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Abstract

We introduce an apparatus to measure closeness or relationship of

two given objects. This is a topology based apparatus that uses graph

representations of the compared objects. In more detail, we obtain a

metric on the class of all pairwise non-isomorphic connected simple

graphs to measure closeness of two such graphs. To obtain such a

measure, we use the theory of hyperspaces from topology to introduce

the notion of the Hausdor� graph 2G of any graph G. Then, using

this new concept of Hausdor� graphs combined with the notion of

graph amalgams, we present the Hausdor� distance, which proves to

be useful when examining the closeness of any two connected simple

graphs. We also present many possible applications of these concepts

in various areas.
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1 Introduction

Given any two objects, A and B (e.g. two hand prints, two tree leaves,
two pictures, two faces, two DNA codes...), many questions regarding their
closeness may appear. For example:

(i) How close (similar) is A to B and how to measure this closeness?

(ii) Are A and B somehow related?

(iii) How much do A and B look alike?

(iv) How much do A and B �t to each other?

In topology, one way to measure closeness of two sets is to use the so-
called Hausdor� metric. To explain it in more details, suppose that (X, d)

is a non-empty compact metric space. The family of all non-empty closed
subsets of X is usually denoted by 2X . For each A ∈ 2X and each r > 0,
denote by N(A, r) =

⋃
a∈AK(a, r) the union of open r-balls K(a, r) in X

with centres a ∈ A. Think of N(A, r) as A being in�ated by factor r, see
Figure 1.

A N(A, r)

Figure 1: In�ated A.

Then the Hausdor� metric hX is de�ned on 2X by

(1.1) hX(A,B) = inf{ε > 0 | A ⊆ N(B, ε), B ⊆ N(A, ε)},

for any A,B ∈ 2X , to measure closeness between A and B. In other words,
hX is de�ned in such a way that A and B are close to each other, if for each
point a ∈ A there is a point b ∈ B that is close to a, and for each point
b ∈ B there is a point a ∈ A that is close to b.

It is a well-known fact that hX is a metric on 2X . The pair (X, hX) is
called the hyperspace of (X, d). More details about hyperspaces and the
introduced Hausdor� metric can be found in [6, 13].
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In the present paper we use this idea of closeness from topology and apply
it into the language of graph theory. We realize this idea by introducing
the new concept of so-called Hausdor� graphs (in graph theory the term
hypergraph is already used to de�ne another object). We combine them
with the notion of amalgams (cf. [1, 9]) to de�ne the Hausdor� distance on
the class of all connected simple graphs as a measure of similarity of two
such graphs. We also discuss about possible applications of this new concept
and give an easy example of a useful application in biology.

Simon Romero [10, 11, 12] also uses the idea of hyperspaces C(X) ⊆ 2X

of connected compact subspaces of X and applies it into graph theory by
de�ning so called hyperspace graphs of connected subgraphs. He also poses
the question of how to de�ne graphs 2G that are analogous to the topological
hyperspaces 2X [10, p. 91, Question 1]. Among other things, we answer the
question in Section 3.

In graph theory the distance between two graphs has been de�ned in
various ways, for examples see [2, 3, 4, 5, 8]. One common way is to de�ne the
distance as the minimum number of some operations (on vertices or edges)
one needs to transform one graph into the other. Under the assumption that
the graphs compared are of the same order and size, the operations de�ned
were edge move [2], edge rotation [4] and edge slide [2, 8], among others.

A graph G is said to be a common subgraph of the graphs G1 and G2 if
it holds that G ⊆ G1 and G ⊆ G2. We say that a common subgraph G of G1

and G2 is a maximal common subgraph if there does not exist a common
subgraph H with |V (H)| > |V (G)| and G ⊆ H. In [3], the authors use the
notion of the maximal common subgraph to de�ne the distance between
two non-empty graphs, where the metric they de�ne uses only the order of
a maximal common subgraph and the order of the graphs compared.

We proceed as follows. In the next section we introduce the basic de�-
nitions and notations that are used throughout the paper. In Section 3 we
de�ne the Hausdor� graph 2G of a given graph G, study some of its proper-
ties and use it to de�ne the Hausdor� metric on subgraphs of G. We use the
ideas of Section 3 and graph amalgams to de�ne the Hausdor� distance as a
measure of closeness of two connected simple graphs. We conclude the paper
by presenting possible applications of the concept and by stating some open
problems.
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2 De�nitions and Notations

A graph G = (V (G), E(G)) is determined by a non-empty vertex set V (G)

and a set E(G) of unordered pairs of vertices {u, v}, called the set of edges.
We will use the short notation uv for edge {u, v}. We say that a vertex u is
adjacent to a vertex v if uv ∈ E(G).

LetG = (V (G), E(G)) andH = (V (H), E(H)) be any graphs. If V (H) ⊆
V (G) and E(H) ⊆ E(G), then we say that H is a subgraph of G and write
H ⊆ G.

All graphs considered in the paper are simple graphs, i.e. the graphs
without multiple edges and without loops (uu 6∈ E(G) for any u ∈ V (G)).

Let G be a graph and let S ⊆ V (G). By 〈S〉 we denote the subgraph
of G induced by the set S, i.e. for all u, v ∈ S, uv ∈ E(〈S〉) if and only if
uv ∈ E(G).

Two graphs are isomorphic, if there is a bijection between their vertex
sets that preserves adjacency and non-adjacency of the vertices.

A walk W from a vertex x to a vertex y in a graph G is a sequence

x = v0v1v2 . . . vk−1vk = y

of vertices of G, where vivi+1 ∈ E(G) or vi = vi+1, for each i ∈ {0, 1, . . . , k−
1}. We will also denote it by (x = v0, v1, v2, . . . , vk−1, vk = y). The length of
a walk W , denoted by `(W ), is the number of edges in W .

A path P from a vertex x to a vertex y in G is a sequence

x = v0v1v2 . . . vk−1vk = y

of pairwise di�erent vertices of G, where vivi+1 ∈ E(G), for each i ∈
{0, . . . , k−1}. The vertices x and y are called the endpoints of the path. The
path P will also be denoted by (x = v0, v1, v2, . . . , vk−1, vk = y). The length
of a path P , denoted by `(P ), is the number of edges in P . The distance

between vertices x and y, denoted by dG(x, y) is the length of a shortest
path between x and y in G.

