Measuring closeness of graphs - the Hausdorff distance

Iztok Banič ${ }^{1}$ and Andrej Taranenko ${ }^{2}$
${ }^{1,2}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia
${ }^{1}$ Andrej Marušič Insitute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
${ }^{2}$ Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia
${ }^{1}$ E-mail: iztok.banic@uni-mb.si
${ }^{2}$ E-mail: andrej.taranenko@uni-mb.si

April 28, 2014

Abstract

We introduce an apparatus to measure closeness or relationship of two given objects. This is a topology based apparatus that uses graph representations of the compared objects. In more detail, we obtain a metric on the class of all pairwise non-isomorphic connected simple graphs to measure closeness of two such graphs. To obtain such a measure, we use the theory of hyperspaces from topology to introduce the notion of the Hausdorff graph 2^{G} of any graph G. Then, using this new concept of Hausdorff graphs combined with the notion of graph amalgams, we present the Hausdorff distance, which proves to be useful when examining the closeness of any two connected simple graphs. We also present many possible applications of these concepts in various areas.

[^0]
1 Introduction

Given any two objects, A and B (e.g. two hand prints, two tree leaves, two pictures, two faces, two DNA codes...), many questions regarding their closeness may appear. For example:
(i) How close (similar) is A to B and how to measure this closeness?
(ii) Are A and B somehow related?
(iii) How much do A and B look alike?
(iv) How much do A and B fit to each other?

In topology, one way to measure closeness of two sets is to use the socalled Hausdorff metric. To explain it in more details, suppose that (X, d) is a non-empty compact metric space. The family of all non-empty closed subsets of X is usually denoted by 2^{X}. For each $A \in 2^{X}$ and each $r>0$, denote by $N(A, r)=\bigcup_{a \in A} K(a, r)$ the union of open r-balls $K(a, r)$ in X with centres $a \in A$. Think of $N(A, r)$ as A being inflated by factor r, see Figure 1.

Figure 1: Inflated A.

Then the Hausdorff metric h_{X} is defined on 2^{X} by

$$
\begin{equation*}
h_{X}(A, B)=\inf \{\varepsilon>0 \mid A \subseteq N(B, \varepsilon), B \subseteq N(A, \varepsilon)\}, \tag{1.1}
\end{equation*}
$$

for any $A, B \in 2^{X}$, to measure closeness between A and B. In other words, h_{X} is defined in such a way that A and B are close to each other, if for each point $a \in A$ there is a point $b \in B$ that is close to a, and for each point $b \in B$ there is a point $a \in A$ that is close to b.

It is a well-known fact that h_{X} is a metric on 2^{X}. The pair $\left(X, h_{X}\right)$ is called the hyperspace of (X, d). More details about hyperspaces and the introduced Hausdorff metric can be found in [6, 13].

In the present paper we use this idea of closeness from topology and apply it into the language of graph theory. We realize this idea by introducing the new concept of so-called Hausdorff graphs (in graph theory the term hypergraph is already used to define another object). We combine them with the notion of amalgams (cf. $[1,9]$) to define the Hausdorff distance on the class of all connected simple graphs as a measure of similarity of two such graphs. We also discuss about possible applications of this new concept and give an easy example of a useful application in biology.

Simon Romero [10, 11, 12] also uses the idea of hyperspaces $C(X) \subseteq 2^{X}$ of connected compact subspaces of X and applies it into graph theory by defining so called hyperspace graphs of connected subgraphs. He also poses the question of how to define graphs 2^{G} that are analogous to the topological hyperspaces 2^{X} [10, p. 91, Question 1]. Among other things, we answer the question in Section 3.

In graph theory the distance between two graphs has been defined in various ways, for examples see $[2,3,4,5,8]$. One common way is to define the distance as the minimum number of some operations (on vertices or edges) one needs to transform one graph into the other. Under the assumption that the graphs compared are of the same order and size, the operations defined were edge move [2], edge rotation [4] and edge slide [2, 8], among others.

A graph G is said to be a common subgraph of the graphs G_{1} and G_{2} if it holds that $G \subseteq G_{1}$ and $G \subseteq G_{2}$. We say that a common subgraph G of G_{1} and G_{2} is a maximal common subgraph if there does not exist a common subgraph H with $|V(H)|>|V(G)|$ and $G \subseteq H$. In [3], the authors use the notion of the maximal common subgraph to define the distance between two non-empty graphs, where the metric they define uses only the order of a maximal common subgraph and the order of the graphs compared.

We proceed as follows. In the next section we introduce the basic definitions and notations that are used throughout the paper. In Section 3 we define the Hausdorff graph 2^{G} of a given graph G, study some of its properties and use it to define the Hausdorff metric on subgraphs of G. We use the ideas of Section 3 and graph amalgams to define the Hausdorff distance as a measure of closeness of two connected simple graphs. We conclude the paper by presenting possible applications of the concept and by stating some open problems.

2 Definitions and Notations

A graph $G=(V(G), E(G))$ is determined by a non-empty vertex set $V(G)$ and a set $E(G)$ of unordered pairs of vertices $\{u, v\}$, called the set of edges. We will use the short notation $u v$ for edge $\{u, v\}$. We say that a vertex u is adjacent to a vertex v if $u v \in E(G)$.

Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$ be any graphs. If $V(H) \subseteq$ $V(G)$ and $E(H) \subseteq E(G)$, then we say that H is a subgraph of G and write $H \subseteq G$.

All graphs considered in the paper are simple graphs, i.e. the graphs without multiple edges and without loops $(u u \notin E(G)$ for any $u \in V(G))$.

Let G be a graph and let $S \subseteq V(G)$. By $\langle S\rangle$ we denote the subgraph of G induced by the set S, i.e. for all $u, v \in S$, uv $\in E(\langle S\rangle)$ if and only if $u v \in E(G)$.

Two graphs are isomorphic, if there is a bijection between their vertex sets that preserves adjacency and non-adjacency of the vertices.

