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Abstract

In this paper, a diffusive three species predator-prey model with a Leslie-Gower
term is considered. The stability of the unique positive constant equilibrium for the
reaction-diffusion system is obtained. In particular, we establish the existence and non-
existence of non-constant positive steady states of this system. The results indicate,
under suitable assumptions, that the large diffusivity in predators is helpful for the
appearance of the non-constant positive steady states (stationary patterns).
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1 Introduction

In general, a spatially homogeneous predator-prey system can be modeled [8] as{
du
dt = ru

(
1− u

K

)
− vp(u),

dv
dt = v (−m+ ep(u)) ,

(1.1)

herein all the parameters are positive constants, u and v are the population densities of
prey and predator respectively. Function p(u), the functional response of predator to prey
density, refers to the change in the density of prey attached per unit time per predator as
the prey density changes. To model various different processes of energy transfer in ecology,
many kinds of p(u) have been developed, which were proposed by different backgrounds
and have significant dynamics in mathematical theory. Moreover, there have been many
∗This work was supported by NNSF of China (No.11271197).
†Corresponding author (E-mail: hugp@nuist.edu.cn).
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results on the dynamics of predator-prey systems and part of these results implies the
dynamical differences of different functional responses, we refer to [9, 14, 16].

Another interesting formulation for the predator dynamics given by [11] and discussed
by Leslie and Gower [12] and Hsu and Huang [7] is the following predator-prey model:{

du
dt = ru

(
1− u

K

)
− vp(u),

dv
dt = v

(
δ − β vu

)
,

(1.2)

in which the interaction between species v and its prey u has been modeled by the Leslie-
Gower scheme, also known as the Holling-Tanner scheme. The predator consumes the
prey according to the functional response p(u) and grows logistically with intrinsic growth
rate δ. The term βv/δu is called the Leslie-Gower term. The carrying capacity of the
predator is proportional to the population size of the prey.

A major trend in theoretical work on predator-prey dynamics has been launched so
as to derive more realistic models [16]. These models had to be more consistent with real
phenomena, trying to keep to maximum the unavoidable increase in complexity of their
mathematics. In most cases, this effort has been concentrated mainly on the response
function form of the predator species [1, 2, 3, 25, 26] and on taking into account the
relationship between predators and preys (for example, food chain or one resource and
two consumers) [6, 23].

Systems (1.1) and (1.2) share the same prey equation, but they possess different nu-
merical responses for the predator. In [21], the authors investigated models (1.1) and (1.2)
with type I functional responses. They found that the differing numerical responses cause
the models to have different dynamic behavior.

Combining the above considerations, in this paper, we are interested in a predator-
prey model with one resource and two consumers. It describes a prey population u1,
which serves as collective food for two predators u2 and u3. We assume that the predators
consume the prey according to the Holling type II functional response. The interaction
between species u2 and its prey u1 has been modeled by the Volterra scheme, the interac-
tion between species u3 and its prey u1 has been modeled by the Holling-Tanner scheme.
Then the model is a system of three differential equations of the form

du1
dt = ru1

(
1− u1

K

)
− au1u2

1+bu1
− Au1u3

1+Bu1
,

du2
dt = u2

(
−m+ eu1

1+bu1

)
,

du3
dt = u3

(
δ − β u3

u1

)
.

(1.3)

Using the scaling:

rt 7→ t, u1
K 7→ u1,

a
r 7→ a, A

r 7→ A, bK 7→ b, BK 7→ B, a
r 7→ a, m

r 7→ m,
eK
m 7→ e, δ

r 7→ δ, β
δK 7→ β,
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then system (1.3) can be simplified as follows
du1
dt = u1 (1− u1)− au1u2

1+bu1
− Au1u3

1+Bu1
,

du2
dt = mu2

(
−1 + eu1

1+bu1

)
,

du3
dt = δu3

(
1− β u3

u1

)
.

(1.4)

It is obvious that system (1.4) has a constant positive solution if and only if

e > b, β(e− b− 1)(e− b+B) > A(e− b). (1.5)

Moreover, if (1.5) holds, we have e−b−1 > 0, and the positive equilibrium ũ = (ũ1, ũ2, ũ3)T

is uniquely given by

ũ1 =
1

e− b
, ũ2 =

βe(e− b− 1)(e− b+B)−Ae(e− b)
aβ(e− b)2(e− b+B)

, ũ3 =
1

β(e− b)
.

