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Abstract

In this paper, a system of quasilinear elliptic equations is investigated, which
involves critical exponents and multiple Hardy—type terms. By variational
methods and analytic techniques, the existence of positive solutions to the
system is established. The conclusions are new even when the Hardy—type
terms disappear.
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1 Introduction

In this paper, we study the following elliptic system:

uP~t W, v
A= = (v 2 Q)
Igjl p p*(t) 0 I(xl ) -
v o(u, v .
A = p— = P (g, ) 4 R E Y (11)
lzlp p pr(t) |zl

u,v >0, (u,v) €D xD,

where 1 < p < N, O§u<ﬂ::((N—p)/p)p, 0<t<p, m>0 1m>0 —A, =
—div(|V - [P72.) is the p-Laplace operator, the space D := DP(R") denotes the com-
pletion of Cg°(RY) with respect to (fpx |V - [Pdz)'/?, [i is the best Hardy constant,

*Corresponding author.



p* = Np/(N —p) is the critical Sobolev exponent and p*(t) := p(IN —t)/(N — p)
is the critical Hardy—Sobolev exponent with p*(0) = p*. H,, H,, @, and @, are the
partial derivatives of the 2-variable C'~functions H(u,v) and Q(u,v) respectively.
The functions H and @ satisfy the following conditions:
(H) H,Qe C'(R* x RT,RT),
H,(u,0) = H,(0,v) = H,(u,0) = H,(0,v) =0, Yu,v>0,
Qu(uv 0) = QU(O,U) = Qv(uv 0) = QU((]?U) = 07 VU,U > 07
H(u, \v) = N H(u,v), YA>0, u,v>0, (p*homogeneity),
Qu, W) = W OQ(u,v), YA>0, u,v>0, (p*(t)-homogeneity),

and the 1-homogenous functions G and G are concave, where G and G are
defined as follows:

G, 3") = H(a,f), G, 5"Y)=Q(a,B), VYa,3>0.

The following properties are important and well-known:

(H') Suppose F(s,t) is a g—homogeneous differential function with ¢ > 1. Then
(1) sFi(s,t) +tFy(s,t) = qF(s,t), Vs,t €R;
(i) CF is attained at some (sg,ty) € R?, where

Cp :=max{F(s,t)|s,t € R, |s]7+ |t|]! =1};

(iii) |F'(s,t)| < Cp(]s|?+|t]7), Vs, teR;
(iv) Fs(s,t) and Fy(s,t) are (¢ — 1)-homogeneous.

In this paper, we work in the product space D x D. The corresponding energy
functional of (1.1) is defined on D x D by

1 p p
I(u,v) = ];/ (!Vu!p+lw|p—u—|u| il )da

RN |z [P
_E/ H(lul, [o])da — 2 / Q(’“"t'”)dx.
p* Jry p*(t) Jev |zl

Then I € CY(D x D,R). A pair of functions (u,v) € D x D is said to be a solution
of (1.1) if u,v > 0, and

(w,0) # (0,0),  (I'(u,v),(¢,9)) =0, V(p,¢) €D xD,

where I'(u,v) denotes the Fréchet derivative of I at (u,v).
Problem (1.1) is related to the Hardy and Hardy—Sobolev inequalities [8, 20]):

|u|p 1 oo (v
—dr < — \VulPdz ,V u e Cg°(RY), (1.2)
R RN

N |zfP i
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|l () PO P oo (TN
( . dm) < Cp) | IVulde ¥ ue G (RY), (1.3)

jz[*

where C(p, t) is a constant depending on p and ¢, 1 <p < N and 0 <t < p.
By (1.2) the operator L := (—A, - —pu| - |P72-/|z|P) is positive for all u < i and
therefore the following equivalent norm of D can be defined:

I ::(/ <|Vu|p—,u: } )dx)’l’, Yu € D.