A walk W from a vertex x to a vertex y in a graph G is a sequence

$$
x=v_{0} v_{1} v_{2} \ldots v_{k-1} v_{k}=y
$$

of vertices of G, where $v_{i} v_{i+1} \in E(G)$ or $v_{i}=v_{i+1}$, for each $i \in\{0,1, \ldots, k-$ $1\}$. We will also denote it by $\left(x=v_{0}, v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}=y\right)$. The length of a walk W, denoted by $\ell(W)$, is the number of edges in W.

A path P from a vertex x to a vertex y in G is a sequence

$$
x=v_{0} v_{1} v_{2} \ldots v_{k-1} v_{k}=y
$$

of pairwise different vertices of G, where $v_{i} v_{i+1} \in E(G)$, for each $i \in$ $\{0, \ldots, k-1\}$. The vertices x and y are called the endpoints of the path. The path P will also be denoted by $\left(x=v_{0}, v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}=y\right)$. The length of a path P, denoted by $\ell(P)$, is the number of edges in P. The distance between vertices x and y, denoted by $d_{G}(x, y)$ is the length of a shortest path between x and y in G.

Note that every walk W from x to y in a graph G gives rise to a path P from x to y in G, such that $\ell(P) \leq \ell(W)$.

A graph G is connected if for each $u, v \in V(G)$ there is a path in G from u to v.

A subgraph H of a graph G is isometric in G if for any $u, v \in V(H)$, it holds that $d_{H}(u, v)=d_{G}(u, v)$.

A connected subgraph H of a graph G is convex in G if for any $u, v \in$ $V(H), P \subseteq H$ for any shortest path P from u to v in G.

3 Hausdorff Graphs

In this section we introduce the new notion of the Hausdorff graph 2^{G} of a graph G and define a metric on 2^{G} to measure closeness of any two subgraphs of G.

In the following definition we apply (1.1) in such a way that for a graph G, two of its subgraphs H_{1} and H_{2} are close to each other in G, if for each vertex $v \in V\left(H_{1}\right)$ there is a vertex $v^{\prime} \in V\left(H_{2}\right)$ that is close to v, and for each vertex $v^{\prime} \in V\left(H_{2}\right)$ there is a vertex $v \in V\left(H_{1}\right)$ that is close to v^{\prime}.

Definition 3.1. Let G be an arbitrary graph. The Hausdorff graph of the graph G, denoted by 2^{G}, has for the vertex set $V\left(2^{G}\right)$ the set of all non-empty subgraphs of G. The adjacency of vertices in 2^{G} is defined as follows. For all $H_{1}, H_{2} \in V\left(2^{G}\right), H_{1} \neq H_{2}$, it holds that $H_{1} H_{2} \in E\left(2^{G}\right)$ if and only if
(i) for each $v \in V\left(H_{1}\right)$ there exists $v^{\prime} \in V\left(H_{2}\right)$ such that $d_{G}\left(v, v^{\prime}\right) \leq 1$ and
(ii) for each $v^{\prime} \in V\left(H_{2}\right)$ there exists $v \in V\left(H_{1}\right)$ such that $d_{G}\left(v^{\prime}, v\right) \leq 1$.

Example 3.2. Let G be a trivial graph with $V(G)=\{1\}$. Then 2^{G} is the trivial graph, $V\left(2^{G}\right)=\{\{1\}\}$.

Example 3.3. Let P_{3} be a path on three vertices, $V\left(P_{3}\right)=\{1,2,3\}$. Then $2^{P_{3}}$ is the graph depicted in Figure 2, where the vertices are subgraphs of P_{3} (in rounded rectangles), and edges between vertices are black and gray lines.

Definition 3.4. The $i^{\text {th }}$ level of 2^{G}, denoted by $\left[2^{G}\right]_{i}$, is the induced subgraph of 2^{G}, where the vertices of $\left[2^{G}\right]_{i}$ represent all subgraphs of G on exactly i vertices.

This means that the graph $\left[2^{G}\right]_{1}$ contains as vertices all subgraphs of G on exactly one vertex, the graph $\left[2^{G}\right]_{2}$ contains as vertices all subgraphs of G on exactly two vertices, $\ldots,\left[2^{G}\right]_{|V(G)|}$ contains as vertices all subgraphs of G on exactly $|V(G)|$ vertices. Therefore also $G \in V\left(\left[2^{G}\right]_{|V(G)|}\right) \subseteq V\left(2^{G}\right)$. In Figure 2, the edges drawn in black depict edges between vertices in the same level.

Proposition 3.5. For an arbitrary graph G, the graph $\left[2^{G}\right]_{1}$ is isomorphic to G.

Proof. Let u be an arbitrary vertex of G, denote by H_{u} the corresponding vertex in $\left[2^{G}\right]_{1}$. Explicitly, H_{u} represents the subgraph $H_{u} \subseteq G$ for which

Figure 2: The Hausdorff graph $2^{P_{3}}$ of P_{3}.
$V\left(H_{u}\right)=\{u\}$ and $E\left(H_{u}\right)=\emptyset$. It is clear, that the mapping $V(G) \rightarrow$ $V\left(\left[2^{G}\right]_{1}\right), u \mapsto H_{u}$, is a bijection, hence the vertex sets of graphs G and $\left[2^{G}\right]_{1}$ are of the same size.

We need to prove that $u v \in E(G)$ if and only if $H_{u} H_{v} \in E\left(\left[2^{G}\right]_{1}\right)$. Let $u v \in E(G)$. Since $d_{G}(u, v)=1$ the vertices H_{u} and H_{v} are adjacent in $\left[2^{G}\right]_{1}$. For the converse, suppose that $H_{u} H_{v} \in E\left(\left[2^{G}\right]_{1}\right)$. Since H_{u} and H_{v} correspond to disjoint graphs (each represents a trivial graph), the distance $d_{G}(u, v)=1$.

From the previous proposition we immediately obtain the following corollary.

Corollary 3.6. Let G be an arbitrary graph. Then 2^{G} contains an isomorphic copy of G as an induced subgraph.

