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Abstract. Let S ∗
e denote the class of analytic functionsf in the open unit disk normal-

ized by f (0) = f ′(0)−1= 0 and satisfying the conditionz f′(z)/ f (z)≺ ez for |z| < 1. The
structural formula, inclusion relations, coefficient estimates, growth and distortion results,
subordination theorems and various radii constants for functions in the classS ∗

e are ob-
tained. In addition, the sharpS ∗

e -radii for functions belonging to several interesting classes
are also determined.

2010 Mathematics Subject Classification: 30C45, 30C50, 30C80

Keywords and phrases: convex and starlike functions, subordination, strongly starlike, ex-
ponential function, coefficient estimates, growth, distortion, radius problems.

1. Introduction

Let An denote the class of analytic functions in the open unit diskD := {z∈C : |z|< 1} of
the form f (z) = z+∑∞

k=n+1akzk, and letA :=A1. LetS be the subclass ofA consisting of
univalent functions. Using subordination, Ma and Minda [22] gave a unified representation
of various geometric subclasses ofS which are characterized by the quantitiesz f′(z)/ f (z)
or 1+z f′′(z)/ f ′(z) lying in a domain in the right half-plane. They considered the classΦ of
analytic univalent functionsϕ with positive real part mappingD onto domains symmetric
with respect to the real axis and starlike with respect toϕ(0) = 1 such thatϕ ′(0)> 0. For
ϕ ∈ Φ, they introduced the following classes that include several well-known classes as
special cases:

S
∗(ϕ) =

{

f ∈ A :
z f′(z)
f (z)

≺ ϕ(z)
}

and K (ϕ) =
{

f ∈ A : 1+
z f′′(z)
f ′(z)

≺ ϕ(z)
}

.

For−1≤ B < A ≤ 1, S ∗[A,B] := S ∗((1+Az)/(1+Bz)) is the familiar class consisting
of Janowski [16] starlike functions. The corresponding class of convex functions is denoted
by K [A,B]. The special caseA = 1− 2α, B = −1 with 0≤ α < 1 yield the subclasses
S ∗(α) andK (α) (0≤ α < 1) of S consisting of starlike functions of orderα and convex
functions of orderα, respectively, introduced by Robertson [32]. The classesS ∗ :=S ∗(0)
andK :=K (0) are the classes of starlike and convex functions respectively. For 0< γ ≤ 1,
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S S
∗(γ) :=S ∗(((1+z)/(1−z))γ) andS K (γ) := K (((1+z)/(1−z))γ) are the classes

of strongly starlike and strongly convex functions of orderγ. If

ϕ(z) = 1+
2

π2

(

log
1+

√
z

1−√
z

)2

thenU CV := K (ϕ) is the class of uniformly convex functions introduced by Goodman
[14]. The corresponding classSP :=S ∗(ϕ) of parabolic starlike functions, was studied by
Rønning [34]. Similarly,S ∗

L :=S ∗(
√

1+ z) is the subclass ofS ∗ introduced by Sokół and
Stankiewicz [45], consisting of functionsf ∈ A such thatz f′(z)/ f (z) lies in the domain
bounded by the right-half of the lemniscate of Bernoulli given by|w2−1|< 1. More results
regarding these classes can be found in [2, 4, 7, 10, 13, 21, 28, 29, 31, 39–44]. Recently, the
authors [26] discussed the properties of the class

S
∗
RL = S

∗
(

√
2− (

√
2−1)

√

1− z

1+2(
√

2−1)z

)

.

Precisely,f ∈ S ∗
RL providedz f′(z)/ f (z) lies in the interior of the left-half of the shifted

lemniscate of Bernoulli given by|(w−
√

2)2 − 1| < 1. In the similar fashion, many new
interesting subclasses of starlike and convex functions can be defined by altering the subor-
dinate functionϕ ∈ Φ. This paper aims to investigate the properties of the classes S ∗(ez)
andK (ez).

The exponential functionϕ0(z) = ez has positive real part inD, ϕ0(D) = {w ∈ C :
| logw| < 1} (see Figure 1) is symmetric with respect to the real axis and starlike with
respect to 1, andϕ ′

0(0) > 0. Henceϕ0 ∈ Φ so that the classesS ∗(ϕ0) andK (ϕ0) are
well-defined. Set

S
∗
e := S

∗(ez) and Ke := K (ez).

In view of the Alexander relation between the classesS ∗
e andKe: f ∈ Ke if and only if

z f′ ∈S ∗
e , the properties of functions in the classKe can be obtained from the corresponding

results forS ∗
e . Therefore, it is enough to focus our attention to the classS ∗

e . For a function
f ∈ A , we have the equivalences:

f ∈ S
∗
e ⇔ z f′(z)

f (z)
≺ ez (z∈ D) ⇔

∣

∣

∣

∣

log
z f′(z)
f (z)

∣

∣

∣

∣

< 1 (z∈ D).

This immediately yields the following structural formula for functions in the classS ∗
e .

Theorem 1.1. A function f belongs to the classS ∗
e if and only if there exists an analytic

function q, q≺ ez such that

f (z) = zexp

(

∫ z

0

q(t)−1
t

dt

)

.

Define the functionshn (n= 2,3, . . .) by h(0) = h′(0)−1= 0 and

(1.1)
zh′n(z)
hn(z)

= ezn−1
(z∈ D).

Thenhn ∈ S ∗
e (n= 2,3, . . .). In terms of the Taylor series expansion, the functionshn takes

the form

hn(z) = z+
1

n−1
zn−1+ · · · .
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In particular, the function

(1.2) h(z) := h2(z) = zexp

(

∫ z

0

et −1
t

dt

)

= z+ z2+
3
4

z3+
17
36

z4+ · · ·

plays the role of extremal function for many extremal problems over the classS ∗
e .

In Section 2, we investigate the geometric properties of functions in classS ∗
e . In par-

ticular, the relations betweenS ∗
e and other classes geometrically defined are considered.

The sharp radii of starlikeness of orderα (0≤ α < 1), parabolic starlikeness (and some of
others) of f ∈ S ∗

e are determined in the last section of the paper. The sharpS ∗
e -radii for

certain well-known classes of functions are also obtained.

2. Properties of functions in the classS ∗
e

In this section, we will determine the inclusion relations,coefficient estimates, growth and
distortion results and convolution properties of functions in the classS ∗

e . The following
two lemmas will be needed in our investigation.