Suppose (H) holds. By (H’), (1.2) and (1.1), the following best Hardy—Sobolev

constants are well-defined:
/ (IVur = |U|p>dx
RN |z[P

S(u,t) := inf i , 1.4
7)) wED\{0} </ |ul? (t)dx>pf;t> (1.4)
ry  |z]f
/ <|Vu|p + |[VulP — i W)dz
SH(Mvo) = I%f\{o} — xL ) (15)
u,ve P*
([ #ul.has)
RN
/ <|Vu|p + |Vu|P — u%)dx
So(p,t) ;= inf ZBY . , 1.6
alnt) =, Bl ( Q(|U|,|v|)dx>p*<t> (16)
RN |2

where 0 <t <p, —oo < pu < ji. It should be mentioned that the strongly coupled
terms [pn H(|ul,|v|)dz and [y de are critical in the senses of Sobolev or
Hardy—Sobolev embedding. Morais Filho etc. studied the constant Sy (0,0) and
proved the existence of solutions for a quasilinear elliptic systems in [17]. Alves etc.
studied in [3] the following best constant and found its extremals:

/ (IVul’ + [Vof)dz
Ao, ) := inf BT

e f 7ol )
RN

where 1 < 0,7 <2* =1, o+7=2":=2N/(N —2). Note that A(c,7) in (1.7)
is a special case of Sy (0,0). The methods and conclusions in [3] and [17] are very
stimulating.

(1.7)

In recent years, much attention has been paid to the semilinear and quasilinear
elliptic problems involving the Hardy and Hardy—Sobolev inequalities, and many
results were obtained providing us very good insight into the problems (e.g. [1], [5],



[6], [9], [10], [11], [14], [15], [18], [19], [22], [23], [30], [32], [33] and the references
therein). In particular, Filippucci etc. studied in [18] the following problem:

upfl up*(s)fl

—A [ P*—1+

T e T 2l
we€D, u>0 in RY,
—oco< u<p, 0<s<p.

Y

(1.8)

The main difficulty of studying (1.8) is that the critical Hardy—Sobolev and Sobolev
exponents appear simultaneously in the equation and induce more difficulties. By
very technic and complicated analysis, the authors of [18] proved the existence of
positive solutions to (1.8) by the Mountain-Pass theorem ([4]) and the concentration
compactness principle ([26, 27]). The extremals of the best constant S(u,t) in (1.4)
and some related singular quasilinear elliptic problems were investigated in [1], [18],
[19] and [23], and we infer that, for all 0 <t < p, 0 < pu < f1, the best constant S,
is achieved by the implicit extremal function:

p—N

Vidl@)=e» Uui(e'z), Ve>0, (1.9)

that satisfies

: Vel _ [ V@O
L (9 —p=s) = [ Rer— (5,05,

[P | zff

where U, ;(x) is some radial function.

Compared with single singular elliptic equations, the singular elliptic systems
involving the Hardy and Hardy—Sobolev inequalities have been seldom studied, we
can only find several results in [2], [7], [16], [21], [24], [25], [28] and [29], where some
nonlinear singular critical systems were investigated, the corresponding best Hardy—
Sobolev constants were studied and existence results of solutions were obtained. The
main difficulties of studying singular elliptic systems are that, the singularity may
occur and the strongly coupled terms may cause more difficulties.

To continue, we define

My := max{H(|al,|8])

o, BER, |af + 8P =1}; (1.10)

Mg = max{Q(|oz|7 |ﬁ|)m‘a,ﬁ eER, |aff + |8 = 1}. (1.11)

Then there exist (o, 3;) € Rt x R*, i = 1,2, such that My and Mg are achieved
respectively, that is,

My = H(ay, S)7, o+ 5] =1, (1.12)

Mg = Q(az, )7, of+ B =1. (1.13)

In this paper, stimulated by the references mentioned above, we investigate (1.1).
The main results of this paper are summarized in the following theorems. To the
best of our knowledge, the conclusions are new even in the case p = 0.
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Theorem 1.1. Suppose that 0 <t <p, —oo < pu < i and (H) holds. Then
) Su(0) = My S(1,0), Solpst) = My'S(yn1).
(ii) Forall 0<p<p, Su(p,0) has the minimizers (anVEy(x), fiVig(x)),
Sq(p,t) has the minimizers (asVe (), BoVE(x)), where Ve (x) are
defined as in (1.9).

Theorem 1.2. Suppose that 1 <p < N, 0<pu<p, 0<t<p, n >0,1m >0 and
(H) holds. Then the problem (1.1) has a solution.

Remark 1.1. The coefficients 1/p* and 1/p*(t) in (1.1) are only used for the con-
venience of computation and have no particular meanings. By Theorem 1.1, the
existence of solutions to (1.1) is obvious in anyone of the following cases: (i) m =
0, ;2 >0, t>0; (ii) ;; >0, 7o =0, t >0; (iii)) £t =0, n; >0, gy > 0.