The Hausdorff metric h_{G} between two subgraphs of a graph G will be defined in the following definition. It will tell us how much two subgraphs of G coincide. Namely, the smaller the Hausdorff metric between the two subgraphs is, more they coincide.

Definition 3.7. Let G be an arbitrary graph. The distance between two subgraphs H_{1} and H_{2} of G, denoted by $h_{G}\left(H_{1}, H_{2}\right)$, is the distance between their corresponding vertices in 2^{G}. In other words,

$$
h_{G}\left(H_{1}, H_{2}\right):=d_{2^{G}}\left(H_{1}, H_{2}\right) .
$$

We call h_{G} the Hausdorff metric on 2^{G}.

Note that for two different isomorphic subgraphs H_{1} and H_{2} of a graph G, the value $h_{G}\left(H_{1}, H_{2}\right)$ may be arbitrarily large.

The following example shows that the Hausdorff metric h_{G} may not be a metric on $V\left(2^{G}\right)$.

Example 3.8. Let G be a totally disconnected graph on two vertices, i.e. $V(G)=\{1,2\}$ and $E(G)=\emptyset$. Then 2^{G} is the totally disconnected graph on three vertices, $V\left(2^{G}\right)=\left\{H_{1}, H_{2}, H_{3}\right\}$, where $V\left(H_{1}\right)=\{1\}, V\left(H_{2}\right)=\{2\}$, and $H_{3}=G$. Therefore $h_{G}\left(H_{1}, H_{3}\right)$ is not defined.

We will show in Corollary 3.18, that if G is a connected graph, then h_{G} is in fact a metric on $V\left(2^{G}\right)$.

First we prove the following easy lemmas.
Lemma 3.9. Let G be an arbitrary graph and $H_{1}, H_{2} \subseteq G$, such that $V\left(H_{1}\right)=V\left(H_{2}\right)$. Then $h_{G}\left(H_{1}, H_{2}\right)=1$ if and only if $H_{1} \neq H_{2}$.

Proof. If $H_{1} \neq H_{2}$ then for each $v \in V\left(H_{1}\right)$, obviously $v \in V\left(H_{2}\right)$, and vice versa. Therefore H_{1} and H_{2} are adjacent, since $H_{1} \neq H_{2}$. The converse follows immediately from Definition 3.1.

From Lemma 3.9 we obtain the following corollary.
Corollary 3.10. Let $H \subseteq G$ and let $\mathcal{K}=\left\{H_{i} \subseteq G \mid V\left(H_{i}\right)=V(H)\right\}$. Then $\langle\mathcal{K}\rangle \subseteq 2^{G}$ is a complete graph.

Next, we define and introduce some important subgraphs of a Hausdorff graph 2^{G}.

Definition 3.11. Let G be a graph. Then
(i) $C(G)=\left\langle\left\{H \in V\left(2^{G}\right) \mid H\right.\right.$ is connected $\left.\}\right\rangle$
(ii) $C I(G)=\langle\{H \in V(C(G)) \mid H$ is induced in $G\}\rangle$
(iii) $K(G)=\langle\{H \in V(C I(G)) \mid H$ is a complete graph $\}\rangle$

Remark 3.12. Note that $K(G)=\left\langle\left\{H \in V\left(2^{G}\right) \mid H\right.\right.$ is a complete graph $\left.\}\right\rangle$.
Example 3.13. Observe that for a totally disconnected graph on n vertices, say S_{n}, the following hold true:
(i) $2^{S_{n}}=S_{2^{n}-1}$ and
(ii) $C\left(S_{n}\right)=C I\left(S_{n}\right)=K\left(S_{n}\right)=S_{n}$.

Example 3.14. Observe that for a complete graph on n vertices, say K_{n}, the following hold true:
(i) $2^{K_{n}}=K_{m}$, where $m=\sum_{i=1}^{n}\left(\binom{n}{i} \sum_{j=0}^{\frac{i(i-1)}{2}}\binom{\frac{i(i-1)}{2}}{j}\right)$.
(ii) $C I\left(K_{n}\right)=K\left(K_{n}\right)=K_{m}$, where $m=\sum_{i=1}^{n}\binom{n}{i}$.

Example 3.15. Figure 3 shows the graphs $C\left(P_{3}\right), C I\left(P_{3}\right)$ and $K\left(P_{3}\right)$. The whole graph depicted is $C\left(P_{3}\right)=C I\left(P_{3}\right)$, while $K\left(P_{3}\right)$ is the graph depicted inside the dashed area.

Figure 3: The graphs $C\left(P_{3}\right), C I\left(P_{3}\right)$ and $K\left(P_{3}\right)$.

Example 3.16. Figure 4 shows graphs $C\left(C_{3}\right), C I\left(C_{3}\right)$ and $K\left(C_{3}\right)$. The whole graph depicted is $C\left(C_{3}\right)$, while $C I\left(C_{3}\right)=K\left(C_{3}\right)$ is the graph depicted inside the dashed area.

Let $H \subseteq 2^{G}$. As in Definition 3.4 we use $[H]_{i}$ to denote the $i^{\text {th }}$ level of H.

Theorem 3.17. Let G be a graph. The following statements are equivalent.
(i) G is connected.
(ii) 2^{G} is connected.

Figure 4: The graphs $C\left(C_{3}\right), C I\left(C_{3}\right)$ and $K\left(C_{3}\right)$.
(iii) $C(G)$ is connected.
(iv) $C I(G)$ is connected.
(v) $K(G)$ is connected.

Proof. (i) \Leftrightarrow (ii). Let G be connected. Let $H \in V\left(2^{G}\right)$ be arbitrarily chosen. We will construct a path $H=H_{1} H_{2} \ldots H_{n}=G$ in 2^{G} connecting vertices H and G.