Note that every walk W from x to y in a graph G gives rise to a path P

from x to y in G, such that `(P ) ≤ `(W ).
A graph G is connected if for each u, v ∈ V (G) there is a path in G from

u to v.
A subgraph H of a graph G is isometric in G if for any u, v ∈ V (H), it

holds that dH(u, v) = dG(u, v).
A connected subgraph H of a graph G is convex in G if for any u, v ∈

V (H), P ⊆ H for any shortest path P from u to v in G.
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3 Hausdor� Graphs

In this section we introduce the new notion of the Hausdor� graph 2G of a
graphG and de�ne a metric on 2G to measure closeness of any two subgraphs
of G.

In the following de�nition we apply (1.1) in such a way that for a graph
G, two of its subgraphs H1 and H2 are close to each other in G, if for each
vertex v ∈ V (H1) there is a vertex v′ ∈ V (H2) that is close to v, and for
each vertex v′ ∈ V (H2) there is a vertex v ∈ V (H1) that is close to v′.

De�nition 3.1. Let G be an arbitrary graph. The Hausdor� graph of the

graph G, denoted by 2G, has for the vertex set V (2G) the set of all non-empty

subgraphs of G. The adjacency of vertices in 2G is de�ned as follows. For

all H1, H2 ∈ V (2G), H1 6= H2, it holds that H1H2 ∈ E(2G) if and only if

(i) for each v ∈ V (H1) there exists v′ ∈ V (H2) such that dG(v, v
′) ≤ 1

and

(ii) for each v′ ∈ V (H2) there exists v ∈ V (H1) such that dG(v
′, v) ≤ 1.

Example 3.2. Let G be a trivial graph with V (G) = {1}. Then 2G is the

trivial graph, V (2G) = {{1}}.

Example 3.3. Let P3 be a path on three vertices, V (P3) = {1, 2, 3}. Then
2P3 is the graph depicted in Figure 2, where the vertices are subgraphs of P3

(in rounded rectangles), and edges between vertices are black and gray lines.

De�nition 3.4. The ith level of 2G, denoted by [2G]i, is the induced subgraph

of 2G, where the vertices of [2G]i represent all subgraphs of G on exactly i

vertices.

This means that the graph [2G]1 contains as vertices all subgraphs of G
on exactly one vertex, the graph [2G]2 contains as vertices all subgraphs of
G on exactly two vertices, . . . , [2G]|V (G)| contains as vertices all subgraphs
of G on exactly |V (G)| vertices. Therefore also G ∈ V ([2G]|V (G)|) ⊆ V (2G).
In Figure 2, the edges drawn in black depict edges between vertices in the
same level.

Proposition 3.5. For an arbitrary graph G, the graph [2G]1 is isomorphic

to G.

Proof. Let u be an arbitrary vertex of G, denote by Hu the corresponding
vertex in [2G]1. Explicitly, Hu represents the subgraph Hu ⊆ G for which
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1 2 3 1 2 3 1 2 3 1 2 3

1 2 1 2 1 3 2 3 2 3

1 2 3

Figure 2: The Hausdor� graph 2P3 of P3.

V (Hu) = {u} and E(Hu) = ∅. It is clear, that the mapping V (G) →
V ([2G]1), u 7→ Hu, is a bijection, hence the vertex sets of graphs G and
[2G]1 are of the same size.

We need to prove that uv ∈ E(G) if and only if HuHv ∈ E([2G]1). Let
uv ∈ E(G). Since dG(u, v) = 1 the vertices Hu and Hv are adjacent in
[2G]1. For the converse, suppose that HuHv ∈ E([2G]1). Since Hu and Hv

correspond to disjoint graphs (each represents a trivial graph), the distance
dG(u, v) = 1.

From the previous proposition we immediately obtain the following corol-
lary.

Corollary 3.6. Let G be an arbitrary graph. Then 2G contains an isomor-

phic copy of G as an induced subgraph.

The Hausdor� metric hG between two subgraphs of a graph G will be
de�ned in the following de�nition. It will tell us how much two subgraphs
of G coincide. Namely, the smaller the Hausdor� metric between the two
subgraphs is, more they coincide.

De�nition 3.7. Let G be an arbitrary graph. The distance between two
subgraphs H1 and H2 of G, denoted by hG(H1, H2), is the distance between

their corresponding vertices in 2G. In other words,

hG(H1, H2) := d2G(H1, H2).

We call hG the Hausdor� metric on 2G.
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Note that for two di�erent isomorphic subgraphs H1 and H2 of a graph
G, the value hG(H1, H2) may be arbitrarily large.

The following example shows that the Hausdor� metric hG may not be
a metric on V (2G).

Example 3.8. Let G be a totally disconnected graph on two vertices, i.e.

V (G) = {1, 2} and E(G) = ∅. Then 2G is the totally disconnected graph on

three vertices, V (2G) = {H1, H2, H3}, where V (H1) = {1}, V (H2) = {2},
and H3 = G. Therefore hG(H1, H3) is not de�ned.

We will show in Corollary 3.18, that if G is a connected graph, then hG

is in fact a metric on V (2G).
First we prove the following easy lemmas.

Lemma 3.9. Let G be an arbitrary graph and H1, H2 ⊆ G, such that

V (H1) = V (H2). Then hG(H1, H2) = 1 if and only if H1 6= H2.

Proof. If H1 6= H2 then for each v ∈ V (H1), obviously v ∈ V (H2), and
vice versa. Therefore H1 and H2 are adjacent, since H1 6= H2. The converse
follows immediately from De�nition 3.1.

From Lemma 3.9 we obtain the following corollary.

Corollary 3.10. Let H ⊆ G and let K = {Hi ⊆ G|V (Hi) = V (H)}. Then
〈K〉 ⊆ 2G is a complete graph.

Next, we de�ne and introduce some important subgraphs of a Hausdor�
graph 2G.