Lemma 2.1. For r ∈ (0,1), the functionϕ0(z) = ez satisfies

min
|z|=r

Reϕ0(z) = ϕ0(−r) = min
|z|=r

|ϕ0(z)| and max
|z|=r

Reϕ0(z) = ϕ0(r) = max
|z|=r

|ϕ0(z)|.

Proof. For θ ∈ [0,2π), the functionψ0(θ ) = Reϕ0(reiθ ) = er cosθ cos(r sinθ ) attains its
minimum atθ = π and maximum atθ = 0. Consequently,

min
|z|=r

Reϕ0(z) = e−r = ϕ0(−r) and max
|z|=r

Reϕ0(z) = er = ϕ0(r).

The other equality follows by observing that the real-valued function|ez| = eRez is strictly
increasing in the interval[−r, r].

Lemma 2.2. For 1/e< a< e, let ra be given by

ra =

{

a−e−1, e−1 < a≤ (e+e−1)/2;
e−a, (e+e−1)/2≤ a< e.

Then
{w : |w−a|< ra} ⊂ {w : | logw|< 1}.

Proof. Let ϕ0(z) = ez. Then any point on the boundary ofϕ0(D) is of the formϕ0(eiθ ) =
ecosθ cos(sinθ )+ iecosθ sin(sinθ ) for θ ∈ [−π ,π ]. Note that the curvew= ϕ0(eiθ ) is sym-
metric with respect to the real axis, so it is sufficient to consider the interval 0≤ θ ≤ π . The
square of the distance from the point(a,0) to the points on the curvew= ϕ0(eiθ ) is given
by

z(θ ) = (a−ecosθ cos(sinθ ))2+e2cosθ sin2(sinθ ) = e2cosθ −2aecosθ cos(sinθ )+a2.

Let us first assume that 1/e< a≤ e/2. Thenz(θ ) is a decreasing function ofθ ∈ [0,π ].
Consequently, we have

ra = min
θ∈[0,π ]

√

z(θ ) =
√

z(π) = a− 1
e
.

Next, assume thate/2< a< e. A calculation shows that

z′(θ ) =−2ecosθ (ecosθ sinθ −asin(θ + sinθ ))
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and hencez′(0) = z′(π) = z′(θa) = 0, whereθa ∈ (0,π) is the real root of the equation
ecosθ sinθ = asin(θ + sinθ ). Observe thatθa1 < θa2 for a1 < a2. Moreover, the function
z(θ ) is increasing forθ ∈ [0,θa] and decreasing forθ ∈ [θa,π ]. Also,

z(π)− z(0) = 2

(

e− 1
e

)(

a− 1
2

(

e+
1
e

))

.

These observations lead to two cases:
Case 1:e/2< a ≤ (e+e−1)/2. In this case min{z(0),z(θa),z(π)} = z(π). Thusz(θ )

attains its minimum value atθ = π andra = min
√

z(θ ) = a−1/e.
Case 2:(e+ e−1)/2 ≤ a < e. It is easy to see that min{z(0),z(θa),z(π)} = z(0) and

hencera = min
√

z(θ ) = e−a in this case. This completes the proof of the lemma.

Remark 2.1. Following the notation and method of the proof of Lemma 2.2, it is easy to
deduce that

{w : | logw|< 1} ⊂ {w : |w−a|< Ra},
whereRa is given by

Ra =

{

e−a, e−1 < a≤ e/2;
z(θa), e/2< a< e.

2.1. Inclusion Relations

Recall that starlike functions of orderα (0≤α < 1) and strongly starlike functions of order
γ (0< γ ≤ 1)are characterized by the conditions Re(z f′(z)/ f (z))>α and|arg(z f′(z)/ f (z))| ≤
γπ/2 respectively. Kanas and Wisniowska [17] introduced the classk−S ∗ of k-starlike
(k≥ 0) functions f ∈ A defined by the condition

Re
z f′(z)
f (z)

> k

∣

∣

∣

∣

z f′(z)
f (z)

−1

∣

∣

∣

∣

(z∈ D),

which provides a continuous passage from starlike functions (k = 0) to parabolic starlike
functions(k= 1). Another interesting class isM (β ), β > 1, defined by

M (β ) =
{

f ∈ A : Re
z f′(z)
f (z)

< β , z∈ D

}

.

This class was investigated by Uralegaddiet al. [47]. The following theorem investigates
the inclusion relations between the classesS ∗(α) (0 ≤ α < 1), S S

∗(γ) (0 < γ ≤ 1),
M (β ) (β > 1), k−S ∗ (k≥ 0) andS ∗

e .

Theorem 2.1. The classS ∗
e satisfies the following relationships:

(i) S ∗
e ⊂ S ∗(α)⊂ S ∗ for 0≤ α ≤ 1/e;

(ii) S ∗
e ⊂ M (β ) for β ≥ e;

(iii) S ∗
e ⊂ S S

∗(γ)⊂ S ∗ for 2/π ≤ γ ≤ 1;
(iv) k−S ∗ ⊂ S ∗

e for k≥ e/(e−1).

The constants1/e, e,2/π and e/(e−1) in parts (i), (ii), (iii) and (iv) respectively are best
possible.

Proof. Let f ∈ S ∗
e . Thenz f′(z)/ f (z) ≺ ez. By Lemma 2.1, it is easy to deduce that

1
e
= min

|z|=1
Reez < Re

z f′(z)
f (z)

< max
|z|=1

Reez = e (z∈ D).
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Thus f ∈ S ∗(1/e)∩M (e). Also,
∣

∣

∣

∣

arg
z f′(z)
f (z)

∣

∣

∣

∣

≤ max
|z|=1

argez = 1 (z∈ D)

which shows thatf ∈ S S
∗(2/π).

0

2

−2

2

A B

C

D

γk

A= 1/e
B= e
argC=−argD = 1
k= e/(e−1)

Figure 1. Image of the unit circle under the mappingez.

For (iv), let f ∈ k−S ∗ and consider the conic domainΓk = {w∈ C : Rew> k|w−1|}.
Fork> 1, the curve∂Γk is the ellipseγk : x2 = k2(x−1)2+k2y2 which may be rewritten as

(x− x0)
2

a2 +
(y− y0)

2

b2 = 1,

wherex0 = k2/(k2 − 1), y0 = 0, a = k/(k2− 1) andb = 1/
√

k2−1. For the ellipseγk to
lie inside| logw| ≤ 1, it is necessary thatx0+ a ≤ e, which is equivalent to the condition
k ≥ e/(e−1). Figure 1 depicts that the ellipseγe/(e−1) lies completely inside| logw| ≤ 1.
Also, sinceΓk1 ⊂ Γk2 for k1 ≥ k2, it follows thatk−S ∗ ⊂ S ∗

e for k≥ e/(e−1).