If H is not the induced subgraph of G on the vertex set $V(H)$, then let H_{2} be the induced subgraph of G on $V(H)$. By Lemma 3.9 the vertices $H_{1}=H$ and H_{2} are adjacent in 2^{G}. If H_{2} equals G, we are done. Otherwise, let $u_{1} \in V(G) \backslash V\left(H_{2}\right)$ such that u_{1} is adjacent to a vertex in H_{2} (such a vertex exists, since G is connected). Let H_{3} be the induced subgraph of G on the vertex set $V\left(H_{2}\right) \cup\left\{u_{1}\right\}$. It follows from Definition 3.1 that $H_{2} H_{3} \in E\left(2^{G}\right)$. If H_{3} equals G, we are done. Otherwise we continue with constructing graphs H_{4}, H_{5}, \ldots such that for each $i \geq 4$ it holds that $V\left(H_{i+1}\right) \backslash V\left(H_{i}\right)$ consists of a single vertex u_{i-1} with a neighbour in H_{i}, hence $H_{i} H_{i+1} \in E\left(2^{G}\right)$. Since $V(G)$ is finite, the procedure ends at step a n, with $V\left(H_{n}\right)=V(G)$.

If H is the induced subgraph of G on the vertex set $V(H)$, then the desired path is $H=H_{2} H_{3} \ldots H_{n}=G$, where H_{2}, H_{3}, \ldots are as described in the previous case.

For the converse, suppose that G is not connected. We will prove that 2^{G} is not connected. Let G_{1} and G_{2} be distinct connected components of G. Assume that 2^{G} is connected. There exists a path $G_{1}=H_{1} H_{2} \ldots H_{n}=G_{2}$
in 2^{G}. Since, G_{1} and G_{2} are disjoint, there exists an index $i \in\{2, \ldots, n\}$ such that $H_{i} \nsubseteq G_{1}$ (at least $i=n$ satisfies this condition). Let i be the smallest such that $H_{i} \nsubseteq G_{1}$. Let $u \in V\left(H_{i}\right) \backslash V\left(G_{1}\right)$. Since, u has no neighbour in G_{1} (since u is not in the connected component G_{1}), it has no neighbour in H_{i-1}. Hence, $h_{G}\left(H_{i-1}, H_{i}\right)>1$. This contradicts the assumption that 2^{G} is connected.

To prove (i) \Leftrightarrow (iii) and (i) \Leftrightarrow (iv) it suffices to follow the proof of (i) \Leftrightarrow (ii).
(i) $\Leftrightarrow(\mathrm{v})$. Suppose G is connected. Observe that $\left[2^{G}\right]_{1}=[K(G)]_{1}$. Then by Proposition 3.5 the level $[K(G)]_{1}$ is also connected. Let $H \in V(K(G))$ be arbitrarily chosen, with $|V(H)|>1$, and $u \in V(H)$. Since H is a complete graph it is adjacent in $K(G)$ to the trivial graph corresponding to vertex u in $[K(G)]_{1}$. Therefore $K(G)$ is connected.

For the converse, suppose that G is not connected. We will prove that $K(G)$ is not connected. Let G_{1} and G_{2} be distinct connected components of G, also, let A_{1} and A_{2} be any subgraphs of G_{1} and G_{2}, respectively, each isomorphic to a complete graph. Assume that $K(G)$ is connected. There exists a path $A_{1}=H_{1} H_{2} \ldots H_{n}=A_{2}$ in $K(G)$. Since, A_{1} and A_{2} are disjoint, there exists H_{i} such that $H_{i} \nsubseteq G_{1}$, for some $i \in\{2, \ldots, n\}$. Let i be the smallest such that $H_{i} \nsubseteq G_{1}$. Let $u \in V\left(H_{i}\right) \backslash V\left(G_{1}\right)$. Since, u has no neighbour in A_{1}, it has no neighbour in H_{i-1}. Hence, $h_{G}\left(H_{i-1}, H_{i}\right)>1$. This contradicts the assumption that $K(G)$ is connected.

Corollary 3.18. If G is connected, then h_{G} is a metric on $V\left(2^{G}\right)$.
Proof. Let G be a connected graph. Then 2^{G} is connected by Theorem 3.17. Therefore $h_{G}=d_{2^{G}}$ is a well-defined metric on $V\left(2^{G}\right)$.

The graph $C(G)$ plays an important role in the next section, where we define the Hausdorff distance between arbitrary connected simple graphs. Since the property of connectedness is defined through paths, we describe $C\left(P_{n}\right)$ of an arbitrary path P_{n} in the following results.

Proposition 3.19. Let P_{n} be a path on n vertices. Then $\left[C\left(P_{n}\right)\right]_{i}$ is isomorphic to P_{n-i+1}, for $i \in\{1,2, \ldots, n\}$.

Proof. Let $P_{n}=v_{1} v_{2} \ldots v_{n}$. Let $i \in\{1,2, \ldots, n\}$ be arbitrary. Note that the only connected induced subgraphs of P_{n} on i vertices are paths of length $i-1$. It is easy to see, that in P_{n} there are exactly $n-i+1$ different paths of length $i-1$. So the $i^{\text {th }}$ level, $\left[C\left(P_{n}\right)\right]_{i}$, has $n-i+1$ vertices. Let $H_{1}, H_{2} \subseteq P_{n}$ be two different induced connected paths of order i. Let $H_{1}=v_{j} v_{j+1} \ldots v_{j+i-1}, j \in\{1, \ldots, n-i+1\}$, and $H_{2}=v_{k} v_{k+1} \ldots v_{k+i-1}$,
$k \in\{1, \ldots, n-i+1\}$, with $j \neq k$. Then by Definition 3.1, H_{1} and H_{2} are adjacent, if every vertex of H_{1} not in the intersection of the two paths, has a neighbour in H_{2}, and vice versa. In other words, the endpoints of H_{1} have as a neighbour one (the closest one) of the endpoints of H_{2}, otherwise they are not adjacent. So, H_{1} and H_{2} are adjacent if and only if $|j-k|=1$. Since $j \neq k$ the assertion follows.

Note, that $C\left(P_{n}\right)=C I\left(P_{n}\right)$, since connected subgraphs of a path are exactly the induced connected subgraphs of the path.