De�nition 3.11. Let G be a graph. Then

(i) C(G) =
〈
{H ∈ V (2G) | H is connected}

〉
(ii) CI(G) = 〈{H ∈ V (C(G)) | H is induced in G}〉

(iii) K(G) = 〈{H ∈ V (CI(G)) | H is a complete graph}〉

Remark 3.12. Note thatK(G) =
〈
{H ∈ V (2G) | H is a complete graph}

〉
.

Example 3.13. Observe that for a totally disconnected graph on n vertices,

say Sn, the following hold true:

(i) 2Sn = S2n−1 and

(ii) C(Sn) = CI(Sn) = K(Sn) = Sn.
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Example 3.14. Observe that for a complete graph on n vertices, say Kn,

the following hold true:

(i) 2Kn = Km, where m =
n∑

i=1

(n
i

) i(i−1)
2∑

j=0

( i(i−1)
2

j

).

(ii) CI(Kn) = K(Kn) = Km, where m =
n∑

i=1

(
n

i

)
.

Example 3.15. Figure 3 shows the graphs C(P3), CI(P3) and K(P3). The

whole graph depicted is C(P3) = CI(P3), while K(P3) is the graph depicted

inside the dashed area.

1 2 3

1 2 2 3K(P3)

1 2 3

Figure 3: The graphs C(P3), CI(P3) and K(P3).

Example 3.16. Figure 4 shows graphs C(C3), CI(C3) and K(C3). The

whole graph depicted is C(C3), while CI(C3) = K(C3) is the graph depicted

inside the dashed area.

Let H ⊆ 2G. As in De�nition 3.4 we use [H]i to denote the ith level of
H.

Theorem 3.17. Let G be a graph. The following statements are equivalent.

(i) G is connected.

(ii) 2G is connected.
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1 2 3 1 2 3 1 2 3 1 2 3

1 2 2 3 3 1

1 2 3

CI(C3) = K(C3)

Figure 4: The graphs C(C3), CI(C3) and K(C3).

(iii) C(G) is connected.

(iv) CI(G) is connected.

(v) K(G) is connected.

Proof. (i)⇔(ii). Let G be connected. Let H ∈ V (2G) be arbitrarily chosen.
We will construct a path H = H1H2 . . . Hn = G in 2G connecting vertices
H and G.

IfH is not the induced subgraph of G on the vertex set V (H), then letH2

be the induced subgraph of G on V (H). By Lemma 3.9 the vertices H1 = H

and H2 are adjacent in 2G. If H2 equals G, we are done. Otherwise, let
u1 ∈ V (G)\V (H2) such that u1 is adjacent to a vertex in H2 (such a vertex
exists, since G is connected). Let H3 be the induced subgraph of G on the
vertex set V (H2)∪{u1}. It follows from De�nition 3.1 thatH2H3 ∈ E(2G). If
H3 equals G, we are done. Otherwise we continue with constructing graphs
H4, H5, . . . such that for each i ≥ 4 it holds that V (Hi+1) \ V (Hi) consists
of a single vertex ui−1 with a neighbour in Hi, hence HiHi+1 ∈ E(2G). Since
V (G) is �nite, the procedure ends at step a n, with V (Hn) = V (G).

If H is the induced subgraph of G on the vertex set V (H), then the
desired path is H = H2H3 . . . Hn = G, where H2, H3, . . . are as described in
the previous case.

For the converse, suppose that G is not connected. We will prove that
2G is not connected. Let G1 and G2 be distinct connected components of G.
Assume that 2G is connected. There exists a path G1 = H1H2 . . . Hn = G2
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in 2G. Since, G1 and G2 are disjoint, there exists an index i ∈ {2, . . . , n} such
that Hi 6⊆ G1 (at least i = n satis�es this condition). Let i be the smallest
such that Hi 6⊆ G1. Let u ∈ V (Hi) \ V (G1). Since, u has no neighbour in
G1 (since u is not in the connected component G1), it has no neighbour in
Hi−1. Hence, hG(Hi−1, Hi) > 1. This contradicts the assumption that 2G is
connected.

To prove (i)⇔(iii) and (i)⇔(iv) it su�ces to follow the proof of (i)⇔(ii).
(i)⇔(v). Suppose G is connected. Observe that [2G]1 = [K(G)]1. Then

by Proposition 3.5 the level [K(G)]1 is also connected. Let H ∈ V (K(G)) be
arbitrarily chosen, with |V (H)| > 1, and u ∈ V (H). Since H is a complete
graph it is adjacent in K(G) to the trivial graph corresponding to vertex u

in [K(G)]1. Therefore K(G) is connected.
For the converse, suppose that G is not connected. We will prove that

K(G) is not connected. Let G1 and G2 be distinct connected components
of G, also, let A1 and A2 be any subgraphs of G1 and G2, respectively, each
isomorphic to a complete graph. Assume that K(G) is connected. There
exists a path A1 = H1H2 . . . Hn = A2 in K(G). Since, A1 and A2 are
disjoint, there exists Hi such that Hi 6⊆ G1, for some i ∈ {2, . . . , n}. Let i
be the smallest such that Hi 6⊆ G1. Let u ∈ V (Hi) \ V (G1). Since, u has
no neighbour in A1, it has no neighbour in Hi−1. Hence, hG(Hi−1, Hi) > 1.
This contradicts the assumption that K(G) is connected.

Corollary 3.18. If G is connected, then hG is a metric on V (2G).

Proof. Let G be a connected graph. Then 2G is connected by Theorem 3.17.
Therefore hG = d2G is a well-de�ned metric on V (2G).

The graph C(G) plays an important role in the next section, where we
de�ne the Hausdor� distance between arbitrary connected simple graphs.
Since the property of connectedness is de�ned through paths, we describe
C(Pn) of an arbitrary path Pn in the following results.

Proposition 3.19. Let Pn be a path on n vertices. Then [C(Pn)]i is iso-

morphic to Pn−i+1, for i ∈ {1, 2, . . . , n}.