Remark 2.2. In [10], Aouf, Dziok and Sokół investigated the propertiesof functions in the
classS ∗(qc), whereqc(z) =

√
1+ cz, c∈ (0,1]. In particular,S ∗(q1) = S ∗

L . The function
qc mapsD onto the domain

Oc = {w∈ C : Rew> 0, |w2−1|< c}
and its boundary∂Oc is the right loop of the Cassinian Ovals

(x2+ y2)2−2(x2− y2) = c2−1.

Using the similar analysis carried out in Theorem 2.1, it canbe shown thatS ∗(qc) ⊂ S ∗
e

for c≤ 1− (1/e2)≈ 0.864665, and this bound is best possible.

For−1≤ B< A≤ 1, letP[A,B] be the class of analytic functionsp of the formp(z) =
1+ c1z+ c2z2 + · · · satisfying p(z) ≺ (1+Az)/(1+Bz) for all z∈ D. We write P[1−
2α,−1] = P(α) (0 ≤ α < 1) andP(0) = P. The following lemma will be needed to
determine the conditions on parametersA andB so thatS ∗[A,B] is a subclass ofS ∗

e .

Lemma 2.3. ( [31, Lemma 2.1, p. 267], [38]) If p∈ P[A,B], then
∣

∣

∣

∣

p(z)− 1−ABr2

1−B2r2

∣

∣

∣

∣

≤ (A−B)r
1−B2r2 (|z|= r < 1).
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Moreover, if p∈ P(α), then
∣

∣

∣

∣

p(z)− 1+(1−2α)r2

1− r2

∣

∣

∣

∣

≤ 2(1−α)r
1− r2 ,

and
∣

∣

∣

∣

zp′(z)
p(z)

∣

∣

∣

∣

≤ 2r(1−α)

(1− r)(1+(1−2α)r)
(|z|= r < 1).

Theorem 2.2. Let−1< B< A≤ 1 and either

(i) 2(1−B2)< 2e(1−AB)≤ (e2+1)(1−B2) and(1−B)≤ (1−A)e; or
(ii) (1+e2)(1−B2)≤ 2(1−AB)e< 2(1−B2)e2 and(1+A)≤ e(1+B),

thenS ∗[A,B]⊂ S ∗
e .

Proof. Let f ∈ S ∗[A,B]. Thenz f′(z)/ f (z) ∈ P[A,B] so that Lemma 2.3 gives

(2.1)

∣

∣

∣

∣

z f′(z)
f (z)

− 1−AB
1−B2

∣

∣

∣

∣

<
A−B
1−B2 .

Let a := (1−AB)/(1−B2) and suppose that the two conditions in (i) hold. By multiplying
both sides of the inequality(1−B)≤ (1−A)eby the positive constant 1+B and rewriting,
we obtain(A−B)e≤ (1−AB)e−(1−B2). A division bye(1−B2) shows that the condition
(1−B) ≤ (1−A)e is equivalent to(A−B)/(1−B2) ≤ a− 1/e. Similarly, the condition
2(1−B2) < 2e(1−AB)≤ (e2+1)(1−B2) is equivalent to 1/e< a≤ (e+e−1)/2. From
(2.1), it follows that the values ofw = z f′(z)/ f (z) lies in the disk|w− a| < ra, where
ra := a−1/eand 1/e< a≤ (e+e−1)/2. Hencef ∈S ∗

e by Lemma 2.2. A similar argument
shows thatf ∈ S ∗

e if condition (ii) is satisfied and therefore its details are omitted.

2.2. Coefficient Estimates

The estimation of coefficient bounds is one of the classical problem in univalent univalent
theory. The famous Bieberbach conjecture for the classS which stood as a challenge for
several years, was finally settled by de Branges [12] in 1984.There are still many open
problems concerning determination of sharp coefficient bounds for various subclasses ofS

such asSP, S ∗
L andS ∗

RL (see [7,26,43,48]).
The correspondence between the classesS ∗

e andKe and [22, Theorem 3, p. 164] yield
the sharp upper bound for the Fekete-Szegö functional|a3 − µa2

2| in the classS ∗
e for all

realµ . If f (z) = z+a2z2+a3z3+ · · · ∈ S ∗
e , then

|a3− µa2
2| ≤







(3−4µ)/4, µ ≤ 1/4;
1/2, 1/4≤ µ ≤ 5/4;
−(3−4µ)/4, µ ≥ 5/4.

Suppose that the functionshn are given by (1.1). For 0≤ λ ≤ 1, define fλ and gλ by
fλ (0) = f ′λ (0)−1= gλ (0) = g′λ (0)−1= 0,

z f′λ (z)

fλ (z)
= exp

(

z(z+λ )
1+λz

)

and
zg′λ (z)

gλ (z)
= exp

(

−z(z+λ )
1+λz

)

,

respectively. Ifµ < 1/4 or µ > 5/4, then equality holds if and only iff is h2 or one of
its rotation. If 1/4< µ < 5/4, then equality holds if and only iff is equal toh3 or one of
its rotation. Ifµ = 1/4, equality holds if and only iff is equal tofλ or one of its rotation.
Whenµ = 5/4, inequality becomes equality if and only iff equalsgλ or one of its rotation.
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These observations together with [8, Theorem 1, p. 38] yieldthe sharp upper bound on the
absolute value of second, third and fourth coefficient of functions in the classS ∗

e .

Theorem 2.3. If f (z) = z+a2z2+a3z3+a4z4+ · · · ∈ S ∗
e , then|a2| ≤ 1, |a3| ≤ 3/4 and

|a4| ≤ 17/36. These bounds are sharp for the function h given by(1.2).