Proposition 3.20. Let $P_{n}=u_{1} u_{2} \ldots u_{n}$ be a path on $n \geq 2$ vertices. Let $P \in V\left(\left[C\left(P_{n}\right)\right]_{i}\right)$ and $Q \in V\left(\left[C\left(P_{n}\right)\right]_{i+1}\right)$, for some $i \in\{1,2, \ldots, n-1\}$. Moreover, let $P=u_{j} u_{j+1} \ldots u_{j+i-1}, j \in\{1,2, \ldots, n-i+1\}$, and $Q=$ $u_{k} u_{k+1} \ldots u_{k+i}, k \in\{1,2, \ldots, n-i\}$. Then $P Q \in E\left(C\left(P_{n}\right)\right)$ if and only if $j=k$ or $j=k+1$.

Proof. Let $P Q \in E\left(C\left(P_{n}\right)\right)$. By Definition 3.1 every vertex of P is either in Q or it is adjacent to a vertex in Q, and vice-versa. Since the endpoints of a path are of degree 1 , the endpoints of Q must either be in P or have a neighbour in P. Since $\ell(Q)-\ell(P)=1$, both endpoints of Q cannot be in P and cannot both be disjoint with P. It follows that exactly one endpoint of Q is in P, this implies that $j=k$ or $j+i-1=k+i(j=k+1)$.

For the converse, suppose $j=k$, then $P \subseteq Q$ and the vertex $u_{k+i} \in V(Q)$ is the only vertex in $V(Q) \backslash V(P)$. Since it is adjacent to $u_{k+i-1} \in V(P)$, the paths P and Q are adjacent in $C\left(P_{n}\right)$. Also suppose $j=k+1$. Again $P \subseteq Q$ and the vertex $u_{k} \in V(Q)$ is the only vertex in $V(Q) \backslash V(P)$. Since it is adjacent to $u_{k+1}=u_{j} \in V(P)$, the paths P and Q are adjacent in $C\left(P_{n}\right)$.

Proposition 3.21. Let $P_{n}=u_{1} u_{2} \ldots u_{n}$ be a path on $n \geq 3$ vertices. Let $P \in V\left(\left[C\left(P_{n}\right)\right]_{i}\right)$ and $Q \in V\left(\left[C\left(P_{n}\right)\right]_{i+2}\right)$, for some $i \in\{1,2, \ldots, n-2\}$. Moreover, let $P=u_{j} u_{j+1} \ldots u_{j+i-1}, j \in\{1,2, \ldots, n-i+1\}$, and $Q=$ $u_{k} u_{k+1} \ldots u_{k+i+1}, k \in\{1,2, \ldots, n-i-1\}$. Then $P Q \in E\left(C\left(P_{n}\right)\right)$ if and only if $j=k+1$.

Proof. Let $P Q \in E\left(C\left(P_{n}\right)\right)$. Since the endpoints of a path are of degree 1, the endpoints of Q must either be in P or have a neighbour in P. Since $\ell(Q)-\ell(P)=2$, none of the endpoints of Q is in P. It follows that both endpoints of Q are adjacent to a vertex (an endpoint) in P, this implies that $j=k+1$ and $j+i-1=k+i(j=k+1)$.

For the converse, suppose $j=k+1$, then $P \subseteq Q$ and the vertices $u_{k}, u_{k+i+1} \in V(Q)$ are the only vertices in $V(Q) \backslash V(P)$. Since u_{k}, u_{k+i+1} are adjacent to $u_{j}=u_{k+1}, u_{j+i-1}=u_{k+i} \in V(P)$, respectively, the paths P and Q are adjacent in $C\left(P_{n}\right)$.

Proposition 3.22. Let P_{n} be a path on n vertices. Let $P \in V\left(\left[C\left(P_{n}\right)\right]_{i}\right)$ and $Q \in V\left(\left[C\left(P_{n}\right)\right]_{j}\right)$, for some $i, j \in\{1,2, \ldots, n\}$. If $|i-j|>2$ then $P Q \notin E\left(C\left(P_{n}\right)\right)$.

Proof. Suppose $|i-j| \geq 3$ (this implies $n \geq 4$) and $j>i$. Since $\ell(Q)-\ell(P) \geq$ 3 there exists an endpoint u in Q such that none of its neighbours are in P. This means that $d_{P_{n}}(u, v)>1$, for all $v \in V(P)$. Hence, the assertion follows.

4 Closeness of graphs

In this section we apply the notion of Hausdorff graphs to define a measure, called the Hausdorff distance, for closeness of any two connected simple graphs. First, we present some auxiliary definitions and results.

Definition 4.1. Let H_{1} be a subgraph of G_{1} and H_{2} a subgraph of G_{2}. If H_{1} and H_{2} are isomorphic graphs, then an amalgam of G_{1} and G_{2} is any graph A obtained from G_{1} and G_{2} by identifying their subgraphs H_{1} and H_{2}. We call the isomorphic copies of G_{1} and G_{2} in A the covers of the amalgam A.

Figure 5: An amalgam A of G_{1} and G_{2}.

Remark 4.2. Let A be an amalgam of G_{1} and G_{2}. We will always denote the covers of A by G_{1}^{A} and G_{2}^{A}. If $H \subseteq G_{i}\left(u \in V\left(G_{i}\right)\right)$, the corresponding graph (vertex) in G_{i}^{A} will also be denoted by $H^{A}\left(u^{A}\right), i \in\{1,2\}$.

Remark 4.3. Let A be an amalgam of G_{1} and G_{2} obtained from G_{1} and G_{2} by identifying their subgraphs H_{1} and H_{2}. Then $G_{1}^{A} \cap G_{2}^{A}=H_{1}^{A}=H_{2}^{A}$ is isomorphic to H_{1} and H_{2}.

Remark 4.4. For fixed isomorphic subgraphs H_{1} and H_{2} of G_{1} and G_{2}, respectively, there may be many isomorphisms from H_{1} onto H_{2}. Therefore there may be more than just one amalgam A of G_{1} and G_{2}, which is obtained by identifying H_{1} and H_{2} (see Example 4.5).