Taking into account the inhomogeneous distribution of the predators and their prey in
different spatial locations within a fixed bounded domain Ω ⊂ RN with smooth boundary
at any given time, and natural tendency of each species to diffuse to areas of smaller
population concentration, we are led to consider the following reaction-diffusion system:

u1t − d1∆u1 = u1 (1− u1)− au1u2
1+bu1

− Au1u3
1+Bu1

, F1(u),

u2t − d2∆u2 = mu2

(
−1 + eu1

1+bu1

)
, F2(u),

u3t − d3∆u3 = δu3

(
1− β u3

u1

)
, F3(u),

∂u1
∂ν = ∂u2

∂ν = ∂u3
∂ν = 0,

u1(x, 0) > 0, ui(x, 0) ≥ 0, i = 2, 3,

x ∈ Ω, t > 0,

x ∈ Ω, t > 0,

x ∈ Ω, t > 0,

x ∈ ∂Ω, t > 0,
x ∈ Ω.

(1.6)

In the above, ν is the outward unit normal vector of the boundary ∂Ω. The homogeneous
Neumann boundary condition indicates that the system is self-contained with zero pop-
ulation flux across the boundary. The positive constants d1, d2 and d3 are the diffusion
coefficients, and the initial data u1(x, 0) > 0, u2(x, 0) ≥ 0 and u3(x, 0) ≥ 0 are continuous
functions. For the sake of convenience, we also denote u = (u1, u2, u3)T.

The major objective of our paper is to study the existence of non-constant positive
steady states of (1.6). In fact, the existence of positive steady states of reactive diffusion
predator-prey system under homogeneous Neumann boundary condition has been studied
in many works. In the case that the consumer u2 = 0, system (1.6) reduces to a two
species predator-prey model which has received extensive concerns. For example, in [17],
the authors verified the existence and nonexistence of positive nonconstant steady. In [18],
they further studied the local and global stability of the unique positive equilibrium of this
model. In [10], Wonlyul Ko and Kimun Ryu have studied the similar system of (1.6) while
u3 = 0, they investigated the asymptotic behavior of spatially inhomogeneous solutions
and the local existence of periodic solutions. For the more related works on positive steady
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states of diffusive predator-prey systems, we can refer to [9, 17, 19, 20, 22, 23, 24] and
references therein.

For the convenience, throughout this paper we always assume that (1.5) holds. In
Section 2, we will show that if the parameters a, b, A, B, e and β satisfy[
ABe2 + ab(e− b+B)2

]
[(βe(e− b− 1)(e− b+B)−Ae(e− b)] < aβe2 (e− b+B)3 .

(1.7)
Then the equilibrium of (1.4) and the constant positive steady state of (1.6) are all locally
asymptotically stable. In Section 3, we first give a priori upper and lower bounds for pos-
itive solutions of (1.6), and then we deal with existence and non-existence of nonconstant
positive solutions of (1.6).

2 Stability of the positive equilibrium for (1.4) and (1.6)

In this section, we study the local asymptotic stability of the constant positive steady
state ũ for reaction-diffusion system (1.6). Firstly, we rewritten problem (1.4) as

du
dt

= F(u), (2.1)

and the linearization of it at ũ = (ũ1, ũ2, ũ3) is

du
dt

= Fu(ũ)u. (2.2)

Theorem 2.1 If the parameters a, b, A, B, e and β satisfy (1.7), then the equilibrium
solution ũ = (ũ1, ũ2, ũ3)T of (1.4) is locally asymptotically stable.

Proof. Let

Fu(ũ) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

the direct calculation yields

a11 = −ũ1 + abũ2
e2ũ1

+ ABũ1ũ2
(1+Bũ1)2

= [ABe2+ab(e−b+B)2][(βe(e−b−1)(e−b+B)−Ae(e−b)]−aβe2(e−b+B)3

aβe2(e−b)(e−b+B)3
,

a12 = − aũ1
1+bũ1

< 0, a13 = − Aũ1
1+Bũ1

< 0, a21 = meũ2
(1+bũ1)2

> 0, a22 = a23 = 0,

a31 = δβũ2
3

ũ2 > 0, a32 = 0, a33 = δ
(

1− 2βũ3

ũ1

)
= −δ < 0.

(2.3)

The characteristic polynomial of Fu(ũ) can be written as

ϕ(λ) = λ3 +A1λ
2 +A2λ+A3.
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Under the condition (1.7), it is easy to check that a11 < 0 since e > b, so one can calculate
that 

A1 = −(a11 + a33) > 0,
A2 = a11a33 − a12a21 − a31a13 > 0,
A3 = −{detFu(ũ)} = a12a21a33 > 0.

(2.4)

By simple computations, it follows that

A1A2 −A3 = −a2
11a33 + a11a12a21 + a11a13a31 − a11a

2
33 + a13a31a33 > 0.