Since the functionh given by (1.2) maximizes|an| for n = 2,3,4 in the classS ∗
e , it is

natural to suspect thath maximizes|an| for eachn. But we are not able to prove it forn> 4.
However, we may obtain bounds on|an| (n = 5,6, . . .), although they are not sharp. By
Theorem 2.1(i),S ∗

e ⊂ S ∗(1/e) and hence

|an| ≤
1

(n−1)!

n

∏
k=2

(

k− 2
e

)

(n= 2,3, . . .)

for a function f ∈ S ∗
e (see [37]). These bounds can be further improved by making use of

the result by Rogosinski [33]: ifh(z) = 1+∑∞
k=1ckzk is subordinate toH(z) = 1+∑∞

k=1Ckzk

in D, whereH is univalent inD andH(D) is convex, then|cn| ≤ |C1| for n= 1,2, . . ..

Theorem 2.4. If f (z) = z+∑∞
k=2 akzk ∈ S ∗

e , then|an| ≤ 1 for n≥ 2.

Proof. Note that

1+
∞

∑
k=1

ckz
k = q(z) :=

z f′(z)
f (z)

≺ ϕ0(z) = ez = 1+ z+
z2

2!
+ · · · .

Sinceϕ0 mapsD univalently onto a convex domain, by Rogosinski’s result,|cn| ≤ 1 for
eachn. Writing z f′(z) = q(z) f (z) and comparing the coefficient ofzn on both sides, we
obtain

(n−1)an =
n−1

∑
k=1

cn−kak.

Therefore,|a2| = |c1| ≤ 1. Assume that|ak| ≤ 1 for k = 3,4, . . . ,n−1. Then it is easy to
see that

(n−1)|an|=
n−1

∑
k=1

|cn−k||ak| ≤
n−1

∑
k=1

|ak| ≤ n−1.

The result now follows by induction.

If f ∈ S ∗
e ∩A3, then the result of Theorem 2.4 can be further strengthened as seen by

the following theorem.

Theorem 2.5. If f (z) = z+∑∞
n=2anzn ∈ S ∗

e , then
∞

∑
n=2

(n2−e2)|an|2 ≤ e2−1.

Proof. Since f ∈ S ∗
e , thereforez f′(z)/ f (z) = ew(z) wherew is an analytic function inD

with w(0) = 0 and|w(z)| < 1 for all z∈ D. Using the identityf 2(z) = e−2w(z)(z f′(z))2, we
have

2π
∞

∑
n=1

|an|2r2n =
∫ 2π

0
| f (reiθ )|2dθ =

∫ 2π

0
|e−2w(reiθ )| |reiθ f ′(reiθ )|2 dθ

≥ e−2
∫ 2π

0
|reiθ f ′(reiθ )|2dθ = 2πe−2

∞

∑
n=1

n2|an|2r2n
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where 0< r < 1 anda1 = 1. Thus
∞

∑
n=1

(n2−e2)|an|2r2n ≤ 0.

On lettingr → 1−, we obtain the required result.

Corollary 2.1. Let f(z) = z+∑∞
k=4akzk ∈ S ∗

e . Then

|an| ≤

√

e2−1
n2−e2 < 1 for n= 4,5, . . . .

Remark 2.3. Since∑∞
n=1

1
(n!)2

< ∞, therefore the functionϕ0(z) = ez belongs toH 2, the

Hardy class of analytic functions inD. Hence for a functionf (z) = z+∑∞
n=2anzn ∈S ∗

e , the
sharp order of growth|an|= O(1/n) by [22, Corollary 4’, p. 166].

By making use of Lemma 2.2, we next determine necessary and sufficient conditions for
some special members to be in the classS ∗

e .

Theorem 2.6. (i) A function f(z) = z+anzn (n= 2,3, . . .) belongs to the classS ∗
e if and

only if |an| ≤ (e−1)/(ne−1).
(ii) The function z/(1−Az)2 is in S ∗

e if and only if|A| ≤ (e−1)/(e+1).

Proof. (i) Since S ∗
e ⊂ S ∗, |an| ≤ 1/n. To find the sharp estimate, observe thatw =

z f′(z)/ f (z) = (1+nanzn−1)/(1+anzn−1) mapsD onto the disk

(2.2)

∣

∣

∣

∣

w− 1−n|an|2
1−|an|2

∣

∣

∣

∣

<
(n−1)|an|
1−|an|2

.

Since(1−n|an|2)/(1−|an|2)≤ 1, therefore, in view of Lemma 2.2, the disk (2.2) lies inside
| logw| ≤ 1 if and only if

(n−1)|an|
1−|an|2

≤ 1−n|an|2
1−|an|2

− 1
e
.

This yields|an| ≤ (e−1)/(ne−1).
(ii) Clearly, the Koebe functionk(z) = z/(1−z)2 6∈ S ∗

e . Let g(z) = z/(1−Az)2 (A 6= 1).
Then the bilinear transformationw= zg′(z)/g(z) = (1+Az)/(1−Az) mapsD onto the disk

(2.3)

∣

∣

∣

∣

w− 1+ |A|2
1−|A|2

∣

∣

∣

∣

<
2|A|

1−|A|2

with diametric end pointsxL = (1−|A|)/(1+ |A|) andxR = (1+ |A|)/(1−|A|). If g∈ S ∗
e ,

then the disk (2.3) lies inside| logw| ≤ 1. Consequently, it is necessary thatxR ≤ e which
gives|A| ≤ (e−1)/(e+1). Conversely, if|A| ≤ (e−1)/(e+1), thena := (1+ |A|2)/(1−
|A|2) ≤ (e+ e−1)/2 and 2|A|/(1− |A|2) ≤ a− 1/e. By again applying Lemma 2.2, we
conclude that the disk (2.3) lies inside| logw| ≤ 1 and henceg∈ S ∗

e .

2.3. Subordination Results and their consequences

If f ∈ S ∗
e , then f (z)/z≺ h(z)/z by [22, Theorem 1’, p. 161], whereh is given by (1.2).

Since the functionez is convex univalent, this result can also be obtained as a special case
of [35, Theorem 1, p. 275]. Using this subordination relation, or by directly applying the
results of [22], we obtain the following result.
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Theorem 2.7. Let f ∈S ∗
e and h be given by(1.2). Then, for|z|= r, we have the following:

(i) (Growth Theorem)
−h(−r)≤ | f (z)| ≤ h(r).

In particular, f(D) ⊃ {w : |w|<−h(−1)≈ 0.450859}.
(ii) (Rotation Theorem)

∣

∣

∣

∣

arg

(

f (z)
z

)∣

∣

∣

∣

≤ max
|z|=r

arg

(

h(z)
z

)

.

(iii) (Distortion Theorem)

h′(−r)≤ | f ′(z)| ≤ h′(r).

