𝑚 > 2) is a spherically symmetric solution to the compressible N-S-P system (1.1) with
initial data 𝜌0(𝑥) has compact support. The initial data are spherically symmetric as
Theorem 1.1. Then, the lifespan of the solution (𝜌, 𝑢) is finite.

Remark 1.1. If changing the condition on 𝑢, such as 𝑢 ∈ 𝐶1([0, 𝑇 ],𝑊𝑚,1(ℝ𝑁 ))(𝑚 > 2),
we can extend our result to high dimension case. The reader can refer to the work of
Bian and Guo [1] for more detail.

2 Proof of Theorem 1.1

Before the proof of Theorem 1.1, we give the following key lemma which plays an
important role in the proof.

Lemma 2.1. Assume (𝜇, 𝜆) satisfies (1.4), and (𝜌, 𝑢) ∈ 𝐶1([0, 𝑇 ],𝐻𝑚(ℝ2))(𝑚 > 2) is a
spherically symmetric solution to the compressible N-S-P system. Then

𝑢(𝑥, 𝑡) ≡ 0, 𝑥 ∈ 𝐵𝑐
𝑅. (2.1)

Moreover, the support of solution will not change in time.
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Proof. First, let 𝑋(𝑡, 𝛼) denotes the particle path starting at 𝛼 when 𝑡 = 0, i.e.,

𝑑

𝑑𝑡
𝑋(𝑡, 𝛼) = 𝑢(𝑋(𝑡, 𝛼), 𝑡), 𝑋(0, 𝛼) = 𝛼. (2.2)

And we denote by Ω(𝑡) the closed region that is the image of 𝐵𝑅 under the flow map
(2.2):

Ω(𝑡) = {𝑥 = 𝑋(𝑡, 𝛼), 𝛼 ∈ 𝐵𝑅}. (2.3)

In the sequel, we shall prove that Ω(𝑡) = Ω(0).
In fact, it follows from the continuity equation (1.1)1 that the density is simply

transported along particle paths, so that

supp𝑥𝜌(𝑥, 𝑡) ⊂ Ω(𝑡).

Consequently, from momentum equation, one has

𝜇Δ𝑢+ (𝜇+ 𝜆)∇div𝑢 = 0, on {𝑡} × ℝ2∖Ω(𝑡). (2.4)

Since 𝑢(𝑥, 𝑡) = 𝑥
∣𝑥∣𝑢(∣𝑥∣, 𝑡) for some radially symmetric function 𝑢, we obtain from (2.4)

that

𝑢𝑟𝑟 +
(𝑢
𝑟

)
𝑟
= 0 on {𝑡} × ℝ2∖Ω(𝑡).

Using the condition 𝑢 ∈ 𝐻𝑚(ℝ2), we have

𝑢𝑟 +
𝑢

𝑟
= 0 on {𝑡} × ℝ2∖Ω(𝑡).

Solving the ODE gives:

𝑢 =
𝐶(𝑡)

𝑟
,

where 𝐶(𝑡) is a constant dependent on 𝑡. Then using 𝑢 ∈ 𝐶([0, 𝑇 ], 𝐿2(ℝ2)) and adopting
the method in [3], we get

𝑢 ≡ 0 on {𝑡} × ℝ2∖Ω(𝑡).
It follows from the definition of Ω(𝑡) that if 𝛼 ∈ Ω𝑐(0), then

𝑢(𝑋(𝑡, 𝛼), 𝑡) = 0.

Thus

𝑋(𝑡, 𝛼) = 𝛼+

∫ 𝑡

0
𝑢(𝑋(𝑠, 𝛼), 𝑠)𝑑𝑠 = 𝛼,

and

Ω(0) = Ω(𝑡) ∀ 0 ≤ 𝑡 ≤ 𝑇.

This completes the proof of Lemma 2.1.
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By virtue of Lemma 2.1, we are in a position to prove Theorem 1.1 in the following.