From the Routh-Hurwitz criteria, we can conclude that the characteristic polynomial of
Fu(ũ) has only roots with negative real parts, and so ũ is local asymptotically stable. �

Next, we discuss the local stability of the positive constant steady state ũ = (ũ1, ũ2, ũ3)T

of (1.6). Before developing our argument, let us set up the following notations.
Let 0 = µ0 < µ1 < µ2 < · · · be the eigenvalues of the operator −∆ on Ω with the

homogeneous Neumann boundary condition, and E(µi) be the eigenspace corresponding
to µi in C1(Ω̄). Let X = {u ∈

[
C1(Ω)

]3 | ∂nu = 0 on ∂Ω}, {φij ; j = 1, · · · , dimE(µi)}
be an orthonormal basis of E(µi), and Xij = {cφij | c ∈ R3}. Then,

X = ⊕∞i=1Xi and Xi = ⊕dimE(µi)
j=1 Xij . (2.5)

Theorem 2.2 If the parameters a, b, A, B, e and β satisfy (1.7), then the constant
positive steady state ũ of (1.6) is uniformly asymptotically stable.

Proof. The linearization of (1.6) at ũ can be expressed by

ut = L u,

where L = D∆ + Fu(ũ), D = diag(d1, d2, d3).
For each i ≥ 0, Xi is invariant under the operator L , and λ is an eigenvalue of L

on Xi if and only if it is an eigenvalue of the matrix −µiD + Fu(ũ). The characteristic
polynomial of −µiD + Fu(ũ) is given by

ψi(λ) = λ3 +B1iλ
2 +B2iλ+B3i,

with

B1i = µi(d1 + d2 + d3) +A1,

B2i = µ2
i (d1d2 + d1d3 + d2d3)− µi[a33d1 + (a11 + a33)d2 + a11d3] +A2,

B3i = µ3
i d1d2d3 − µ2

i (d1d2a33 + d2d3a11) + µi[(a11a33 − a13a31)d2 − a12a21d3] +A3,

where aij and Ai are given in (2.3) and (2.4), respectively. Using (1.7) we see that a11 < 0,
in view of (2.3) and (2.4), it follows that B1i, B2i, B3i > 0. Through a series of calculation,
we have that

B1iB2i −B3i = M1µ
3
i +M2µ

2
i +M3µi +A1A2 −A3,
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in which

M1 = (d1d2 + d1d3 + d2d3)(d1 + d2 + d3)− d1d2d3 > 0,

M2 = −(a11 + a33)(d1d2 + d1d3 + d2d3)− [a33d
2
1 + a33d1d2 + a33d1d3 + (a11 + a33)

(d1d2 + d2d3) + (a11 + a33)d2 + a11(d1d3 + d2d3) + a11d
2
3] + d1d2a33 + d2d3a11

= −(a11 + a33)(2d1d2 + d1d3 + 2d2d3 + d2
2)− (a33d1 + a11d3)(d1 + d3) > 0,

M3 = (d1 + d2 + d3)(a11a33 − a12a21 − a13a31) + (a11 + a33)[a33d1 + (a11 + a33)d2

+a11d3]− [(a11a33 − a13a31)d2 − a12a21d3]

= (2a11a33 − a12a21 + a2
33a13a31)d1 + (2a11a33 − a12a21 + a2

11 + a2
33)d2

+(2a11a33 − a13a31 + a2
11)d3 > 0.

In view of (2.3), and notice that A1A2 − A3 > 0, we conclude that B1iB2i − B3i > 0 for
all i ≥ 0. It thus follows from the Routh-Hurwitz criterion that, for each i ≥ 0, the three
roots λi,1, λi,2, λi,3 of ψi(λ) = 0 all have negative real parts. Finally, Theorem 5.1.1 in
Henry [5] concludes the results. �

3 Non-constant positive steady states

The main aim of this article is to study the steady states problem of (1.6), that is to
say, the existence and non-existence of non-constant positive solutions of the corresponding
elliptic system: 

−d1∆u1 = F1(u),
−d2∆u2 = F2(u),
−d3∆u3 = F3(u),
∂u1
∂ν = ∂u2

∂ν = ∂u3
∂ν = 0,

x ∈ Ω,
x ∈ Ω,
x ∈ Ω,
x ∈ ∂Ω.

(3.1)

To do this, it is necessary to establish a priori positive upper and lower bounds for positive
solutions of (3.1).

3.1 A priori estimates

We first cite two lemmas which are due to Lin, Ni and Takagi [13], and Lou and Ni
[15], respectively.