Remark 1.2. The following problem is an example of (1.1) :

uP~ o1 Oy U v
—Apu — p—— = —u” ™ ,
! [P pr pr(t) el
A v — M?Jp_ — E o1, 11—1 + Ty UV (114>
5 jzfp p pr(t)  aff

u,v >0, (u,v) €D xD.

where the parameters satisfy the following condition:

(H") N>3, 1<p<N, 0§M<g=(¥)p, 0O<t<p, o5,7>1 i=12,

01+7'1:p*:NN_z,, oy + Ty = p*(t) = N=p

Note that (1.14) involves the critical Hardy—Sobolev and Sobolev exponents and admits
a solution by Theorem 1.2.

This paper is organized as follows. Theorem 1.1 is verified in Section 2, some
preliminary results are established in Section 3 and Theorem 1.2 is proved in Section
4. In the following argument, [|u|| = ([on(|Vu[P — pluP|z|7P)dz)/? denotes the
equivalent norm of the space D, ||(u,v)|lpxp = (|[ull’ + ||v][?)/? is the norm of
the space D x D. For all £ > 0 small enough, O(g') denotes the quantity satisfying
|0(e")] /et < C, o(e") means |o(e")|/e" — 0 ase — 0 and o(1) is a generic infinitesimal
value. In particular, the quantity O; (") means that there exist the constants C;, Cy >
0 such that Cie' < O;(e") < Coe’ as € small. We always denote positive constants
as C' and omit dz in integrals for convenience.

2 The best constants Sy (p,0) and So(u,t)

In this section, we study Sy (u,0) and Sg(u,t), and verify Theorem 1.1.

5



Proof of Theorem 1.1. (i) We only show the proof for Sg(u,t). The argument is
similar to that of [17], where the best constant Sy (0,0) was studied.

Let w € D\ {0} and («g, 52) be defined as in (1.13). Choosing (u,v) = (apw, Bow)
n (1.6) we have

> Solu, 1) (2.1)

Taking the infimum as w € D\ {0} in (2.1), by (1.4) and (1.10)—(1.13) we have
Mg*S(pu,t) > Sqlu,t). (2.2)

For any w,v € D\ {0}, by Proposition 1 of [17] we have that

D — [ Qa7 bl 7o)
RN

RN |5U|t
< QI a7 ul| o vy, | 2] 7O 0] ooy ) - (2.3)
Set )
0 = (2l T, e gy + 2l T e gy )
Then
1017 Ul gy + 1012] 7T e gy = 1. (2.4)

From (1.11), (1.13), (2.3) and (2. ) it follows that
/ <|Vu|p + [Vl — MM>
RN |z]P
( Q(MJUD)%
RN |z]*
|u|p*(t) 0] |v|p*(t) o)
(/RN ] ) +</RN ]t )

= 5(u.1) ot ot PO
(QUUA 7l ol 70l 00y

__t .
H |£E| p*(t)uHIzp*(t)(RN) + || |£E| p*“)v”ip*m(Rw)

= S(u,t) — — 7
(QUHETT ull oy, Il ol vl 0 avy))
__t
_ st p<t>uum gy + 10T
Y P
(QUIBLE =@ ull e vy, 1012l TP 0l o)) ) 7
1
> —— S, t) = Mg S(u,t).
|Q(0427ﬁ2)|p*p(”




Taking the infimum as u,v € D\ {0} we have

Mg'S(p,t) < Sq(u,t),

which together with (2.2) implies that

Sau,t) = Mg'S(u.t).

(ii) From (i), (1.5) and (1.6) the desired result follows. O

3 Appropriate Palais—Smale sequence

To find positive solutions of (1.1), we define the functional J on D x D by

1
Huo)i= o =2 [ Ao - B [ )
p p(t) Jen x|
where w; = max{w, 0} for all w € D. Then J € C'(D x D,R) according to (H) and
a solution of (1.1) is a nontrivial critical point of J. We follow the argument similar
to that of [16], where the problem (1.8) was investigated.

Lemma 3.1. (Mountain—Pass lemma, [4]) Let E be a Banach space and ® € C'(E).
Assume that

(i) ®(0) = 0.

(ii) There exist A\, R > 0 such that ®(u) > X\ for allu € E with ||ul|g = R

(iii) There exists vg € E such that limsup, . P(tvg) < 0.
Take to > 0 such that ||tovo||p > R and ®(tyvy) < 0. Set

[':={yeC(0,1], E)|7(0) = 0 and v(1) = tove}, c:=inf sup P(y(t)).