Example 4.5. Let G_{1} and G_{2} be the graphs depicted in Figure 6, and H_{1} and H_{2} their subgraphs, respectively, both isomorphic to P_{2}. Let f_{1} and f_{2} be two isomorphisms from H_{1} onto H_{2}. In Figure 6 they are depicted by dotted and dashed arrows, respectively. Next, let A_{i} be the amalgam of G_{1} and G_{2} obtained by identifying H_{1} and H_{2} according to the isomorphism f_{i}, $i \in\{1,2\}$. Obviously, A_{1} and A_{2} are not isomorphic, although they were both obtained by identifying the same subgraphs.

Figure 6: The amalgams A_{1} and A_{2} from Example 4.5.

In the rest of the paper, \mathcal{G} will always denote the class of all connected simple graphs. We will be interested in the distance between the covers G_{1}^{A} and G_{2}^{A} in an amalgam A of G_{1} and G_{2}. Moreover, we use the Hausdorff metric h_{A} on 2^{A} to determine this distance and express it via distances between vertices in A.

Lemma 4.6. Let $G_{1}, G_{2} \in \mathcal{G}$. Let d be a non-negative integer and A an amalgam of G_{1} and G_{2}. Then $h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \leq d$ if and only if
(i) for each $u \in V\left(G_{1}^{A}\right)$ there is a vertex $v \in V\left(G_{2}^{A}\right)$ such that $d_{A}(u, v) \leq d$ and
(ii) for each $u \in V\left(G_{2}^{A}\right)$ there is a vertex $v \in V\left(G_{1}^{A}\right)$ such that $d_{A}(u, v) \leq$ d.

Proof. Suppose, $h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \leq d$. Assume that (i) does not hold. Then there is a vertex $u \in V\left(G_{1}^{A}\right)$ such that for each $v \in V\left(G_{2}^{A}\right)$ it holds that $d_{A}(u, v)>d$. It follows that $u \notin V\left(G_{1}^{A}\right) \cap V\left(G_{2}^{A}\right)$ (otherwise, for $v=u$, $\left.d_{A}(u, v)=0 \ngtr d\right)$ and

$$
\begin{equation*}
k=d_{A}\left(u, G_{2}^{A}\right)=\min \left\{d_{A}(u, v) \mid v \in V\left(G_{2}^{A}\right)\right\}>d \tag{4.1}
\end{equation*}
$$

Let Q be a shortest path of length k connecting u to a vertex in G_{2}^{A}.
On the other hand, since $h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \leq d$, there is a shortest path

$$
P=\left(G_{1}^{A}=K_{1}, K_{2}, \ldots, K_{j}, K_{j+1}=G_{2}^{A}\right)
$$

of length $j \leq d$ in 2^{A} between G_{1}^{A} and G_{2}^{A}. Next, we construct a walk from u to a vertex in G_{2}^{A} of length at most j. Let $u_{1}=u \in V\left(K_{1}\right)$. Since $K_{1} K_{2} \in E\left(2^{A}\right)$, there is a vertex $u_{2} \in V\left(K_{2}\right)$ such that $d_{A}\left(u_{1}, u_{2}\right) \leq 1$. Say that we have already chosen vertices $u_{1}, u_{2}, \ldots, u_{n}, n<j+1$, such that for each $i \in\{1,2, \ldots, n-1\}$ it holds that $d_{A}\left(u_{i}, u_{i+1}\right) \leq 1$, and $u_{i} \in$ $V\left(K_{i}\right)$. Since $K_{n} K_{n+1} \in E\left(2^{A}\right)$, there is a vertex $u_{n+1} \in V\left(K_{n+1}\right)$ such that $d_{A}\left(u_{n}, u_{n+1}\right) \leq 1$.

The chosen vertices $u_{1}, u_{2}, \ldots, u_{j+1}$ define a walk W of length at most j from $u=u_{1}$ to the vertex $u_{j+1} \in V\left(G_{2}^{A}\right)$. Since Q is the shortest path from u to a vertex from G_{2}^{A}, it follows that $k=\ell(Q) \leq \ell(W) \leq j \leq d$. This is a contradiction with (4.1).

Assuming that (ii) does not hold, we can obtain a contradiction in a similar way.

For the converse, assume (i) and (ii). We will construct a path P from G_{1}^{A} to G_{2}^{A} in 2^{A} of length $n \leq d$. For each $i \in\{0,1, \ldots, d\}$ let $\mathcal{A}_{i}=\{v \in$ $\left.V\left(G_{1}^{A}\right) \mid d_{A}\left(v, G_{2}^{A}\right)=i\right\}$ and $\mathcal{B}_{i}=\left\{v \in V\left(G_{2}^{A}\right) \mid d_{A}\left(v, G_{1}^{A}\right)=i\right\}$. The sets \mathcal{A}_{i} and \mathcal{B}_{i} may be empty. Note also, that $\bigcup_{i=0}^{d}\left(\mathcal{A}_{i} \cup \mathcal{B}_{i}\right)=V(A)$. Say, $K_{1}=G_{1}^{A}$. Suppose, K_{i} has already been constructed. Then let K_{i+1} be the induced graph $\left\langle\left(V\left(K_{i}\right) \backslash \mathcal{A}_{d-i+1}\right) \cup \mathcal{B}_{i}\right\rangle$ in A. It follows from (i) and (ii), as well as from the construction of K_{i} 's that
(a) $h_{A}\left(K_{i}, K_{i+1}\right) \leq 1$, for each i,
(b) $K_{d+1}=G_{2}^{A}$ and
(c) $W=\left(K_{1}, K_{2}, \ldots, K_{d+1}\right)$ is a walk from G_{1}^{A} to G_{2}^{A} in 2^{A}.