Lemma 3.1 (Harnack Inequality [13]). Assume that c ∈ C(Ω) and let w ∈ C2(Ω)
⋂
C1(Ω)

be a positive solution to ∆w(x) + c(x)w(x) = 0 in Ω, ∂w∂ν = 0 on ∂Ω. Then there exists a
positive constant C∗ = C∗(‖c‖∞) such that max

Ω
w ≤ C∗min

Ω
w.

Lemma 3.2 (Maximum Principle [15]). Suppose that g ∈ C(Ω× R1).
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(i) Assume that w ∈ C2(Ω)
⋂
C1(Ω) satisfies ∆w(x) + g(x,w(x)) ≥ 0 in Ω, ∂w

∂ν ≤
0 on ∂Ω. If w(x0) = max

Ω
w, then g(x0, w(x0)) ≥ 0.

(ii) Assume that w ∈ C2(Ω)
⋂
C1(Ω) satisfies ∆w(x) + g(x,w(x)) ≤ 0 in Ω, ∂w

∂ν ≥
0 on ∂Ω. If w(x0) = min

Ω
w, then g(x0, w(x0)) ≤ 0.

Note that the positive solutions of (3.1) are contained in C2(Ω)×C2(Ω) by the standard
regularity theory for elliptic equations [4], and so Lemmas 3.1 and 3.2 can be applied to
system (3.1). For notational convenience, we write Λ = Λ(a, b, A,B,m, e, δ, β) in the
sequel.

Theorem 3.3 (Upper bounds). For any positive solution (u1, u2, u3) of (3.1),

max
Ω

u1 ≤ 1, max
Ω

u2 ≤
med1 + ed2

ad2
, max

Ω
u3 ≤

1
β
. (3.2)

Proof. A direct application of Lemma 3.2 to the first equation of (3.1) yields the first
inequality of (3.2). Since 0 < u3 ≤ 1

β‖u1‖∞ ≤ 1
β , we have u3 ≤ 1

β in Ω.
Let w = med1u1 + ad2u2, we can obtain{

−∆w = meu1(1− u1)− Ameu1u3
1+Bu1

−mau2,
∂w
∂ν = 0,

x ∈ Ω,
x ∈ ∂Ω.

Let w(x0) = max
Ω

w(x). By the application of Lemma 3.2, we have

mau2(x0) ≤ meu1(1− u1)− Ameu1u3

1 +Bu1
≤ me.

Consequently,

max
Ω

u2(x) ≤ 1
ad2

max
Ω

w(x) =
w(x0)
ad2

=
med1u1(x0) + ad2u2(x0)

ad2
≤ med1 + ed2

ad2
.

The proof is completed. �

Theorem 3.4 (Lower bounds). For any d > 0, d2 > 0 and d3 > 0, if

d1 ≥ d and
β −A
β

>
1

e− b
.

Then there exist positive constant ci = ci(d,Λ), i = 1, 2, 3, such that any positive solution
(u1, u2, u3) of (3.1) satisfies

min
Ω
ui ≥ ci, i = 1, 2, 3. (3.3)
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Proof. Let c1(x) = d−1
1

(
1− u1 − au2

1+bu1
− Au3

1+Bu1

)
. In view of (3.2), there exists positive

constants C(d,Λ) such that the inequalities ‖c1(x)‖∞ ≤ C for any d > 0, if d1 ≥ d. The
Harnack inequality in Lemma 3.1 shows that there exists a positive constant C∗ = C∗(d,Λ)
such that

max
Ω

u1 ≤ C∗min
Ω
u1. (3.4)

On the other hand, by integrating the second equation in (3.1), we have∫
Ω
mu2

(
−1 +

eu1

1 + bu1

)
dx = 0,

which implies that there exists a point x1 such that −1 + eu1(x1)
1+bu1(x1) = 0. So u1(x1) ≥ 1

e

and
min

Ω
u1 ≥

1
C∗

max
Ω

u1 ≥
1
C∗
u1(x1) ≥ 1

C∗e
, c1.

Let u3(x2) = min
Ω
u3(x), by Lemma 3.2, it is clear that 1− β u3(x2)

u1(x2) ≤ 0, and so

min
Ω
u3 ≥

1
β
u1(x2) ≥ 1

β
min

Ω
u1 ≥

1
C∗βe

, c3.