7€l ¢ef0,1]

Then there exists a Palais—Smale sequence at level ¢ for ®, that is there exists a
sequence {u,} C E such that

lim ®(uy) = lim ®'(uz) =0 strongly in E".

k—o00 k—o00

Lemma 3.2. Suppose that (H) holds. Set

“i=min< —n, * Su(p,0)r, ————n" So(u,t)r .
c mm{Nm m(p,0)7, o™ a(n,t) }

Then for some ¢ € (0,c*), there ezists a Palais—-Smale sequence at level ¢ for J, that
is there exists a sequence {(ug,vi)} C D x D such that

lim J(ug,vg) = lim J'(ug,v;) =0 strongly in (D x D)~!

k—o00 k—o00



Proof. We divide the argument into several steps.

Claim 1. The functional J verifies the hypotheses of Lemma 3.1 at any (u,v) €
D x D with (uy,vy) # (0,0).
In fact, J € CY(D x D,R), J(0,0) = 0. From (1.6) it follows that

1 Ui . Ui .
J(,v) = )|, 0)]F = ——w, 0)|” L o)
p P Sin(p,0)7 P ()Sa(u, 1)
—(C1 = Call(, )7 = Cyll )7 O [, )7,

where C;, 1 = 1,2, 3, are positive constants. Then there exist \, R > 0, such that
J(u,v) > A for all (u,v) € D x D with ||(u,v)|| = R. Furthermore, for any (u,v) €
D x D with (uy,vy) # (0,0), we have

lim J(tu,tv) = —o0,
t—+o00

which implies that there exists t¢,,) > 0 such that |[(tw.)u, t@wewv)] > R and
J(tu,tv) < 0 for all t > t(,,). Define

Liwwy = {7 € C([0,1],D x D)|y(0) = (0,0) and (1) = (t(uw)% twun)?)},

Clup) = inf  sup J(y(t)).
() VEL  (u,0) t€[0,1) ()

Then the hypotheses of Lemma 3.1 are satisfied and there exists a sequence {(ug, vg)} C
D x D such that

lim J(ug, V) = Cu0) lim J'(uy,vx) = 0 strongly in (D x D).

k—oo k—o0

In particular, we have that
Clupw) > A >0, V(u,v) € DxD\{(0,0)}.

Claim 2. There exists (u,v) € D x D\ {(0,0)} such that u,v > 0 and

p—N

1
an : SH(M> 0)

|2

Clup) <

In fact, since p1 € [0, z), by Theorem 1.1 we can choose (u, v) =(c1Vo(2), 51V (),
the extremals of Sy (u,0). Then

Cluw)y < supJ(tu,tv) < sup K(1)
>0 >0

_1< I (u, v)||P )p*/“”“p)
N\ (0 foon H(u,0))""
N

1 =X

co



where
P P
mw:—wmwumj/“mmw
P D JrN

Let t1,2 > 0 be the points where sup,-, J(tu,tv) and sup,s, K(t) are attained re-
spectively. Suppose that J(tju,tiv) = K(t2). Then

& Qu,v)
p*(t) Jrv 2|t

which implies that K(t2) < K(t1), a contradiction with the definition of ¢,. Conse-
quently,

K(t)_nz

= K(tZ)v

N
p

C(u v) < sup ‘](tu’ t’U) < sup K( ) an P SH(:uv )
>0 >0
Claim 3. There exists (u,v) € D x D\ {(0,0)} such that u,v > 0 and
0< Clup) < c*.

In fact, by Theorem 1.1 we can choose (u,v) =(asVi, (), 32V (x)) > 0, the
extremals of Sg(y,t). Then arguing as above we can obtain that

Cluw) < supJ(tu,tv)

>0
tP (0 Q(u,v)
<sup<— u, v)|[P —ng >
>0 ptH< J)VH pr(t) Jry x|t
p— 7 N—t
= P Sl )
sy et

which together with claim 2 implies that claim 3 holds.
From Lemma 3.1 and claims 1-3 it follows the conclusions of Lemma 3.2 for a
suitable (u,v) € D x D. O

Lemma 3.3. Let {(ug,vg)} C D x D be a Palais-Smale sequence at the level ¢ < ¢*
as in Lemma 3.2. If up — 0 and vy, — 0 weakly in D as k — oo, then there exists
g0 > 0 such that for all 6 > 0, either

lim H((ug)+, (o)) =0 or lim H ((ug)+, (v)1) > €o.
h=00 ) B;(0) F=00 JB5(0)

Proof. The argument needs several steps.
Claim 4. For all Q cc RY \ {0}, up to a subsequence, we have

i [y Ly [ Q)
m | —— = —0
S NPTy A PO A T

=0, (3.1)

lim/\Vuk]p: lim / |Vog|P = lim /H(|uk|,]vk|)20. (3.2)
k—oo Jq k—oo Jq k—oo Jq



In fact, since Q@ cC RN \ {0}, the embedding D — L%(Q) is compact for any
1 < gq <p*, |z|7' is bounded on  and p*(t) < p*. Then (3.1) follows from (H') and
we only need to verify (3.2).