Equality holds for some z6= 0 if and only if f is a rotation of h.

It is worth to remark that the proof of Theorem 2.7(iii) makesuse of Lemma 2.1. In [34],
Rønning proved that| f (z)| ≤K|z| (z∈D) for functionsf ∈SP, whereK = exp(14ζ (3)/π2)≈
5.502 (ζ (t) is the Reimann Zeta function). The next corollary proves thecorresponding re-
sult forS ∗

e .

Corollary 2.2. If f ∈ S ∗
e , then

| f (z)| ≤ |z|exp

(

∞

∑
n=1

1
n(n!)

)

= |z|K,

for all z ∈ D, where K≈ 3.73558. The function h given by(1.2) shows that this bound
cannot be further improved.

Proof. By Theorem 2.7(i), for|z|= r, we have

log

∣

∣

∣

∣

f (z)
z

∣

∣

∣

∣

≤
∫ r

0

et −1
t

dt ≤
∫ 1

0

et −1
t

dt =
∞

∑
n=1

1
n(n!)

.

The series on the right side of the above inequality is convergent and hence we obtain the
desired result.

In terms of subordination, Tuneski [46] gave an interestingcriteria for analytic functions
to be in the classS ∗[A,B] (−1≤ B< A ≤ 1). In 2007, Sokół [41] generalized this result
using Jack lemma [15] and obtained a sufficient condition forfunctions f ∈ A to be in a
more general class of functions. As an application, observethat the functionϕ0(z) = ez is
univalent and non-vanishing inD with ϕ0(0) = 1 and such that

Re

(

1+
zϕ ′′

0 (z)
ϕ ′

0(z)

)

> 2Re
zϕ ′

0(z)
ϕ0(z)

(z∈ D).

Therefore, a functionf ∈ A satisfying

1+ z f′′(z)/ f ′(z)
z f′(z)/ f (z)

−1≺ ze−z (z∈ D)

belongs to the classS ∗
e , by [41, Corollary 1, p. 239].

Let p be an analytic function inD with p(0) = 1. Recently, Aliet al. [3] and Kumar
et al. [18] determined conditions onβ so thatp(z) ≺

√
1+ z when 1+ βzp′(z)/p(z) is

subordinated to
√

1+ zor (1+Az)/(1+Bz). This, in turn, provide sufficient conditions for
analytic functionsf ∈ A to belong to the classS ∗

L . Motivated by their work, we prove the
corresponding subordination results involving the exponential function.
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Theorem 2.8. Let p be an analytic function inD with p(0) = 1. If either of the following
three conditions is satisfied:

(a) 1+βzp′(z)/p(z) ≺ ez (β ≥ e−1),
(b) 1+βzp′(z)/p(z)≺ (1+Az)/(1+Bz) (−1<B<A≤ 1, |β | ≥ (A−B)/(1−|B|)),
(c) 1+βzp′(z)/p(z) ≺

√
1+ z (β ≥ 1),

then p(z)≺ ez.

Proof. Let ϕ0 be the convex univalent function defined byϕ0(z) = ez. Then it is clear
that βzϕ ′

0(z) is starlike. The main crux of the proof relies on the observation that if the
subordination

1+β
zp′(z)
p(z)

≺ 1+β
zϕ ′

0(z)
ϕ0(z)

= 1+βz:= ψ(z)

is satisfied, thenp(z)≺ ϕ0(z) by [27, Corollary 3.4h.1, p. 135].
(a) It suffices to show thatϕ0(z)≺ ψ(z). Sinceψ(D) = {w∈C : |w−1|< β}, it follows

that ϕ0(D) ⊂ ψ(D) if β ≥ e− 1 by Remark 2.1. Henceϕ0(z) ≺ ψ(z) and consequently
p(z)≺ ez.

(b) Setφ(z) = (1+Az)/(1+Bz). Thenφ−1(w) = (w−1)/(A−Bw). Since the subordi-
nationφ(z)≺ψ(z) is equivalent toz≺ φ−1(ψ(z)), we only need to show that|φ−1(ψ(eit ))| ≥
1 for−π ≤ t ≤ π . Fott ∈ [−π ,π ], we have

|φ−1(ψ(eit ))|=
∣

∣

∣

∣

βeit

(A−B)−βBeit

∣

∣

∣

∣

≥ |β |
A−B+ |βB| ≥ 1

provided|β | ≥ (A−B)/(1−|B|). Thusφ(z) ≺ ψ(z) and hencep(z)≺ ez.
(c) Let χ(z) =

√
1+ z. Sinceχ(D) ⊂ ψ(D) if β ≥ 1 (by [4, Lemma 2.2, p. 6559]), it

follows thatχ(z)≺ ψ(z) and sop(z)≺ ez.

For f ∈ A , the functionp(z) = z f′(z)/ f (z) is analytic inD with p(0) = 1. As a result,
Theorem 2.8 immediately yields the following corollary.

Corollary 2.3. Let f ∈ A and set

Ψβ (z) = 1+β
(

1+
z f′′(z)
f ′(z)

− z f′(z)
f (z)

)

.

If either of the following three conditions is satisfied:

(a) Ψβ (z)≺ ez (β ≥ e−1);
(b) Ψβ (z)≺ (1+Az)/(1+Bz) (|β | ≥ (A−B)/(1−|B|)); or
(c) Ψβ (z)≺

√
1+ z(β ≥ 1),

then f∈ S ∗
e .

These results can be extended to functions with fixed second coefficient by using the
results of [6].

2.4. Convolution Properties

For analytic functionsf (z) = z+∑∞
n=2anzn andF(z) = z+∑∞

n=2Anzn, their convolution
(or Hadamard product) is defined as( f ∗F)(z) = z+∑∞

n=2anAnzn. The classes of starlike,
convex and close-to-convex functions are closed under convolution with convex functions
(see [36]). A similar result holds forS ∗

e . By [22, Theorem 5, p. 167], we have

Theorem 2.9. If f ∈ S ∗
e and g∈ K , then f∗g∈ S ∗

e .
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Let Γi : A → A (i = 1,2,3) be the operators defined by

Γ1[ f ](z) = z f′(z), Γ2[ f ](z) =
1
2
( f (z)+ z f′(z)) and

Γ3[ f ](z) =
k+1

zk

∫ z

0
ζ k−1 f (ζ )dζ (Rek> 0).