Now we need to estimate the positive lower bound of u2. Suppose, on the contrary,
that (3.3) does not hold for i = 2. Then there exists a sequence {d1n, d2n, d3n}∞n=1 with
(d1n, d2n, d3n) ∈ [d,∞) × (0,∞) × (0,∞) such that the corresponding positive solutions
(u1n, u2n, u3n) of (3.1) satisfy

−d1n∆u1n = u1n (1− u1n)− au1nu2n
1+bu1n

− Au1nu3n
1+Bu1n

,

−d2n∆u2n = mu2n

(
−1 + eu1n

1+bu1n

)
,

−d3n∆u3n = δu3n

(
1− β u3n

u1n

)
,

∂νu1n = ∂νu2n = ∂νu3n = 0,

x ∈ Ω,

x ∈ Ω,

x ∈ Ω,
x ∈ ∂Ω

(3.5)

and

min
Ω
u1n ≥ c1, min

Ω
u2n → 0, min

Ω
u3n ≥ c3 as n→∞. (3.6)

By (3.4), it is clear that

max
Ω

u2n → 0 as n→∞. (3.7)

For (3.5), the standard regularity theorem for the elliptic equations yields that there exists
a subsequence of {(u1n, u2n, u3n)}∞n=1, which we shall still denote by {(u1n, u2n, u3n)}∞n=1,
and three non-negative functions u1, u2, u3 ∈ C2(Ω), such that uin converges uniformly to
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ui in C2(Ω) as n → ∞, i = 1, 2, 3. Thus, we may assume, by passing to a subsequence
if necessary, that (u1n, u2n, u3n) → (u1, u2, u3) as n → ∞. Moreover, we assume that
(d1n, d2n, d3n)→ (d1, d2, d3) ∈ [d,∞)× (0,∞)× (0,∞).

By (3.6) and (3.7), we note that u1 > 0, u2 ≡ 0, u3 > 0.
Let n→∞ in the first equation of (3.5) we have

−d1∆u1 = u1

[
(1− u1)− Au3

1 +Bu1

]
, x ∈ Ω; ∂νu1 = 0, x ∈ ∂Ω. (3.8)

Let x3 ∈ Ω be a point such that u1(x3) = min
Ω
u1(x). Applying Lemma 3.2 to (3.8), it

yields

1− u1(x3)− Au3(x3)
1 +Bu1(x3)

≤ 0,

and then u1(x3) ≥ 1− Au3(x3)
1+Bu1(x3) ≥ 1−Au3(x3) ≥ 1−Amax

Ω
u3 ≥ β−A

β .

As β−A
β > 1

e−b , and hence u1 ≥ min
Ω
u1(x) > 1

e−b , so we can see that

−1 +
eu1n

1 + bu1n
> 0 on Ω, for all n� 1.

Integrating the differential equation for u2n over Ω by parts, we have

0 = d2n

∫
∂Ω

∂νu2nds = −d2n

∫
Ω

∆u2ndx =
∫
Ω

mu2n

(
−1 +

eu1n

1 + bu1n

)
dx > 0, for all n� 1,

which is a contradiction. The proof is completed. �

3.2 Non-existence of non-constant positive steady states

Theorem 3.5 Let d∗2 and d∗3 are fixed positive constants and satisfy µ1d
∗
2 > m(e−b−1)

1+b

and µ1d
∗
3 > δ. Then there exists a positive constant D1 = D1(Λ, d∗2, d

∗
3) such that, when

d1 ≥ D1, d2 ≥ d∗2 and d3 ≥ d∗3, problem (3.1) has no non-constant positive solution.

Proof. Assume that u = (u1, u2, u3) is a positive solution of (3.1). Let ϕ̄ = 1
|Ω|
∫

Ω ϕdx for
any ϕ ∈ L1(Ω). Multiplying the differential equation (3.1) by u− ū, and then integrating
over Ω by parts, we have

3∑
i=1

∫
Ω
di|∇ui|2dx =

3∑
i=1

∫
Ω

(Fi(u)− Fi(ū))(ui − ūi)dx

=
∫

Ω

{
(u1 − ū1)2[1− (u1 + ū1)]

−au2(u1 − ū1)2 + (aū1 + abu1ū1)(u1 − ū1)(u2 − ū2)
(1 + bu1)(1 + bū1)
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−Au3(u1 − ū1)2 + (Aū1 +ABu1ū1)(u1 − ū1)(u3 − ū3)
(1 +Bu1)(1 +Bū1)

−m(u2 − ū2)2 +
meu2(u1 − ū1)(u2 − ū2) +me(bu1ū1 + ū1)(u2 − ū2)2

(1 + bu1)(1 + bū1)

+
δβū2

3(u1 − ū1)(u3 − ū3)
u1ū1

+
(
δ − δβ(u3 + ū3)

u1

)
(u3 − ū3)2

}
dx

≤
∫

Ω

{
(1 + C)(u1 − ū1)2 +

(
m(e− b− 1)

1 + b
+ ε

)
(u2 − ū2)2 + (δ + ε)(u3 − ū3)2

}
dx

(3.9)

for some positive constants C = C(Λ, d∗2, d
∗
3, ε) and an arbitrary small positive constant ε.