Arguing as in Proposition 2 of [18], take ¢ € C°(R™ \ {0}) such that 0 < ¢ <1
and ¢|o = 1. Note that the weak convergence of {ux} and {vz} in D implies the
boundedness. Then

/RN V[P~V (@) Jwr] < 1Vl unll zouppiven = o(1),

L 190 9o < 1900 ol appre = o).

/RN(IWW + |sovvk\p> — /RN(W@UW n |V(Wk)|p> +o(1).

Furthermore,

o(1) = (J (ur, vr), (¥ uk, "v1))
(levul +19ur) =m [ @H(w). 0)2)

RN

=0 [ (a9l + Ve (9 ()l + o)
= [ (o9l +1ovul) = [ (@) 002 +o0)

- /EN (lV(sﬂuk)!p + IV(sﬂvk)!p> —m /RN " (H((we)+, (0r)+) + o(1)

> [lpur]” + [lpor]|P —m /N PP H((ur )+, (vi)4) + o(1),
R

which implies that

[pur][? + [lovg]|?
< Ul/R " H((ur)+, (vx)4) + o(1)

N

/RN H((un)s (Uk)Jr))(p*_p)/p*(/RN H(|puyl, ‘ka’))p/p* +o(1)

[ e @00) " Sun,0) g, ool + of0),

N

and therefore

(1=m( [, (o0
RN
On the other hand,

)" sl 0 Y ol < ol1). (33

J(up, vr) — %(J’(uk,vk), (ur, vi)) = ¢+ o(1)]|(ur, vi) || = ¢+ o(1),
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which implies that

c+o(l)=m (}) - ]%) . H((ug)s, (vr)s) + 10 (}) _ p*l(t)> . Q((uk)|;|at(vk)+>'
Consequently,
T H((uk)+, (vk)+) < eN +o(1), (3.4)

RN
which together with (3.3) implies that

N-—p
(1= m ™ NS (1,00 ) I (pun, ) I < o(1).
Since ¢ < ¢*, we have that
T [(pu, pus)|lP =0,

and therefore
lim / H(|ougl, |ovk|) = 0.
k—oo RN

Then the definition of ¢ implies that (3.2) holds and claim 4 is proved.

Claim 5. For all § > 0, define the quantities:
Q((ur)+, (vx)1)

r=tlimsup [ H((w)y, (u)s),  w=limsup 1C350
k—oco  JBs(0) k—oo JBs(0) |z
p
v = limsup/ (|Vuk|p + |Vugl? — u|uk| aall )

k—oo J Bs(0) [P

Then
p _p

Su(p,0) 77" <, So(p, t)wr® <. (3.5)

Furthermore,
v < MT A+ aw. (3.6)

In fact, according to claim 4, 7,w and v are well-defined and independent of 4.
Take ¢ € Cg°(R") such that 0 < ¢ <1 and ¢|p,0) = 1. Then we have

Sutu0) ([ H((@u) 00)2)” < Ieu el

As k — oo, claim 4 implies that

p

Sulw0)( [ H((u)s (0)1))"
o al? + fonl
U Vi
< Vugl? + |Vop [P — p—————— ) + o(1).
[, (et 190 ) ol

11



Consequently,
Su(p,0) T < .
The second inequality in (3.5) can be verified similarly.
Since @ug, pvr, € D and limy_ oo (J' (ug, vi), (pur, pug)) = 0, by claim 4 and the
definitions of 7,w and ~, we deduce that v < ;7 + now. Claim 5 is verified.
From (3.6) it follows that

S, 0) 777 <y < T A+ 190,

which implies that

L p'—p
&

7 (Su(p, 0) —mT 7 ) < pw. (3.7)
From (3.4) it follows that

*

p—N P
=" Su(p,0)7 . (3.8)

By (3.7) and (3.8), there exists a constant C; = C4(u, ¢, m1,m2) > 0 such that

N
p

p—N
mT <cN <N <n? Su(p,0)

7 < Chw. (3.9)
Similarly, there exists a positive constant Cy = Co(p, ¢, t, 11, 12) such that
W@ < Oy, (3.10)

Then it follows from (3.9) and (3.10) that there exists a positive constant g, =
eo(N, p, 1, ¢, t) such that

either 7=w=0 or min{r,w} > &.