Proof of Theorem 1.1.
Firstly multiplying the momentum equation (1.1)2 by 𝑥 and integrating over ℝ2, we have

𝑑

𝑑𝑡
𝐹 (𝑡) =

𝑑

𝑑𝑡

∫
ℝ2

𝜌𝑢 ⋅ 𝑥𝑑𝑥 =

∫
ℝ2

(𝜌𝑢)𝑡 ⋅ 𝑥𝑑𝑥

= −
∫
ℝ2

div(𝜌𝑢⊗ 𝑢) ⋅ 𝑥𝑑𝑥−
∫
ℝ2

∇𝜌𝛾 ⋅ 𝑥𝑑𝑥+

∫
ℝ2

div𝑇 ⋅ 𝑥𝑑𝑥+ 𝜅

∫
ℝ2

𝜌∇Φ ⋅ 𝑥𝑑𝑥

=

4∑
𝑘=1

𝐼𝑘. (2.5)

We calculate the integrals 𝐼𝑘 one by one. Starting with 𝐼1 and utilizing mass equation,
we get

𝐼1 =

∫
ℝ2

𝜌∣𝑢∣2𝑑𝑥. (2.6)

Similarly, we have

𝐼2 = 2

∫
ℝ2

𝜌𝛾𝑑𝑥. (2.7)

Using Lemma 2.1 and the definition of viscous stress tensor 𝑇 , we can easily obtain

𝐼3 = 0. (2.8)

It remains to simply 𝐼4(𝑡). By the Poisson equation (1.1)3, we get

𝐼4 =

∫
ℝ2

𝜌∇Φ ⋅ 𝑥𝑑𝑥 =

∫
ℝ2

(−ΔΦ)∇Φ ⋅ 𝑥𝑑𝑥

= −
2∑

𝑖,𝑗=1

∫
ℝ2

∂𝑖𝑖Φ(∂𝑗Φ ⋅ 𝑥𝑗)𝑑𝑥

=

2∑
𝑖,𝑗=1

∫
ℝ2

∂𝑖Φ∂𝑗𝑖Φ ⋅ 𝑥𝑗𝑑𝑥+

2∑
𝑖,𝑗=1

∫
ℝ2

∂𝑖Φ∂𝑗Φ ⋅ ∂𝑖𝑥𝑗𝑑𝑥

=
2∑

𝑖,𝑗=1

1

2

∫
ℝ2

∂𝑗 ∣∂𝑖Φ∣2 ⋅ 𝑥𝑗𝑑𝑥+
2∑

𝑖,𝑗=1

∫
ℝ2

∂𝑖Φ∂𝑗Φ𝛿𝑖𝑗𝑑𝑥

= −
∫
ℝ2

∣∇Φ∣2𝑑𝑥+

∫
ℝ2

∣∇Φ∣2𝑑𝑥 = 0. (2.9)

Gathering the identities (2.5)-(2.9), we obtain

𝑑

𝑑𝑡
𝐹 (𝑡) =

∫
ℝ2

𝜌∣𝑢∣2𝑑𝑥+ 2

∫
ℝ2

𝜌𝛾𝑑𝑥,

Integrating the above identity with respect to 𝑡, we get

𝐹 (𝑡) = 𝐹 (0) +

∫ 𝑡

0

∫
ℝ2

𝜌∣𝑢∣2𝑑𝑥𝑑𝑡+ 2

∫ 𝑡

0

∫
ℝ2

𝜌𝛾𝑑𝑥𝑑𝑡,
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which implies

𝐹 (𝑡) ≥ 𝐹 (0). (2.10)

By virtue of the continuity equation and integrating by parts formula, we obtain

𝑑

𝑑𝑡
𝑀(𝑡) =

𝑑

𝑑𝑡

∫
ℝ2

𝜌∣𝑥∣2𝑑𝑥 = 2𝐹 (𝑡). (2.11)

Integrating (2.11), we get

𝑀(𝑡) = 𝑀(0) + 2

∫ 𝑡

0
𝐹 (𝑠)𝑑𝑠. (2.12)

From (2.10) and (2.12), we deduce

𝑀(𝑡) ≥ 𝑀(0) + 2𝐹 (0)𝑡. (2.13)

Obviously, the right-hand side of (2.9) grows linearly in 𝑡. We shall show that the left
hand side is bounded. On the other hand, from the continuity equation, we obtain

𝑑

𝑑𝑡
𝑚(𝑡) =

𝑑

𝑑𝑡

∫
ℝ2

𝜌𝑑𝑥 = 0,

which implies ∫
ℝ2

𝜌𝑑𝑥 =

∫
ℝ2

𝜌0𝑑𝑥 = 𝑚(0).