Proof. Let Pn = v1v2 . . . vn. Let i ∈ {1, 2, . . . , n} be arbitrary. Note that the
only connected induced subgraphs of Pn on i vertices are paths of length
i − 1. It is easy to see, that in Pn there are exactly n − i + 1 di�erent
paths of length i − 1. So the ith level, [C(Pn)]i, has n − i + 1 vertices.
Let H1, H2 ⊆ Pn be two di�erent induced connected paths of order i. Let
H1 = vjvj+1 . . . vj+i−1, j ∈ {1, . . . , n − i + 1}, and H2 = vkvk+1 . . . vk+i−1,
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k ∈ {1, . . . , n − i + 1}, with j 6= k. Then by De�nition 3.1, H1 and H2 are
adjacent, if every vertex of H1 not in the intersection of the two paths, has
a neighbour in H2, and vice versa. In other words, the endpoints of H1 have
as a neighbour one (the closest one) of the endpoints of H2, otherwise they
are not adjacent. So, H1 and H2 are adjacent if and only if |j−k| = 1. Since
j 6= k the assertion follows.

Note, that C(Pn) = CI(Pn), since connected subgraphs of a path are
exactly the induced connected subgraphs of the path.

Proposition 3.20. Let Pn = u1u2 . . . un be a path on n ≥ 2 vertices. Let

P ∈ V ([C(Pn)]i) and Q ∈ V ([C(Pn)]i+1), for some i ∈ {1, 2, . . . , n − 1}.
Moreover, let P = ujuj+1 . . . uj+i−1, j ∈ {1, 2, . . . , n − i + 1}, and Q =

ukuk+1 . . . uk+i, k ∈ {1, 2, . . . , n − i}. Then PQ ∈ E(C(Pn)) if and only if

j = k or j = k + 1.

Proof. Let PQ ∈ E(C(Pn)). By De�nition 3.1 every vertex of P is either
in Q or it is adjacent to a vertex in Q, and vice-versa. Since the endpoints
of a path are of degree 1, the endpoints of Q must either be in P or have a
neighbour in P . Since `(Q) − `(P ) = 1, both endpoints of Q cannot be in
P and cannot both be disjoint with P . It follows that exactly one endpoint
of Q is in P , this implies that j = k or j + i− 1 = k + i (j = k + 1).

For the converse, suppose j = k, then P ⊆ Q and the vertex uk+i ∈ V (Q)

is the only vertex in V (Q) \ V (P ). Since it is adjacent to uk+i−1 ∈ V (P ),
the paths P and Q are adjacent in C(Pn). Also suppose j = k + 1. Again
P ⊆ Q and the vertex uk ∈ V (Q) is the only vertex in V (Q) \ V (P ). Since
it is adjacent to uk+1 = uj ∈ V (P ), the paths P and Q are adjacent in
C(Pn).

Proposition 3.21. Let Pn = u1u2 . . . un be a path on n ≥ 3 vertices. Let

P ∈ V ([C(Pn)]i) and Q ∈ V ([C(Pn)]i+2), for some i ∈ {1, 2, . . . , n − 2}.
Moreover, let P = ujuj+1 . . . uj+i−1, j ∈ {1, 2, . . . , n − i + 1}, and Q =

ukuk+1 . . . uk+i+1, k ∈ {1, 2, . . . , n − i − 1}. Then PQ ∈ E(C(Pn)) if and

only if j = k + 1.

Proof. Let PQ ∈ E(C(Pn)). Since the endpoints of a path are of degree 1,
the endpoints of Q must either be in P or have a neighbour in P . Since
`(Q) − `(P ) = 2, none of the endpoints of Q is in P . It follows that both
endpoints of Q are adjacent to a vertex (an endpoint) in P , this implies
that j = k + 1 and j + i− 1 = k + i (j = k + 1).
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For the converse, suppose j = k + 1, then P ⊆ Q and the vertices
uk, uk+i+1 ∈ V (Q) are the only vertices in V (Q)\V (P ). Since uk, uk+i+1 are
adjacent to uj = uk+1, uj+i−1 = uk+i ∈ V (P ), respectively, the paths P and
Q are adjacent in C(Pn).

Proposition 3.22. Let Pn be a path on n vertices. Let P ∈ V ([C(Pn)]i)

and Q ∈ V ([C(Pn)]j), for some i, j ∈ {1, 2, . . . , n}. If |i − j| > 2 then

PQ 6∈ E(C(Pn)).

Proof. Suppose |i−j| ≥ 3 (this implies n ≥ 4) and j > i. Since `(Q)−`(P ) ≥
3 there exists an endpoint u in Q such that none of its neighbours are in
P . This means that dPn(u, v) > 1, for all v ∈ V (P ). Hence, the assertion
follows.

4 Closeness of graphs

In this section we apply the notion of Hausdor� graphs to de�ne a measure,
called the Hausdor� distance, for closeness of any two connected simple
graphs. First, we present some auxiliary de�nitions and results.

De�nition 4.1. Let H1 be a subgraph of G1 and H2 a subgraph of G2. If H1

and H2 are isomorphic graphs, then an amalgam of G1 and G2 is any graph

A obtained from G1 and G2 by identifying their subgraphs H1 and H2. We

call the isomorphic copies of G1 and G2 in A the covers of the amalgam A.

G1 G2

H1 H2

GA
1 GA

2

A

Figure 5: An amalgam A of G1 and G2.

Remark 4.2. Let A be an amalgam of G1 and G2. We will always denote

the covers of A by GA
1 and GA

2 . If H ⊆ Gi (u ∈ V (Gi)), the corresponding

graph (vertex) in GA
i will also be denoted by HA (uA), i ∈ {1, 2}.
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Remark 4.3. Let A be an amalgam of G1 and G2 obtained from G1 and

G2 by identifying their subgraphs H1 and H2. Then GA
1 ∩ GA

2 = HA
1 = HA

2

is isomorphic to H1 and H2.

Remark 4.4. For �xed isomorphic subgraphs H1 and H2 of G1 and G2,

respectively, there may be many isomorphisms from H1 onto H2. Therefore

there may be more than just one amalgam A of G1 and G2, which is obtained

by identifying H1 and H2 (see Example 4.5).