These operators were introduced by Alexander [1], Livingston [20] and Bernardi [11] re-
spectively. Each of these operators can be written as a convolution operator:Γi = f ∗ gi

(i = 1,2,3), where

g1(z) =
z

(1− z)2 , g2(z) =
z− z2/2
(1− z)2 , and g3(z) =

∞

∑
n=1

k+1
k+n

zn.

The functiong1 is convex in|z| < 2−
√

3, g2 is convex in|z| < 1/2 while g3 is convex in
D. Hence Theorem 2.9 gives

Corollary 2.4. Let f ∈ S ∗
e . ThenΓi [ f ] ∈ S ∗

e in |z| < r i (i = 1,2,3) where r1 = 2−
√

3,
r2 = 1/2 and r3 = 1.

The convolution of two starlike functions need not be univalent inD. Let f ,g∈ S ∗ and
hρ(z) = ( f ∗ g)(ρz)/ρ . Ling and Ding [19, Theorem 1, p. 404] proved thathρ ∈ S ∗ for
0≤ ρ ≤ 2−

√
3. Ali et al. [9] determined conditions onρ so thathρ belongs to the classes

SP, S ∗(α) (0≤ α < 1), S S
∗(γ) (0< γ ≤ 1) andS ∗

L . The next theorem investigates the
corresponding result forS ∗

e .

Theorem 2.10. If f ,g∈ S ∗, then f∗g∈ S ∗
e in |z|< ρ0, where

(2.4) ρ0 =
e−1

2e+
√

1+3e2
≈ 0.167641.

The numberρ0 is best possible.

Proof. Consider the functionH : D→C defined by

H(z) =
z(1+ z)
(1− z)3 = z+

∞

∑
n=2

n2zn.

The functionH is analytic inD and satisfies
∣

∣

∣

∣

zH′(z)
H(z)

− 1+ r2

1− r2

∣

∣

∣

∣

≤ 4r
1− r2 , |z|= r < 1.

Let 0≤ r ≤ ρ0, whereρ0 is given by (2.4). Then it is a simple exercise to show that if
a := (1+ r2)/(1− r2) then 1/e< a≤ (e+e−1)/2 and 4r/(1− r2) ≤ a−1/e. By Lemma
2.2, it follows thatH ∈ S ∗

e in |z|< ρ0. Also, at the pointz=−ρ0, we have
∣

∣

∣

∣

log
zH′(z)
H(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

log

(

1−4ρ0+ρ2
0

1−ρ2
0

)∣

∣

∣

∣

= | log(1/e)|= 1.

This shows that the numberρ0 is sharp.
Now, let f ,g∈ S ∗. Then the functionsF andG defined byzF′(z) = f (z) andzG′(z) =

g(z) belong toK . Since the convolution of two convex functions is convex,F ∗G ∈ K .
SinceH(ρ0z)/ρ0 ∈ S ∗

e , therefore(F ∗G∗H)(ρ0z)/ρ0 ∈ S ∗
e by Theorem 2.9. Butf ∗g=

F ∗G∗H. Hencef ∗g∈ S ∗
e in |z|< ρ0.
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3. Radius Problems

Let F andG be subsets ofA . Then theG -radius inF , denoted byRG (F ) is the largest
R such that for everyf ∈ F , r−1 f (rz) ∈ G for eachr ≤ R. In particular, ifF ⊂ G then
RG (F ) = 1. In this section, we computeRG (S

∗
e ) andRS ∗

e
(F ) for various subclassesF

andG of A .
The first theorem of this section determines sharpS ∗(α) (0≤ α < 1), S S

∗(γ) (0<
γ ≤ 1), M (β ) (β > 1) andk−S ∗ (k ≥ 0) radii in the classS ∗

e . By Theorem 2.1, it is
known thatRS ∗(α)(S

∗
e ) =RS S ∗(γ)(S

∗
e ) =RM (β )(S

∗
e ) = 1 for 0≤α ≤ 1/e, 2/π ≤ γ ≤

1 andβ ≥ e.

Theorem 3.1. Let f ∈ S ∗
e . Then we have the following.

(i) If 1/e≤ α < 1, then f is starlike of orderα in |z|< (− logα);
(ii) If 1< β ≤ e, then f∈ M (β ) in |z|< logβ ;
(iii) If 0< γ ≤ 2/π , then f is strongly starlike of orderγ in |z|< γπ/2;
(iv) If k > 0, then f is k-starlike in|z| < log((1+ k)/k). In particular, f is parabolic

starlike in |z|< log2.

The results are all sharp.

Proof. Since f ∈ S ∗
e , z f′(z)/ f (z) ≺ ez and hence Lemma 2.1 gives

e−r ≤ Re
z f′(z)
f (z)

≤ er , |z|= r < 1

which verifies the validity of parts (i) and (ii). The function h given by (1.2) shows that the
constants− logα and logβ are best possible.

Also, we can writez f′(z)/ f (z) = ew(z) wherew is an analytic function inD with w(0) = 0
and|w(z)| < 1 for all z∈ D. By Schwarz lemma,|w(z)| ≤ |z| for all z∈ D. If |z| < γπ/2,
then

|argew(z)|= | Imw(z)| ≤ |w(z)| ≤ |z|< γπ/2.

Thus f ∈ S S
∗(γ) in |z| < γπ/2. At the pointz0 = iγπ/2, the functionh given by (1.2)

gives
∣

∣

∣

∣

arg
z0h′(z0)

h(z0)

∣

∣

∣

∣

= |argez0|= | Imz0|=
γπ
2
.

This proves (iii).
For the proof of (iv), note thatf is k-starlike is|z| < r whenever Reew(z) > k|ew(z) −

1|. Since Reew(z) > e−r and |ew(z) − 1| < 1− e−r , we conclude that the conditione−r >

k(1− e−r) is sufficient for the inequality Reew(z) > k|ew(z) − 1| to hold. Hence solving
e−r > k(1−e−r), we obtainr < log((1+ k)/k). For the functionh given by (1.2) and for
z0 =− log((1+ k)/k), we have

Re
z0h′(z0)

h(z0)
= Reez0 =

k
1+ k

= k|1−ez0|= k

∣

∣

∣

∣

1− z0h′(z0)

h(z0)

∣

∣

∣

∣

.

This completes the proof of the theorem.