Thus, from (1.8) and mass conservation, we have

𝑀(𝑡) =

∫
ℝ2

𝜌∣𝑥∣2𝑑𝑥 =

∫
𝐵𝑅

𝜌∣𝑥∣2𝑑𝑥 ≤ 𝑅2

∫
𝐵𝑅

𝜌𝑑𝑥 = 𝑅2𝑚(0). (2.14)

Putting (2.13) and (2.14) together, we conclude that

𝑅2𝑚(0) ≥ 𝑀(0) + 2𝐹 (0)𝑡.

Hence, the lifespan of the classical solution of N-S-P is finite and we finish the proof of
Theorem 1.1.

3 Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2 and show that the the blow-up
result can be obtained by the nonlinear function introduced in [9], only when 𝜅 = −1
and 𝛾 > 2.

Proof of Theorem 1.2.
First, we introduce the function

𝐼(𝑡) =

∫
ℝ2

𝑥2𝜌𝑑𝑥− 2(1 + 𝑡)

∫
ℝ2

𝑥𝑢𝜌𝑑𝑥+ (1 + 𝑡)2
∫
ℝ2

(𝜌𝑢2 +
2

𝛾 − 1
𝜌𝛾 + ∣∇Φ∣2)𝑑𝑥. (3.1)
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Lemma 2.1 is valid, since in the radially symmetric case

Δ𝑢 = ∇div𝑢 = ∂𝑟(𝑢𝑟 +
𝑢

𝑟
)
𝑥

𝑟
.

Consequently, one has

Ω(0) = Ω(𝑡).

Then

𝐼 ′(𝑡) =
∫
ℝ2

(𝑥2𝜌𝑡 − 2𝑥𝜌𝑢)𝑑𝑥− 2(1 + 𝑡)

∫
ℝ2

[𝑥(𝜌𝑢)𝑡 − 𝜌𝑢2 − 2

𝛾 − 1
𝜌𝛾 − ∣∇Φ∣2]𝑑𝑥

+ (1 + 𝑡)2
∫
ℝ2

(𝜌𝑢2 +
2

𝛾 − 1
𝜌𝛾 + ∣∇Φ∣2)𝑡𝑑𝑥

= 𝐼1 + 𝐼2 + 𝐼3.

Direct calculation by using the mass equation and 𝑢 ∈ 𝐶1([0, 𝑇 ],𝐻𝑚(ℝ2))(𝑚 > 2) implies
that 𝐼1 = 0. As to the second term

𝐼2 = 2(1 + 𝑡)

∫
ℝ2

𝑥 ⋅ [div(𝜌𝑢⊗ 𝑢) +∇𝜌𝛾 − 𝜇Δ𝑢− (𝜇+ 𝜆)∇div𝑢+ 𝜌∇Φ]𝑑𝑥

+ 2(1 + 𝑡)

∫
ℝ2

(𝜌𝑢2 +
2

𝛾 − 1
𝜌𝛾 + ∣∇Φ∣2)𝑑𝑥

= 2(1 + 𝑡)[

∫
ℝ2

(
2(2− 𝛾)

𝛾 − 1
𝜌𝛾 + ∣∇Φ∣2)𝑑𝑥+ (2𝜇+ 𝜆)

∫ ∞

0
∂𝑟(

𝑢

𝑟
+ 𝑢𝑟)

∣𝑥∣2
𝑟

𝑟𝑑𝑟]

= 2(1 + 𝑡)

∫
ℝ2

[
2(2− 𝛾)

𝛾 − 1
𝜌𝛾 + ∣∇Φ∣2 + 2(2𝜇+ 𝜆)(

𝑢

𝑟
+ 𝑢𝑟)]𝑑𝑥,

and

𝐼3 = (1 + 𝑡)2
∫
ℝ2

2[−∇𝜌𝛾 ⋅ 𝑢+ 𝜇Δ𝑢 ⋅ 𝑢+ (𝜇+ 𝜆)(∇div𝑢) ⋅ 𝑢]𝑑𝑥

+ (1 + 𝑡)2
2

𝛾 − 1

∫
ℝ2

[−div(𝜌𝛾𝑢)− (
(𝜌𝛾)′𝜌− 𝜌

)
div𝑢]𝑑𝑥

= 2(1 + 𝑡)2
∫ ∞

0
(2𝜇+ 𝜆)∂𝑟(

𝑢

𝑟
+ 𝑢𝑟)

𝑥

𝑟
⋅ (𝑢𝑥

𝑟
)𝑟𝑑𝑟

= −2(1 + 𝑡)2(2𝜇+ 𝜆)

∫
ℝ2

(
𝑢

𝑟
+ 𝑢𝑟)

2𝑑𝑥.