Example 4.5. Let G1 and G2 be the graphs depicted in Figure 6, and H1

and H2 their subgraphs, respectively, both isomorphic to P2. Let f1 and f2

be two isomorphisms from H1 onto H2. In Figure 6 they are depicted by

dotted and dashed arrows, respectively. Next, let Ai be the amalgam of G1

and G2 obtained by identifying H1 and H2 according to the isomorphism fi,

i ∈ {1, 2}. Obviously, A1 and A2 are not isomorphic, although they were

both obtained by identifying the same subgraphs.

G1 H1

G2 H2

A1

A2

Figure 6: The amalgams A1 and A2 from Example 4.5.

In the rest of the paper, G will always denote the class of all connected
simple graphs. We will be interested in the distance between the covers GA

1

and GA
2 in an amalgam A of G1 and G2. Moreover, we use the Hausdor�

metric hA on 2A to determine this distance and express it via distances
between vertices in A.

Lemma 4.6. Let G1, G2 ∈ G. Let d be a non-negative integer and A an

amalgam of G1 and G2. Then hA(G
A
1 , G

A
2 ) ≤ d if and only if

(i) for each u ∈ V (GA
1 ) there is a vertex v ∈ V (GA

2 ) such that dA(u, v) ≤ d

and
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(ii) for each u ∈ V (GA
2 ) there is a vertex v ∈ V (GA

1 ) such that dA(u, v) ≤
d.

Proof. Suppose, hA(G
A
1 , G

A
2 ) ≤ d. Assume that (i) does not hold. Then

there is a vertex u ∈ V (GA
1 ) such that for each v ∈ V (GA

2 ) it holds that
dA(u, v) > d. It follows that u 6∈ V (GA

1 ) ∩ V (GA
2 ) (otherwise, for v = u,

dA(u, v) = 0 6> d) and

(4.1) k = dA(u,G
A
2 ) = min{dA(u, v) | v ∈ V (GA

2 )} > d.

Let Q be a shortest path of length k connecting u to a vertex in GA
2 .

On the other hand, since hA(G
A
1 , G

A
2 ) ≤ d, there is a shortest path

P = (GA
1 = K1, K2, . . . , Kj, Kj+1 = GA

2 )

of length j ≤ d in 2A between GA
1 and GA

2 . Next, we construct a walk
from u to a vertex in GA

2 of length at most j. Let u1 = u ∈ V (K1). Since
K1K2 ∈ E(2A), there is a vertex u2 ∈ V (K2) such that dA(u1, u2) ≤ 1.
Say that we have already chosen vertices u1, u2, . . . , un, n < j + 1, such
that for each i ∈ {1, 2, . . . , n − 1} it holds that dA(ui, ui+1) ≤ 1, and ui ∈
V (Ki). Since KnKn+1 ∈ E(2A), there is a vertex un+1 ∈ V (Kn+1) such that
dA(un, un+1) ≤ 1.

The chosen vertices u1, u2, . . . , uj+1 de�ne a walk W of length at most j
from u = u1 to the vertex uj+1 ∈ V (GA

2 ). Since Q is the shortest path from
u to a vertex from GA

2 , it follows that k = `(Q) ≤ `(W ) ≤ j ≤ d. This is a
contradiction with (4.1).

Assuming that (ii) does not hold, we can obtain a contradiction in a
similar way.

For the converse, assume (i) and (ii). We will construct a path P from
GA

1 to GA
2 in 2A of length n ≤ d. For each i ∈ {0, 1, . . . , d} let Ai = {v ∈

V (GA
1 ) | dA(v,GA

2 ) = i} and Bi = {v ∈ V (GA
2 ) | dA(v,GA

1 ) = i}. The sets Ai

and Bi may be empty. Note also, that
⋃d

i=0(Ai∪Bi) = V (A). Say, K1 = GA
1 .

Suppose, Ki has already been constructed. Then let Ki+1 be the induced
graph 〈(V (Ki) \ Ad−i+1) ∪ Bi〉 in A. It follows from (i) and (ii), as well as
from the construction of Ki's that

(a) hA(Ki, Ki+1) ≤ 1, for each i,

(b) Kd+1 = GA
2 and

(c) W = (K1, K2, . . . , Kd+1) is a walk from GA
1 to GA

2 in 2A.
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Hence there is a path from GA
1 to GA

2 in 2A of length at most d.

Remark 4.7. Let G1, G2 ∈ G and A an amalgam of G1 and G2. Note,

that in the proof of Lemma 4.6, all of the constructed paths in 2A are also

the paths in C(A) =
〈
{H ∈ V (2A) | H is a connected subgraph of A}

〉
, if

GA
1 ∩GA

2 is a connected subgraph of A. Hence, following the same proof as

the proof of Lemma 4.6, one can get the same result by replacing hA with

dC(A) for such amalgams A.

Lemma 4.8. Let G1, G2 ∈ G. Let d be a non-negative integer and A an

amalgam of G1 and G2. Then hA(G
A
1 , G

A
2 ) ≥ d if and only if

(i) there is u ∈ V (GA
1 ) such that for each vertex v ∈ V (GA

1 ∩ GA
2 ) the

distance dA(u, v) ≥ d or

(ii) there is u ∈ V (GA
2 ) such that for each vertex v ∈ V (GA

1 ∩ GA
2 ) the

distance dA(u, v) ≥ d.

Proof. We begin the proof by the following simple reasoning.

hA(G
A
1 , G

A
2 ) ≥ d ⇔

∀d′ < d : hA(G
A
1 , G

A
2 ) 6≤ d′ ⇔

∀d′ < d : ¬
(
(∀u ∈ V (GA

1 ) ∃v ∈ V (GA
2 ) : dA(u, v) ≤ d′) &

(∀u ∈ V (GA
2 ) ∃v ∈ V (GA

1 ) : dA(u, v) ≤ d′)
)
⇔

∀d′ < d :
(
(∃u ∈ V (GA

1 ) such that ∀v ∈ V (GA
2 ) : dA(u, v) 6≤ d′) or

(∃u ∈ V (GA
2 ) such that ∀v ∈ V (GA

1 ) : dA(u, v) 6≤ d′)
)
⇔(

(∃u ∈ V (GA
1 ) such that ∀v ∈ V (GA

2 ) : dA(u, v) ≥ d) or(4.2)

(∃u ∈ V (GA
2 ) such that ∀v ∈ V (GA

1 ) : dA(u, v) ≥ d)
)
.