The proof of Lemma 3.3 is complete. [

4 Existence of positive solutions

Lemma 4.1. Let {(ux,vg)} be the sequence defined as in Lemma 3.3. Then

A:=limsup [  H((ug)+, (vg)+) > 0. (4.1)

k—o0 RN

Proof. Arguing by contradiction, we assume that

lim H((ug)+, (vg)4+) = 0. (4.2)
k—oo JpN
Since limg_ o0 (J' (ug, vi), (ug, vg)) = 0, by (4.1) we have
Q Uug)+, (Vk)+)

||(ukavk |p=77



Then

Sa0)( [ Q<(“k>|;|vt<vk>+>>pfzt>

Q((ur)+, (vi)+)

|z[f

< ||(Uk>vk)||p =12 + 0(1)7
]RN

( Q((uk)+, (Uk)+)>p*P(t)

]

) ( Sty [ Qe )y P“;sfz;") o)

RN | z[f
From (3.4) and (4.2) it follows that
Q((ur) 1, (ve)4) _ ep(N —1) n
RN |t p—t p—t
which together with (4.3) implies that
lim Q(ur)+, (vr)+)
k=00 JRN | z[f

a contradiction with (3.4) and the fact that ¢ € (0, ¢*). O

Up)

=0,

Lemma 4.2. Let {(ug,vx)} be defined as in Lemma 3.3. Then there exists ¢, €
(0,e0/2], with g given in Lemma 3.3, such that for all e € (0,¢y), there ezists a posi-
tive sequence {ry} C R such that {(ay, o)} :={ (r,({pr)/puk(rkx), r,ipr)/pvk(rkx))} C
D x D, is again a Palais-Smale sequence of the type given in Lemma 3.3 and satisfies

51(0) H((’ij)+, (17k)+) =g, VEkeN. (44)

Proof. Let €y, A be defined as in Lemma 3.3 and (4.1) respectively. Set e, :=
min{eg/2,A} and fix € € (0,£1). Up to a subsequence (still denoted by {(ug,v)}),
for any k € N; there exists r, > 0 such that

| H(w)w(w)) =z VEeN.
By (0)
Then the scaling invariance implies that {(ay, Ux)} satisfies (4.4) and is also a Palais—

Smale sequence of the type given in Lemma 3.3. O

Proof of Theorem 1.2. Since {(ug,0;)} satisfies (4.4) and is also a Palais—Smale
sequence, we have that

C(1+ || (ar, o))

_ 1 _
> Jl(uk, Ukl) — p*(t) <J (Uk; Uk)a (u/;v Uk)>1
== @m0l +m (o =) | H () @)
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which implies that { (@, 0x)} is bounded in D x D. Up to a subsequence, there exists
u,v € D such that

ur — u weakly, v, — v weakly, k — o0.

If u =09 =0, from Lemma 3.3 it follows that either
lim H((ag)+,(0k)+) =0 or lim H((ag)+, (0k)+) > €o,
k—o0 B1(0) k—o0 B1(0)

which contradicts (4.4) as 0 < € < g9/2. Then (4, v) # (0,0). Arguing as in [12] (see
also [13, 31, 33]), we deduce that (u,?) is a solution of the following problem:

ubt o M Quluy,vy)
—Ayu— = —H,(uy,vy)+ 7
Nl T () 0 (let | )
Cal n 2 v U, Uy 4.5
A —p——=—H,(uy,vy)+ ,
B = e ) T
(u,v) € D x D.
Set w_ = max{—w, 0} for all w € D\ {0}. Multiplying the first equation in (4.5)
by @_, the second by ©_, and integrating, we have that ||a_|| = ||o_| = 0, which
implies that &_ = ©_ = 0 and therefore (@, ?) is a nonnegative nontrivial solution of

(4.5). If @ =0, by (H) and (4.5) we get © = 0. Similarly, o = 0 also implies @ = 0.
Then @ # 0 and ¥ # 0. From the maximum principle it follows that @, o > 0 in RY
and (@, ?) is a solution of the problem (1.1).

The proof of Theorem 1.2 is complete. O]
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