Combining all the identities, we get

𝐼 ′(𝑡) = 4(1 + 𝑡)
2− 𝛾

𝛾 − 1

∫
ℝ2

𝜌𝛾𝑑𝑥+ 4(1 + 𝑡)(2𝜇+ 𝜆)

∫
ℝ2

(𝑢𝑟 +
𝑢

𝑟
)𝑑𝑥

− 2(1 + 𝑡)2(2𝜇+ 𝜆)

∫
ℝ2

(𝑢𝑟 +
𝑢

𝑟
)2𝑑𝑥+ 2(1 + 𝑡)

∫
ℝ2

∣∇Φ∣2𝑑𝑥

≤ 4(1 + 𝑡)
2− 𝛾

𝛾 − 1

∫
ℝ2

𝜌𝛾𝑑𝑥+ 2(2𝜇+ 𝜆)∣Ω(0)∣+ 2(1 + 𝑡)

∫
ℝ2

∣∇Φ∣2𝑑𝑥

≤ 6− 2𝛾

1 + 𝑡
𝐼(𝑡) + 2(2𝜇+ 𝜆)∣Ω(0)∣. (3.2)
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In the following, we adopt a akin method in [4].
Case 1: If 𝛾 ≥ 3, we have from (3.2)

𝐼 ′(𝑡) ≤ 2(2𝜇+ 𝜆)∣Ω(0)∣,
which implies

𝐼(𝑡) ≤ 𝐼(0) + 2(2𝜇+ 𝜆)∣Ω(0)∣𝑡. (3.3)

From (3.1) and (3.3), we get∫
ℝ2

𝜌𝛾𝑑𝑥 ≤ 𝛾 − 1

2
𝐼(0)(1 + 𝑡)−2 + (2𝜇+ 𝜆)(𝛾 − 1)∣Ω(0)∣(1 + 𝑡)−1. (3.4)

By conservation of mass and the Hölder inequality, we have∫
Ω(0)

𝜌0 =

∫
Ω(𝑡)

𝜌𝑑𝑥

≤ (

∫
Ω(𝑡)

𝜌𝛾𝑑𝑥)
1
𝛾 (Ω(𝑡))

𝛾−1
𝛾

≤ (Ω(0))
𝛾−1
𝛾
(𝛾 − 1

2
𝐼(0)(1 + 𝑡)−2 + (2𝜇+ 𝜆)(𝛾 − 1)∣Ω(0)∣(1 + 𝑡)−1

) 1
𝛾 ,

which yields that 𝑇 must be finite.
Case 2: If 2 < 𝛾 < 3, we get(

(1 + 𝑡)2𝛾−6𝐼(𝑡)
)′ ≤ 2(2𝜇+ 𝜆)∣Ω(0)∣(1 + 𝑡)2𝛾−6,

which gives

(1 + 𝑡)2𝛾−6𝐼(𝑡) ≤ 𝐼(0) + 2(2𝜇+ 𝜆)∣Ω(0)∣𝐻(𝑡), (3.5)

where

𝐻(𝑡) =

{ 1
2𝛾−5(1 + 𝑡)2𝛾−5 if 2𝛾 − 5 ∕= 0;

ln(1 + 𝑡) if 2𝛾 − 5 = 0.

Thus we obtain that∫
ℝ2

𝜌𝛾𝑑𝑥 ≤ 𝛾 − 1

2
𝐼(0)(1 + 𝑡)4−2𝛾 + (2𝜇+ 𝜆)(𝛾 − 1)∣Ω(0)∣(1 + 𝑡)4−2𝛾𝐻(𝑡). (3.6)

Similar to the estimates (3.3)− (3.4), (3.6) also imply that 𝑇 must be finite. So we finish
the proof.
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