Hence there is a path from G_{1}^{A} to G_{2}^{A} in 2^{A} of length at most d.
Remark 4.7. Let $G_{1}, G_{2} \in \mathcal{G}$ and A an amalgam of G_{1} and G_{2}. Note, that in the proof of Lemma 4.6, all of the constructed paths in 2^{A} are also the paths in $C(A)=\left\langle\left\{H \in V\left(2^{A}\right) \mid H\right.\right.$ is a connected subgraph of $\left.\left.A\right\}\right\rangle$, if $G_{1}^{A} \cap G_{2}^{A}$ is a connected subgraph of A. Hence, following the same proof as the proof of Lemma 4.6, one can get the same result by replacing h_{A} with $d_{C(A)}$ for such amalgams A.

Lemma 4.8. Let $G_{1}, G_{2} \in \mathcal{G}$. Let d be a non-negative integer and A an amalgam of G_{1} and G_{2}. Then $h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \geq d$ if and only if
(i) there is $u \in V\left(G_{1}^{A}\right)$ such that for each vertex $v \in V\left(G_{1}^{A} \cap G_{2}^{A}\right)$ the distance $d_{A}(u, v) \geq d$ or
(ii) there is $u \in V\left(G_{2}^{A}\right)$ such that for each vertex $v \in V\left(G_{1}^{A} \cap G_{2}^{A}\right)$ the distance $d_{A}(u, v) \geq d$.

Proof. We begin the proof by the following simple reasoning.

$$
\begin{array}{r}
h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \geq d \Leftrightarrow \\
\forall d^{\prime}<d: h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \not \leq d^{\prime}
\end{array} \Leftrightarrow
$$

Obviously (4.2) implies ((i) or (ii)). Also, since there are no edges between $G_{1}^{A} \backslash G_{2}^{A}$ and $G_{2}^{A} \backslash G_{1}^{A}$, the assumption ((i) or (ii)) implies (4.2).

Remark 4.9. Let $G_{1}, G_{2} \in \mathcal{G}$ and A an amalgam of G_{1} and G_{2}. Note, that following the proof of Lemma 4.8 one can get the same result by replacing h_{A} with $d_{C(A)}$, if $G_{1}^{A} \cap G_{2}^{A}$ is a connected subgraph of A.

As an immediate consequence of Lemmas 4.6 and 4.8 we obtain the following theorem and corollary.

Theorem 4.10. Let $G_{1}, G_{2} \in \mathcal{G}$. Let d be a non-negative integer and A an amalgam of G_{1} and G_{2}. Then $h_{A}\left(G_{1}^{A}, G_{2}^{A}\right)=d$ if and only if
(i) for each $u \in V\left(G_{1}^{A}\right)$ there is a vertex $v \in V\left(G_{2}^{A}\right)$ such that $d_{A}(u, v) \leq$ d,
(ii) for each $u \in V\left(G_{2}^{A}\right)$ there is a vertex $v \in V\left(G_{1}^{A}\right)$ such that $d_{A}(u, v) \leq$ d, and
(iii) there is $u \in V\left(G_{1}^{A}\right)$ such that for each vertex $v \in V\left(G_{1}^{A} \cap G_{2}^{A}\right)$ the distance $d_{A}(u, v) \geq d$ or
there is $u \in V\left(G_{2}^{A}\right)$ such that for each vertex $v \in V\left(G_{1}^{A} \cap G_{2}^{A}\right)$ the distance $d_{A}(u, v) \geq d$.

Remark 4.11. Following Remarks 4.7 and 4.9, one can easily see that

$$
h_{A}\left(G_{1}^{A}, G_{2}^{A}\right)=d_{C(A)}\left(G_{1}^{A}, G_{2}^{A}\right)
$$

for arbitrary $G_{1}, G_{2} \in \mathcal{G}$ and an amalgam A of G_{1} and G_{2}, with $G_{1}^{A} \cap G_{2}^{A}$ being a connected subgraph of A.

Corollary 4.12. Let $G_{1}, G_{2} \in \mathcal{G}$. Let A be an amalgam of G_{1} and G_{2}. Then there is $i \in\{1,2\}$ such that there are vertices $u \in V\left(G_{i}^{A}\right)$ and $v \in$ $V\left(G_{1}^{A} \cap G_{2}^{A}\right)$ with the distance $d_{A}(u, v)=h_{A}\left(G_{1}^{A}, G_{2}^{A}\right)$. Moreover, for each $w \in V(A)$ it holds that $d_{A}(u, v) \geq d_{A}\left(w, G_{1}^{A} \cap G_{2}^{A}\right)$.

Proof. Let $d=h_{A}\left(G_{1}^{A}, G_{2}^{A}\right)$. By (iii) of Theorem 4.10 there is $i \in\{1,2\}$ such that there is a vertex $u \in V\left(G_{i}^{A}\right)$ such that for all vertices $v \in V\left(G_{1}^{A} \cap G_{2}^{A}\right)$ the distance $d_{A}(u, v) \geq d$. Without loss of generality, suppose $i=1$. Using (i) of Theorem 4.10 there is a vertex $w_{u} \in V\left(G_{2}^{A}\right)$ such that the distance $d_{A}\left(u, w_{u}\right) \leq d$. Since, for each vertex $w \in V\left(G_{2}^{A} \backslash G_{1}^{A}\right)$ there is a vertex $v_{w} \in V\left(G_{1}^{A} \cap G_{2}^{A}\right)$ such that $d_{A}(u, w)=d_{A}\left(u, v_{w}\right)+d_{A}\left(v_{w}, w\right)$, such vertex $v_{w_{u}}$ exists also for w_{u}. Therefore, $d_{A}\left(u, v_{w_{u}}\right) \leq d_{A}\left(u, w_{u}\right) \leq d$. Since $d_{A}\left(u, v_{w_{u}}\right) \geq$ d, it follows that $d_{A}\left(u, v_{w_{u}}\right)=d$.