Obviously (4.2) implies ((i) or (ii)). Also, since there are no edges between
GA

1 \GA
2 and GA

2 \GA
1 , the assumption ((i) or (ii)) implies (4.2).

Remark 4.9. Let G1, G2 ∈ G and A an amalgam of G1 and G2. Note, that

following the proof of Lemma 4.8 one can get the same result by replacing

hA with dC(A), if G
A
1 ∩GA

2 is a connected subgraph of A.

As an immediate consequence of Lemmas 4.6 and 4.8 we obtain the
following theorem and corollary.

Theorem 4.10. Let G1, G2 ∈ G. Let d be a non-negative integer and A an

amalgam of G1 and G2. Then hA(G
A
1 , G

A
2 ) = d if and only if
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(i) for each u ∈ V (GA
1 ) there is a vertex v ∈ V (GA

2 ) such that dA(u, v) ≤
d,

(ii) for each u ∈ V (GA
2 ) there is a vertex v ∈ V (GA

1 ) such that dA(u, v) ≤
d, and

(iii) there is u ∈ V (GA
1 ) such that for each vertex v ∈ V (GA

1 ∩ GA
2 ) the

distance dA(u, v) ≥ d or

there is u ∈ V (GA
2 ) such that for each vertex v ∈ V (GA

1 ∩ GA
2 ) the

distance dA(u, v) ≥ d.

Remark 4.11. Following Remarks 4.7 and 4.9, one can easily see that

hA(G
A
1 , G

A
2 ) = dC(A)(G

A
1 , G

A
2 ),

for arbitrary G1, G2 ∈ G and an amalgam A of G1 and G2, with GA
1 ∩ GA

2

being a connected subgraph of A.

Corollary 4.12. Let G1, G2 ∈ G. Let A be an amalgam of G1 and G2.

Then there is i ∈ {1, 2} such that there are vertices u ∈ V (GA
i ) and v ∈

V (GA
1 ∩ GA

2 ) with the distance dA(u, v) = hA(G
A
1 , G

A
2 ). Moreover, for each

w ∈ V (A) it holds that dA(u, v) ≥ dA(w,G
A
1 ∩GA

2 ).

Proof. Let d = hA(G
A
1 , G

A
2 ). By (iii) of Theorem 4.10 there is i ∈ {1, 2} such

that there is a vertex u ∈ V (GA
i ) such that for all vertices v ∈ V (GA

1 ∩GA
2 )

the distance dA(u, v) ≥ d. Without loss of generality, suppose i = 1. Using
(i) of Theorem 4.10 there is a vertex wu ∈ V (GA

2 ) such that the distance
dA(u,wu) ≤ d. Since, for each vertex w ∈ V (GA

2 \ GA
1 ) there is a vertex

vw ∈ V (GA
1 ∩GA

2 ) such that dA(u,w) = dA(u, vw)+dA(vw, w), such vertex vwu

exists also for wu. Therefore, dA(u, vwu) ≤ dA(u,wu) ≤ d. Since dA(u, vwu) ≥
d, it follows that dA(u, vwu) = d.

Let us now prove that for each w ∈ V (A) it holds that dA(u, v) ≥
dA(w,G

A
1 ∩GA

2 ). Suppose there is a w ∈ V (A), such that dA(w,GA
1 ∩GA

2 ) >

dA(u, v). By Lemma 4.6 there is a vertex w′ ∈ V (A) such that dA(w,w′) ≤
dA(u, v). Since w and w′ belong to di�erent covers of A, any shortest path
between these vertices intersects GA

1 ∩GA
2 , meaning that dA(w,GA

1 ∩GA
2 ) ≤

dA(u, v), a contradiction.

We will de�ne a measure called the Hausdor� distance on G which will
serve as a measure of closeness of two connected simple graphs, i.e. how
much two graphs coincide in such a way that two isomorphic graphs have
Hausdor� distance 0.
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We de�ne on G a binary relation ∼ as follows:

G1 ∼ G2 ⇐⇒ G1 is isomorphic to G2.

Clearly, the relation ∼ is an equivalence relation on G.

De�nition 4.13. Let G/∼ = {[G] | G ∈ G} be the family of all equivalence

classes of the relation ∼ on G. We de�ne the function

H : G/∼ × G/∼ → R

as

H([G1], [G2]) = min{hA(G
A
1 , G

A
2 ) | A is an amalgam of G1 and G2},

for any graphs G1, G2 ∈ G.

The function H is obviously well-de�ned, since its de�nition does not
depend on the representatives of the equivalence classes.

For the function H the following holds true.

Theorem 4.14. Let G1, G2 ∈ G be arbitrary graphs. Then

(i) H([G1], [G2]) ≥ 0,

(ii) H([G1], [G2]) = 0 if and only if [G1] = [G2], and

(iii) H([G1], [G2]) = H([G2], [G1]).

Proof. (i) Obviously H([G1], [G2]) ≥ 0 for any G1, G2 ∈ G.

(ii) Let G1, G2 ∈ G be arbitrarily chosen and suppose [G1] = [G2]. Then,
since G1 and G2 are isomorphic, the minimum

min{hA(G
A
1 , G

A
2 ) | A is an amalgam of G1 and G2}

is achieved when A = GA
1 = GA

2 . Therefore hA(G
A
1 , G

A
2 ) = 0 for an

amalgam A of G1 and G2, and hence H([G1], [G2]) = 0. For the con-
verse, let G1, G2 ∈ G be arbitrarily chosen and supposeH([G1], [G2]) =

0. Then there is an amalgam A of G1 and G2, such that hA(G
A
1 , G

A
2 ) =

0. Therefore GA
1 and GA

2 represent the same vertex in 2A. This means
that GA

1 = GA
2 and therefore [G1] = [G2].