In view of the Poincaré inequality µ1

∫
Ω(f − f̄)2 ≤

∫
Ω | ∇f |

2 dx, it follows from (3.9)
that

µ1

3∑
i=1

∫
Ω
di(ui − ūi)2dx ≤

∫
Ω

{
(1 + C)(u1 − ū1)2 +

(
m(e− b− 1)

1 + b
+ ε

)
(u2 − ū2)2 + (δ + ε)(u3 − ū3)2

}
dx. (3.10)

Choose ε > 0 very small such that µ1d
∗
2 ≥

m(e−b−1)
1+b +ε, µ1d

∗
3 ≥ δ+ε. Let D1 , µ

−1
1 (1+C),

then we can conclude that (u1, u2, u3) = (ū1, ū2, ū3), it is a constant solution of (3.1). This
completes the proof . �

3.3 Existence of non-constant positive steady states

In this subsection, we discuss the existence of non-constant positive solutions to (3.1)
when the diffusion coefficient d2 varies while the diffusion coefficients d1 and d3 are kept
fixed by using the Leray-Schauder degree theory. In view of Theorem 2.2, we see that
there might be no non-constant positive solutions of (3.1) if a11 = a11(Λ) < 0, and so we
shall restrict this discuss to the case where the parameters Λ be fixed and satisfy a11 > 0.

Let X be as in Section 2, and denote

X+ =
{
u ∈ X | u > 0 on Ω

}
,

B(c) =
{
u ∈ X | c−1 < ui < c on Ω, i = 1, 2, 3

}
,

where c is a positive constant that is guaranteed to exist by Theorems 3.3 and 3.4.
The steady states problem (3.1) can be rewritten as{

−D∆u = F(u),
∂νu = 0,

x ∈ Ω,
x ∈ ∂Ω.

(3.11)

Thus u is a positive solution of (3.11) if and only if

Φ(u) , u− (I−∆)−1
{
D−1F(u) + u

}
= 0 in X+,
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where (I−∆)−1 is the inverse of I−∆ in X, subject to homogeneous Neumann boundary
condition. Since Φ(·) is a compact perturbation of the identity operator, for any B = B(c),
the Leray-Schauder degree deg(Φ(·),0,B) is well-defined if Φ(u) 6= 0 on ∂B.

Further, we note that

DuΦ(ũ) = I− (I−∆)−1
{
D−1Fu(ũ) + I

}
,

we recall that if DuΦ(ũ) is invertible, the index of Φ at ũ is defined as index(Φ(·), ũ) =
(−1)γ , where γ is the total number of eigenvalues of DuΦ(ũ) with negative real parts
(counting multiplicities). Then the degree deg (Φ(·),0,B) is equal to the sum of the
indexes over all isolated solutions to Φ = 0 in B(c), provided that Φ 6= 0 on ∂B.

In order to calculate γ, we employ the eigenspaces of −∆. We refer to the decom-
position (2.5) in our following discussion of the eigenvalues of DuΦ(ũ). First, we know
Xij is invariant under DuΦ(ũ) for each i ∈ N and each j ∈ [1,dimE(µi)] ∩ N, i.e.,
DuΦ(ũ)u ∈ Xij for any u ∈ Xij . Hence, λ is an eigenvalue of DuΦ(ũ) on Xij if and only
if it is an eigenvalue of the matrix

I− 1
1 + µi

[
D−1Fu(ũ) + I

]
=

1
1 + µi

[
µiI−D−1Fu(ũ)

]
.

Thus, DuΦ(ũ) is invertible if and only if, for all i ≥ 0, the matrix I− 1
1+µi

[
D−1Fu(ũ) + I

]
is non-singular. Denote

H(µ) = H(ũ;µ) , det
{
µI−D−1Fu(ũ)

}
=

1
d1d2d3

det {µD − Fu(ũ)} , (3.12)

we note, furthermore, that if H(µi) 6= 0, then for each 1 ≤ j ≤ dimE(µi), the number of
negative eigenvalues of DuΦ(ũ) on Xij is odd if and only if H(µi) < 0. In conclusion, we
have the following result. It also can be found in [6, 19, 23].

Proposition 3.6 Suppose that, for all i ≥ 0, the matrix µiI−D−1Fu(ũ) is non-singular.
Then

index (Φ(·), ũ) = (−1)σ, where σ =
∑

i≥0,H(µi)<0

dimE(µi).