Remark 3.1. Let f ∈ S ∗
e . Thenz f′(z)/ f (z) = ew(z) wherew is Schwarz function. Differ-

entiation gives 1+ z f′′(z)/ f ′(z) = ew(z)+ zw′(z) so that

Re

(

1+
z f′′(z)
f ′(z)

)

≥ Reew(z)−|zw′(z)|.
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By using the identity|w′(z)| ≤ (1−|w(z)|2)/(1−|z|2), we deduce that

Re

(

1+
z f′′(z)
f ′(z)

)

≥ e−|z|− |z|
1−|z|2 .

The functiong(r) = e−r − r/(1− r2) is decreasing in[0,1) andg(0) = 1. Hence Re(1+
z f′′(z)/ f ′(z)) > α in |z| < r(α) wherer(α) is the real root of the equationg(r) = α in
(0,1). In particular,r(0)≈ 0.478172.

Now, we will determine theS ∗
e -radii for several interesting subclasses of analytic func-

tions. We begin with the fundamental classS of normalized univalent functions.

Theorem 3.2. TheS ∗
e -radius for the classS is given byRS ∗

e
(S ) = (e−1)/(e+1) ≈

0.462117. This radius is sharp.

Proof. A function f ∈ S satisfies the sharp inequality (see [30, Theorem 6.5, p. 168]):
∣

∣

∣

∣

log
z f′(z)
f (z)

∣

∣

∣

∣

≤ log
1+ |z|
1−|z| (z∈ D).

If |z|< (e−1)/(e+1), then| log(z f′(z)/ f (z))| < 1. Thusf ∈ S ∗
e in |z|< (e−1)/(e+1).

To show that the bound(e−1)/(e+1) cannot be increased, consider the Koebe function
k(z) = z/(1− z)2. At the pointz0 = (e−1)/(e+1), a computation shows that

∣

∣

∣

∣

log
z0k′(z0)

k(z0)

∣

∣

∣

∣

=

∣

∣

∣

∣

log
1+ z0

1− z0

∣

∣

∣

∣

= 1.

This proves that(e− 1)/(e+ 1) is theS ∗
e -radius for the classS and that the result is

sharp.

SinceS ∗ ⊂ S and Koebe functionk(z) = z/(1− z)2 is starlike, Theorem 3.2 shows
thatRS ∗

e
(S ∗) = (e−1)/(e+1). We next determine theS ∗

e -radius for the classS ∗[A,B]
(−1≤ B< A≤ 1) with the casesB≥ 0 andB< 0.

Theorem 3.3. Let 0≤ B< A≤ 1. Then theS ∗
e -radius for the classS ∗[A,B] is given by

RS ∗
e
(S ∗[A,B]) = min

{

1,
e−1

Ae−B

}

.

The result is sharp. In particular, if1−B≤ (1−A)e, thenS ∗[A,B]⊂ S ∗
e .

Proof. Let f ∈ S ∗[A,B]. Thenz f′(z)/ f (z) ∈ P[A,B] so that Lemma 2.3 gives
∣

∣

∣

∣

z f′(z)
f (z)

− 1−ABr2

1−B2r2

∣

∣

∣

∣

≤ (A−B)r
1−B2r2 , |z|= r < 1.

SinceB ≥ 0, a := (1−ABr2)/(1−B2r2) ≤ 1. Using Lemma 2.2, the functionf satisfies
| log(z f′(z)/ f (z))| ≤ 1 provided

(A−B)r
1−B2r2 ≤ 1−ABr2

1−B2r2 − 1
e
.

This yieldsr ≤ (e−1)/(Ae−B). The result is sharp for the function

(3.1) f (z) =

{

z(1+Bz)
A−B

B , B 6= 0;
zeAz, B= 0.
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The functionf ∈ S ∗[A,B] and at the pointz0 = (1−e)/(Ae−B), we have
∣

∣

∣

∣

log
z0 f ′(z0)

f (z0)

∣

∣

∣

∣

=

∣

∣

∣

∣

log
1+Az0

1+Bz0

∣

∣

∣

∣

= | log(1/e)|= 1.

Theorem 3.4. Let−1≤ B< A≤ 1, with B< 0. Let

R1 = min

{

1,

√

1+e2

(1+e2)B2+2e(1−AB)

}

, R2 = min

{

1,
e−1

Ae−B

}

and

R3 = min

{

1,
2(e−1)

(A−B)+
√

(A−B)2+4B(eB−A)(e−1)

}

.

Then theS ∗
e -radius for the classS ∗[A,B] is given by

RS ∗
e
(S ∗[A,B]) =

{

R2, R2 ≤ R1;
R3, R2 > R1.

Proof. Let f ∈ S ∗[A,B]. Then Lemma 2.3 shows that the quantityw= z f′(z)/ f (z) lies in
the disk|w−a| ≤ R, wherea := (1−ABr2)/(1−B2r2)> 1 andR := (A−B)r/(1−B2r2).
Also, observe that the numbersR1, R2 andR3 are determined so thatr ≤ R1 if and only if
a≤ (e+e−1)/2, r ≤ R2 if and only if R≤ a−1/eandr ≤ R3 if and only if R≤ e−a.

Suppose thatR2 ≤ R1. Sincer ≤ R1 is equivalent toa ≤ (e+ e−1)/2, for 0≤ r ≤ R2,
it follows that a ≤ (e+ e−1)/2. From Lemma 2.2 theS ∗

e -radius satisfies the inequality
R≤ a−1/e. This shows thatf ∈ S ∗

e in |z| ≤ R2.
Next, assume thatR2 > R1. In this case, sincer ≥ R1 if and only if a≥ (e+e−1)/2, for

r = R2, we havea≥ (e+e−1)/2. Lemma 2.2 shows thatf ∈ S ∗
e in |z| ≤ r if R≤ e−a, or

equivalently ifr ≤ R3.
For the functionf given by (3.1),{z f′(z)/ f (z) : |z| < r} = {w : |w−a| < R}, wherea

andRare as defined above. This shows that the result is sharp.

Corollary 3.1. RS ∗
e
(K ) = (e−1)/e≈ 0.632121. The result is sharp.

Proof. By the well-known Marx Strohhäcker theorem [27, Theorem 2.6(a), p. 57],K ⊂
S ∗(1/2) andS ∗[0,−1] =S ∗(1/2), therefore by Theorem 3.4, theS ∗

e -radius for the class
K is at least(e−1)/e. The half-plane mappingl(z) = z/(1−z)∈K satisfieszl′(z)/l(z) =
1/(1− z). In particular, at the pointz0 = (e−1)/e, we have

∣

∣

∣

∣

log
z0l ′(z0)

l(z0)

∣

∣

∣

∣

= | loge|= 1.