(iii) Let G1, G2 ∈ G be arbitrarily chosen. Then

H([G1], [G2]) = min{hA(G
A
1 , G

A
2 ) | A is an amalgam of G1 and G2} =

min{hA(G
A
2 , G

A
1 ) | A is an amalgam of G2 and G1} = H([G2], [G1]).
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However, H is not a metric on G/∼, see Example 4.15.

Example 4.15. Let K1, P7 andW7 be the graphs in Figure 7. Then H([W7], [K1]) =

1, H([W7], [P7]) = 1 and H([P7], [K1]) = 3. Therefore

H([P7], [K1]) ≤ H([P7], [W7]) +H([W7], [K1])

does not hold.

P7

W7

K1

Figure 7: Graphs K1, P7 and W7.

We will prove that for convex amalgams (de�ned below) the triangle
inequality holds true.

De�nition 4.16. Let G1, G2 ∈ G, let H1 be a subgraph of G1, and let H2

a subgraph of G2, where H1 and H2 are isomorphic graphs. If H1 and H2

are both convex, then any amalgam of G1 and G2 obtained by identifying

H1 and H2 is called a convex amalgam of G1 and G2.

In convex amalgams the intersection of covers is also convex and by
de�nition connected. It follows from Remark 4.11 that hA can be obtained
by determining dC(A), which is easier.

Theorem 4.17. Let HX([G1], [G2]) = min{hA(G
A
1 , G

A
2 ) | A is a convex

amalgam of G1 and G2}, for arbitrary G1, G2 ∈ G. Then HX is a metric on

G/∼.

Proof. For

(i) HX([G1], [G2]) ≥ 0,

(ii) HX([G1], [G2]) = 0 if and only if [G1] = [G2], and

(iii) HX([G1], [G2]) = HX([G2], [G1]).
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we follow the same line of thought as in Theorem 4.14.
Let G1, G2, G3 ∈ G be arbitrary graphs. We prove that

HX([G1], [G3]) ≤ HX([G1], [G2]) +HX([G2], [G3]).

Let i, j ∈ {1, 2, 3}, where i < j. Then let Ai,j be a convex amalgam of Gi

and Gj with di,j := dC(Ai,j)(G
Ai,j

i , G
Ai,j

j ) = HX([Gi], [Gj]). In other words,
Ai,j is the graph which gives rise to the minimum for HX([Gi], [Gj]). Denote
by Hi,j the convex graph (G

Ai,j

i ) ∩ (G
Ai,j

j ).
Now, create an amalgam of A1,2 and A2,3 by identifying the vertices in the

covers GA1,2

2 and G
A2,3

2 , denote the resulting graph by A. Note, this amalgam
may not be the one giving rise to the minimum for HX([A1,2], [A2,3]), but it
clearly is a convex amalgam.

First, assume that the graphs GA
1 and GA

3 corresponding to G1 and G3,
respectively, in the graph A have a non-empty intersection, denote the set
of vertices in this intersection by S. Since the graph 〈S〉 = HA

1,2 ∩ HA
2,3

is the intersection of two convex subgraphs of GA
2 , 〈S〉 is also convex in

GA
2 (as well as in GA

1 and GA
3 ). Therefore, clearly 〈S〉 is convex in A. Let

d′ = dC(A′)(G
A′
1 , GA′

3 ), where A′ is the graph obtained from A by removing all
vertices of graph GA

2 , which are not in the graphs GA
1 and GA

3 . Note that A
′

is a convex amalgam of graphs G1 and G3. Therefore HX([G1], [G3]) ≤ d′. It
follows from Corollary 4.12 that there exist vertices u ∈ S and v ∈ V (GA′

i )

for an index i ∈ {1, 3}, such that dA′(u, v) = d′. Without loss of generality
suppose that i = 3. Let P = (u = u1, u2, . . . , uk, uk+1, . . . , ud+1 = v) be a
shortest path from u to v in A′, where for each j ≤ k, uj ∈ HA

2,3 and for
each j > k, uj 6∈ HA

2,3. Clearly, P is also a shortest path from u to v in A.
Then d′ = dA′(u, uk)+dA′(uk+1, v) = dA′(u, uk)+dA2,3(uk+1, v) ≤ d1,2+d2,3.

Second, assume that the graphs GA
1 and GA

3 corresponding to G1 and G3,
respectively, in the graph A have an empty intersection. Following Corollary
4.12 we choose the following vertices: u1 ∈ V (A1,2), u2 ∈ V (A2,3), u3 ∈
V (A1,3) and v1 ∈ V (H

A1,2

1,2 ), v2 ∈ V (H
A2,3

2,3 ), v3 ∈ V (H
A1,3

1,3 ), such that d1,2 =
dA1,2(u1, v1), d2,3 = dA2,3(u2, v2) and d1,3 = dA1,3(u3, v3). Without loss of
generality assume that u1 ∈ V (G

A1,2

1 ), u2 ∈ V (G
A2,3

2 ), u3 ∈ V (G
A1,3

1 ). Let
uA
1 ,v

A
1 , u

A
2 , v

A
2 be the vertices in A corresponding to vertices u1, v1, u2, v2,

respectively. Next let u′3 and v′3 be the vertices in GA
1 corresponding to u3

and v3 in G
A1,3

1 . Finally, let v′′3 be the vertex in GA
3 corresponding to v3 in

G
A1,3

3 . See Figure 8 for reference.
Next we de�ne the graph G as the graph obtained from A by identifying

the vertices vA1 and vA2 . Denote the resulting vertex in G by x, also denote by
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GA
1

GA
2

GA
3

uA
1

u′
3

v′3
vA1 vA2uA

2 v′′3

A1,2

u1 v1

A2,3

u2 v2

A1,3

u3 v3

Figure 8: Graphs, vertices and notation from the proof of Theorem 4.17.

uG
3 and vG3 the vertices in G corresponding to u′3 and v′3 in A, respectively.

Note that distances between two vertices of G1 (G3) remain the same when
observed in A or in G. Hence,

d1,3 = dA1,3(u3, v3) = dA(u
′
3, v
′
3) = dG(u

G
3 , v

G
3 ) ≤

dG(u
G
3 , x) + dG(x, v

G
3 ) = dA(u

′
3, v

A
1 ) + dA(v

A
2 , v

′′
3) ≤

dA(u
A
1 , v

A
1 ) + dA(v

A
2 , u

A
2 ) = dA1,2(u1, v1) + dA2,3(u2, v2) =

d1,2 + d2,3.