According to this proposition, we should consider carefully the sign of H(µi) in order
to calculate index (Φ(·), ũ). A direct calculation gives

det {µD − Fu(ũ)} = A3(Λ, d2)µ3 +A2(Λ, d2)µ2 +A1(Λ, d2)µ− det {Fu(ũ)}
, A(Λ, d2;µ), (3.13)

with

A3(Λ, d2) = d1d2d3, A2(Λ, d2) = −(a33d1d2 + a11d2d3),
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A1(Λ, d2) = (a11a33 − a13a31)d2 − a12a21d3, det {Fu(ũ)} = −a12a21a33,

where aij are as given in (2.3).
We consider the dependence of A on d2. Let µ̃1(d2), µ̃2(d2), µ̃3(d2) be the three roots of

A(Λ, d2;µ) = 0 with Re{µ̃1(d2)} ≤ Re{µ̃2(d2)} ≤ Re{µ̃3(d2)}, then µ̃1(d2)µ̃2(d2)µ̃3(d2) =
det {Fu(ũ)}. Note that det {Fu(ũ)} < 0 and A3(Λ, d2) > 0. Thus, one of µ̃1(d2), µ̃2(d2),
µ̃3(d2) is real and negative, and the product of the other two is positive.

Perform the following limits:

lim
d2→∞

A(Λ, d2;µ)
d2

= lim
d2→∞

A3(Λ, d2)µ3 +A2(Λ, d2)µ2 +A1(Λ, d2)µ
d2

= µ
[
d1d3µ

2 − (a33d1 + a11d3)µ+ (a11a33 − a13a31)
]
.

Note that A , (a33d1 +a11d3)2−4d1d3(a11a33−a13a31) > 0 provided a11a33−a13a31 < 0.
Furthermore, if the parameters Λ, d1 and d3 satisfy a11d3 + a33d1 = a11d3 − δd1 > 0, we
have a11 >

δd1
d3

. So we can establish the following proposition.

Proposition 3.7 Assume a11 >
δd1
d3

and a11a33 − a13a31 < 0. Then there exists a pos-
itive constant D2, such that when d2 ≥ D2, the three roots µ̃1(d2), µ̃2(d2), µ̃3(d2) of
A(Λ, d2;µ) = 0 are all real and satisfy

lim
d2→∞

µ̃1(d2) = a11d3+a33d1−
√

A
2d1d3

< 0,

lim
d2→∞

µ̃2(d2) = 0,

lim
d2→∞

µ̃3(d2) = a11d3+a33d1+
√

A
2d1d3

, µ̄ > 0.

(3.14)

Moreover, 
−∞ < µ̃1(d2) < 0 < µ̃2(d2) < µ̃3(d2),
A(Λ, d2;µ) < 0, when µ ∈ (−∞, µ̃1(d2)) ∪ (µ̃2(d2), µ̃3(d2)),
A(Λ, d2;µ) > 0, when µ ∈ (µ̃1(d2), µ̃2(d2)) ∪ (µ̃3(d2),∞).

(3.15)

Now we establish the global existence of non-constant positive solutions of (3.1) with
respect to the diffusion coefficient d2, as the other parameters are all fixed positive con-
stants. Our result is as follows.

Theorem 3.8 Assume that the parameters Λ, d1 and d3 are fixed, β−A
β > 1

e−b , a11 >
δd1
d3

and a11a33 − a13a31 < 0 hold. If µ̄ ∈ (µn, µn+1) for some n ≥ 1, and the sum σn =∑n
i=1 dimE(µi) is odd, then there exists a positive constant D2 such that, if d2 ≥ D2,

problem (3.1) has at least one non-constant positive solution.

Proof. By Proposition 3.7, there exists a positive constant D2, if d2 ≥ D2, (3.15) holds
and

µ̃1(d2) < 0 = µ0 < µ̃2(d2) < µ1, µ̃3(d2) ∈ (µn, µn+1). (3.16)
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We will prove that for any d2 ≥ D2, (3.1) has at least one non-constant positive solution.
By way of contradiction, assume that the assertion is not true for some d2 = d̃2 ≥ D2. By
using the homotopy argument, we can derive a contradiction in the sequel.

Fixing d2 = d̃2, taking d∗2 = d∗3 = m(e−b−1)
µ1(1+b) + δ

µ1
in Theorem 3.5, we obtain a positive

constant D1 = D1(Λ, d∗2, d
∗
3). Fix d̂2 ≥ d∗2, d̂3 ≥ d∗3 + d3 and d̂1 ≥ D1(Λ, d∗2, d

∗
3). For

t ∈ [0, 1], define D(t) = diag(d1(t), d2(t), d3(t)) with di(t) = tdi + (1− t)d̂i, i = 1, 2, 3, and
consider the problem {

−D(t)∆u = F(u),
∂νu = 0,

x ∈ Ω,
x ∈ ∂Ω.