This establishes the sharpness of the result.

Let W be the class of functionsf ∈ A satisfying f (z)/z∈ P. MacGregor [23], Aliet
al. [4] and Mendiratta [26] determinedS ∗, S ∗

L andS ∗
RL radii respectively for the classW .

The following result determines the sharpS ∗
e -radius for the classW .

Theorem 3.5. TheS ∗
e -radius for the classW is given by

RS ∗
e
(W ) =

e−1

e+
√

e2+(e−1)2
≈ 0.28956.

This bound is best possible.
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Proof. Let f ∈ W . Then the functiong(z) = f (z)/z belongs to the classP and using
Lemma 2.3, it is easy to deduce that

∣

∣

∣

∣

z f′(z)
f (z)

−1

∣

∣

∣

∣

≤ 2r
1− r2 .

In view of Lemma 2.2, the disk|w−1| ≤ 2r/(1− r2) lies inside| logw| ≤ 1 if

2r
1− r2 ≤ 1− 1

e
.

This yieldsr ≤ R := (e− 1)/(e+
√

e2+(e−1)2). HenceRS ∗
e
(W ) ≥ R. The function

f (z) = z(1+ z)/(1− z)∈ W and at the pointz0 =−R, we obtain
∣

∣

∣

∣

log
z0 f ′(z0)

f (z0)

∣

∣

∣

∣

=

∣

∣

∣

∣

log
1−2R−R2

1−R2

∣

∣

∣

∣

= | log(1/e)|= 1.

ThusRS ∗
e
(W )≤ R.

Motivated by [5, 24, 25], we close this section by determining theS ∗
e -radii for several

classes of functionsf ∈ A characterized by its ratio with a certain functiong. Let F1 be
the class of functionsf ∈ A satisfying f/g∈ P for someg∈ W .

Theorem 3.6. TheS ∗
e -radius for the classF1 is

RS ∗
e
(F1) =

e−1

2e+
√

4e2+(e−1)2
≈ 0.154269.

The result is sharp.

Proof. Let f ∈ F1 and definep,q : D → C by p(z) = g(z)/z andq(z) = f (z)/g(z). Then
p,q∈ P and using Lemma 2.3, it follows that

∣

∣

∣

∣

z f′(z)
f (z)

−1

∣

∣

∣

∣

≤
∣

∣

∣

∣

zp′(z)
p(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

zq′(z)
q(z)

∣

∣

∣

∣

≤ 4r
1− r2 (|z|= r)

In view of Lemma 2.2,f ∈ S ∗
e provided 4r/(1− r2) ≤ 1− 1/e, which givesr ≤ R :=

(e− 1)/(2e+
√

4e2+(e−1)2). To show thatR is the sharpS ∗
e -radius forF1, consider

the functionf0(z) = z(1+ z)2/(1− z)2 with g0(z) = z(1+ z)/(1− z). Clearly f0 ∈ F and
at the pointz0 =−R, a routine calculation shows that

∣

∣

∣

∣

log
z0 f ′0(z0)

f0(z0)

∣

∣

∣

∣

=

∣

∣

∣

∣

log
1−4R−R2

1−R2

∣

∣

∣

∣

= | log(1/e)|= 1.

Let F2 be the class of functionsf ∈ A satisfying the inequality

(3.2)

∣

∣

∣

∣

f (z)
g(z)

−1

∣

∣

∣

∣

< 1 (z∈D)

for someg∈ W .

Theorem 3.7. TheS ∗
e -radius for the classF2 is given by

RS ∗
e
(F2) =

2(e−1)

3e+
√

9e2+4(2e−1)(e−1)
≈ 0.190884.

This bound is best possible.
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Proof. Let f ∈F2 and define functionsp,q :D→C by p(z) = g(z)/zandq(z) = g(z)/ f (z).
Since the inequality (3.2) is equivalent to Reg(z)/ f (z) > 1/2, thereforep ∈ P andq ∈
P(1/2). Applying Lemma 2.3 to the identity

z f′(z)
f (z)

= 1+
zp′(z)
p(z)

− zq′(z)
q(z)

we obtain
∣

∣

∣

∣

z f′(z)
f (z)

−1

∣

∣

∣

∣

≤ r(3+ r)
1− r2 .

By Lemma 2.2, the functionf satisfies| log(z f′(z)/ f (z))| ≤ 1 if r(3+ r)/(1− r2)≤ 1−1/e.
This yieldsr ≤ R := 2(e−1)/(3e+

√

9e2+4(2e−1)(e−1)). For sharpness, note that the
function f0(z) = z(1+z)2/(1−z) belongs to classF2 with g0(z) = z(1+z)/(1−z). At the
pointz0 =−R, we have

∣

∣

∣

∣

log
z0 f ′0(z0)

f0(z0)

∣

∣

∣

∣

=

∣

∣

∣

∣

log
1−3R−2R2

1−R2

∣

∣

∣

∣

= | log(1/e)|= 1.

Hence the result is sharp.

The other related radius problems carried out in [5] can alsobe performed on the similar
lines as that of Theorems 3.6 and 3.7 for the classS ∗

e .

Remark 3.2. Let CS ∗ be the class of close-to-star functions defined by

CS
∗ =

{

f ∈ A :
f
g
∈ P andg∈ S

∗
}

.

ThenRS ∗
e
(C S

∗) = (e−1)/(2e+
√

1+3e2) ≈ 0.167641. To see this, letf ∈ CS ∗ and
g∈ S ∗ such thatp(z) = f (z)/g(z) belongs toP. Thenzg′(z)/g(z) ∈ P so that

∣

∣

∣

∣

zp′(z)
p(z)

∣

∣

∣

∣

≤ 2r
1− r2 and

∣

∣

∣

∣

zg′(z)
g(z)

− 1+ r2

1− r2

∣

∣

∣

∣

≤ 2r
1− r2 ,

by applying Lemma 2.3. Using these estimates in the identity

z f′(z)
f (z)

=
zg′(z)
g(z)

+
zp′(z)
p(z)

it is easy to see that
∣

∣

∣

∣

z f′(z)
f (z)

− 1+ r2

1− r2

∣

∣

∣

∣

≤ 4r
1− r2 .

The rest of the proof is similar to Theorem 2.10 and so its details are omitted.
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