Finally we de�ne the Hausdor� distance H : G × G → R on G.

De�nition 4.18. For any graphs G1, G2 ∈ G, we de�ne

H(G1, G2) = HX([G1], [G2]).

We call H the Hausdor� distance on G.

Let us point out that the Hausdor� distance is not a metric on G, since
from H(G1, G2) = 0 it follows that G1 ∼ G2 and not necessarily G1 = G2.
The following theorem follows directly from Theorem 4.17.

Theorem 4.19. Let G1, G2, G3 ∈ G be arbitrary graphs. Then

(i) H(G1, G2) ≥ 0,

(ii) H(G1, G2) = 0 if and only if G1 ∼ G2,
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(iii) H(G1, G2) = H(G2, G1), and

(iv) H(G1, G3) ≤ H(G1, G2) +H(G2, G3).

Example 4.20. On Figure 9 there are all non-isomorphic convex amalgams

of P2 and P3, which are denoted by A1, A2 and A3. Moreover there are all

non-isomorphic convex amalgams of Q3 and P3, which are denoted by B1,

B2 and B3.

P3

P2

A1

A2

A3

B1

B2 B3

Q3

P3

Figure 9: Graphs from Example 4.20.

Since dC(A1)(P
A1
2 , PA1

3 ) = dC(A2)(P
A2
2 , PA2

3 ) = 1 and dC(A3)(P
A3
2 , PA3

3 ) =

2, it follows that the Hausdor� distance between P2 and P3 is H(P2, P3) = 1.

Similarly, it follows from dC(B2)(Q
B2
3 , PB2

3 ) = dC(B3)(Q
B3
3 , PB3

3 ) = 3 and

dC(B1)(Q
B1
3 , PB1

3 ) = 2, that the Hausdor� distance between Q3 and P3 is

H(Q3, P3) = 2.

5 Applications

We see applications of our method of measuring closeness of two graphs in
all areas where the objects in question can be represented as graphs. Among
others, such applications may be found in

(i) computer science (e.g. representations of networks and their compar-
isons);
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(ii) chemistry (e.g. representations of molecules and their comparisons);

(iii) linguistics (e.g. representations of phrase structures and their compar-
isons);

(iv) physics (e.g. representations of complicated simulated atomic struc-
tures in condensed matter physics and their comparisons);

(v) sociology (e.g. representations of social networks and their compar-
isons);

(vi) biology (e.g. representations of species habitats and their compar-
isons).

Here we present one possible application of our method in biology, where
similarity of two species is often studied by observing and comparing var-
ious parameters of two specimens (e.g. skull features, teeth positions, vein
systems in leaves). One such method, recognized by biologists, is called
landmark-based geometric morphometrics, where landmark (special points,
e.g. intersection points of veins) coordinates are used as reference points
to determine similarity of two objects compared (for an example see [7]).
Unfortunately, this method fails when two such representations of objects
di�er immensely. Our method has no such limits.

Next we present an easy application of the Hausdor� distance in biology.
We compare three di�erent trees by using their leaves; two of them from
the same tree species and one from a di�erent tree species. We use the vein
systems of the leaves to represent them as graphs, see Figures 10 and 11.

It can be easily checked that the Hausdor� distance between the graphs
of leaves in Figure 10 is H(T1, T2) = 1, so they are very close - related -
with respect to the meaning of the Hausdor� distance.

Let us now compare graphs T1 and T3. Since T1 is a convex subgraph
of T3, one can easily see that H(T1, T3) ≥ 5, therefore the two trees corre-
sponding to T1 and T3 are not as related (w.r.t. the Hausdor� distance) as
those corresponding to T1 and T2.

This example shows that Hausdor� distance can be used to determine a
relationship between the three trees compared. Namely, with respect to the
Hausdor� distance, the �rst two trees are more related than the �rst and
the third.
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Figure 10: Two leaves from the same tree species and their graph represen-
tations T1 and T2.

Figure 11: A leaf from a di�erent tree species than those in Figure 10 and
its graph representation T3.
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6 Open problems

In the last section we introduce some open problems about Hausdor� graphs
and the Hausdor� distance. First we introduce a natural question that arises
when constructing Hausdor� graphs and the introduced families of their
subgraphs.

Question 6.1. Let G and H be arbitrary graphs. Are the following state-

ments equivalent?

(i) G is isomorphic to H.

(ii) 2G is isomorphic to 2H .

(iii) C(G) is isomorphic to C(H).

(iv) CI(G) is isomorphic to CI(H).

(v) K(G) is isomorphic to K(H).

It is obvious that (ii), (iii), (iv) and (v) follow from (i).
We have shown in Example 4.15 that H is not a metric on G/∼. Then

we obtained a metric on G/∼ by applying the convex amalgams. In some
applications, other types of amalgams may give better results about com-
parison of two objects (it is all up to the structure of studied objects and
the properties to be compared). This is why we conclude the paper with
two questions about obtaining new metrics on G/∼ by applying so-called
induced (or isometric) amalgams instead of the convex amalgams.

De�nition 6.2. Let G1, G2 ∈ G, let H1 be a subgraph of G1, and let H2

a subgraph of G2, where H1 and H2 are isomorphic graphs. If H1 and H2

are both induced (isometric), then any amalgam of G1 and G2 obtained by

identifying H1 and H2 is called an induced (isometric) amalgam of G1 and

G2.

Question 6.3. For arbitrary graphs G1, G2 ∈ G let

HI([G1], [G2]) = min{hA(G
A
1 , G

A
2 ) | A is an induced amalgam of G1 and G2}.

Is then HI a metric on G/∼?

Question 6.4. For arbitrary graphs G1, G2 ∈ G let

HM([G1], [G2]) = min{hA(G
A
1 , G

A
2 ) | A is an isometric amalgam of G1 and G2}.

Is then HM a metric on G/∼?
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