(3.17)

Then u is a non-constant positive solution of (3.1) if and only if it is a positive solution
of (3.17) for t = 1. It is obvious that ũ is the unique constant positive solution of (3.17)
for any t ∈ [0, 1]. We know that for any t ∈ [0, 1], u is a positive solution of (3.17) if and
only if

Φ(t; u) , u− (I−∆)−1
{
D−1(t)F(u) + u

}
= 0 in X+.

It is obvious that Φ(1; u) = Φ(u), Theorem 3.5 indicates that Φ(0; u) = 0 has only
the positive solution ũ in X+. By a direct computation, we have

DuΦ(t; ũ) = I− (I−∆)−1
{
D−1(t)Fu(ũ) + I

}
.

In particular,

DuΦ(0; ũ) = I− (I−∆)−1
{

D̂−1Fu(ũ) + I
}
,

DuΦ(1; ũ) = I− (I−∆)−1
{
D−1Fu(ũ) + I

}
= DuΦ(ũ),

where D̂ = diag(d̂1, d̂2, d̂3). From (3.12) and (3.13), we already know that

H(µ) =
1

d1d2d3
A(Λ, d2;µ). (3.18)

For t = 1, by (3.15), (3.16) and (3.18), we have
H(µ0) = H(0) > 0,
H(µi) < 0 when 1 ≤ i ≤ n,
H(µi+1) > 0 when i ≥ n+ 1.

Thus, 0 is not an eigenvalue of the matrix µiI−D−1Fu(ũ) for all i ≥ 0, and

∑
i≥0,H(µi)<0

dimE(µi) =
n∑
i=1

dimE(µi) = σn
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is odd. Thanks to Proposition 3.6, we have

index (Φ(1; ·), ũ) = (−1)γ = (−1)σn = −1. (3.19)

Now, we prove that

index (Φ(0; ·), ũ) = (−1)0 = 1. (3.20)

Fix b0 such that b < b0 < e and a11(b0) < 0. Define b(s) = sb + (1 − s)b0 for s ∈ [0, 1],
and consider problem (3.1), where (d1, d2, d3) and b are replaced by (d̂1, d̂2, d̂3) and b(s),
respectively. Precisely, we label this problem as (3.1s), and denote the corresponding non-
linear term F(u) by F(s; u). As b ≤ b(s) ≤ e for any s ∈ [0, 1]. Similar to the proof
of Theorem 3.5 we have that ũ is only positive solution of (3.1s) for s ∈ [0, 1]. Same as
above, we define

Φ̃(s; u) , u− (I−∆)−1
{

D̂−1F(s; u) + u
}

= 0 in X+.

Then Φ̃(1; ·) = Φ(0; ·), and ũ is the only positive solution of Φ̃(s; u) = 0 for all s ∈ [0, 1].
The homotopy invariance of the topological degree asserts that

index(Φ̃(1; ·), ũ) = index(Φ̃(0; ·), ũ). (3.21)

Since b(0) = b0 and b0 satisfies a11(b0) < 0, then det(µiD̂ − Fu(0; ũ)) > 0 for all i ≥ 1.
Consequently, by Proposition 3.6, index(Φ̃(0; ·), ũ) = (−1)0 = 1 because, in this case, the
corresponding γ = 0. Applying Φ̃(1; ·) = Φ̃(0; ·) and (3.21) we see that (3.20) holds.

On the other hand, by Theorem 3.3 and 3.4, there exists a positive constant M such
that, for all t ∈ [0, 1], the positive solutions of (3.17) satisfy M−1 < u1, u2, u3 < M .
Therefore, Φ(t; u) 6= 0 on ∂B(M) for all 0 ≤ t ≤ 1. By the homotopy invariance of the
topological degree, we can obtain

deg (Φ(1; ·),0,B(M)) = deg (Φ(0; ·),0,B(M)) . (3.22)

By our assumption, both equations Φ(1; u) = 0 and Φ(0; u) = 0 have only the positive
solution ũ in B(M), and hence, by (3.19) and (3.20),{

deg (Φ(0; ·),0,B(M)) = index (Φ(0; ·), ũ) = 1,
deg (Φ(1; ·),0,B(M)) = index (Φ(1; ·), ũ) = −1,

(3.23)

which contradicts (3.22). The proof is complete. �

Remark 3.9 In present paper, we consider only the dependence of A on d2 in (3.13) in
order to calculate index (Φ(·), ũ). In fact, assume that the parameters Λ, d1 and d2 are
fixed, one can establish the global existence of non-constant positive solutions of (3.1) with
respect to the diffusion coefficient d3, which is similarly as Theorem 3.8.
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