Let us now prove that for each $w \in V(A)$ it holds that $d_{A}(u, v) \geq$ $d_{A}\left(w, G_{1}^{A} \cap G_{2}^{A}\right)$. Suppose there is a $w \in V(A)$, such that $d_{A}\left(w, G_{1}^{A} \cap G_{2}^{A}\right)>$ $d_{A}(u, v)$. By Lemma 4.6 there is a vertex $w^{\prime} \in V(A)$ such that $d_{A}\left(w, w^{\prime}\right) \leq$ $d_{A}(u, v)$. Since w and w^{\prime} belong to different covers of A, any shortest path between these vertices intersects $G_{1}^{A} \cap G_{2}^{A}$, meaning that $d_{A}\left(w, G_{1}^{A} \cap G_{2}^{A}\right) \leq$ $d_{A}(u, v)$, a contradiction.

We will define a measure called the Hausdorff distance on \mathcal{G} which will serve as a measure of closeness of two connected simple graphs, i.e. how much two graphs coincide in such a way that two isomorphic graphs have Hausdorff distance 0 .

We define on \mathcal{G} a binary relation \sim as follows:

$$
G_{1} \sim G_{2} \Longleftrightarrow G_{1} \text { is isomorphic to } G_{2} .
$$

Clearly, the relation \sim is an equivalence relation on \mathcal{G}.
Definition 4.13. Let $\mathcal{G} / \sim=\{[G] \mid G \in \mathcal{G}\}$ be the family of all equivalence classes of the relation \sim on \mathcal{G}. We define the function

$$
H: \mathcal{G} / \sim \times \mathcal{G} / \sim \rightarrow \mathbb{R}
$$

as
$H\left(\left[G_{1}\right],\left[G_{2}\right]\right)=\min \left\{h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \mid A\right.$ is an amalgam of G_{1} and $\left.G_{2}\right\}$,
for any graphs $G_{1}, G_{2} \in \mathcal{G}$.
The function H is obviously well-defined, since its definition does not depend on the representatives of the equivalence classes.

For the function H the following holds true.
Theorem 4.14. Let $G_{1}, G_{2} \in \mathcal{G}$ be arbitrary graphs. Then
(i) $H\left(\left[G_{1}\right],\left[G_{2}\right]\right) \geq 0$,
(ii) $H\left(\left[G_{1}\right],\left[G_{2}\right]\right)=0$ if and only if $\left[G_{1}\right]=\left[G_{2}\right]$, and
(iii) $H\left(\left[G_{1}\right],\left[G_{2}\right]\right)=H\left(\left[G_{2}\right],\left[G_{1}\right]\right)$.

Proof. (i) Obviously $H\left(\left[G_{1}\right],\left[G_{2}\right]\right) \geq 0$ for any $G_{1}, G_{2} \in \mathcal{G}$.
(ii) Let $G_{1}, G_{2} \in \mathcal{G}$ be arbitrarily chosen and suppose $\left[G_{1}\right]=\left[G_{2}\right]$. Then, since G_{1} and G_{2} are isomorphic, the minimum

$$
\min \left\{h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \mid A \text { is an amalgam of } G_{1} \text { and } G_{2}\right\}
$$

is achieved when $A=G_{1}^{A}=G_{2}^{A}$. Therefore $h_{A}\left(G_{1}^{A}, G_{2}^{A}\right)=0$ for an amalgam A of G_{1} and G_{2}, and hence $H\left(\left[G_{1}\right],\left[G_{2}\right]\right)=0$. For the converse, let $G_{1}, G_{2} \in \mathcal{G}$ be arbitrarily chosen and suppose $H\left(\left[G_{1}\right],\left[G_{2}\right]\right)=$ 0 . Then there is an amalgam A of G_{1} and G_{2}, such that $h_{A}\left(G_{1}^{A}, G_{2}^{A}\right)=$ 0 . Therefore G_{1}^{A} and G_{2}^{A} represent the same vertex in 2^{A}. This means that $G_{1}^{A}=G_{2}^{A}$ and therefore $\left[G_{1}\right]=\left[G_{2}\right]$.
(iii) Let $G_{1}, G_{2} \in \mathcal{G}$ be arbitrarily chosen. Then
$H\left(\left[G_{1}\right],\left[G_{2}\right]\right)=\min \left\{h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \mid A\right.$ is an amalgam of G_{1} and $\left.G_{2}\right\}=$ $\min \left\{h_{A}\left(G_{2}^{A}, G_{1}^{A}\right) \mid A\right.$ is an amalgam of G_{2} and $\left.G_{1}\right\}=H\left(\left[G_{2}\right],\left[G_{1}\right]\right)$.

However, H is not a metric on \mathcal{G} / \sim, see Example 4.15.
Example 4.15. Let K_{1}, P_{7} and W_{7} be the graphs in Figure 7. Then $H\left(\left[W_{7}\right],\left[K_{1}\right]\right)=$ $1, H\left(\left[W_{7}\right],\left[P_{7}\right]\right)=1$ and $H\left(\left[P_{7}\right],\left[K_{1}\right]\right)=3$. Therefore

$$
H\left(\left[P_{7}\right],\left[K_{1}\right]\right) \leq H\left(\left[P_{7}\right],\left[W_{7}\right]\right)+H\left(\left[W_{7}\right],\left[K_{1}\right]\right)
$$

does not hold.

$\stackrel{\circ}{K_{1}}$

Figure 7: Graphs K_{1}, P_{7} and W_{7}.

We will prove that for convex amalgams (defined below) the triangle inequality holds true.

Definition 4.16. Let $G_{1}, G_{2} \in \mathcal{G}$, let H_{1} be a subgraph of G_{1}, and let H_{2} a subgraph of G_{2}, where H_{1} and H_{2} are isomorphic graphs. If H_{1} and H_{2} are both convex, then any amalgam of G_{1} and G_{2} obtained by identifying H_{1} and H_{2} is called a convex amalgam of G_{1} and G_{2}.

In convex amalgams the intersection of covers is also convex and by definition connected. It follows from Remark 4.11 that h_{A} can be obtained by determining $d_{C(A)}$, which is easier.

Theorem 4.17. Let $H_{X}\left(\left[G_{1}\right],\left[G_{2}\right]\right)=\min \left\{h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \mid A\right.$ is a convex amalgam of G_{1} and $\left.G_{2}\right\}$, for arbitrary $G_{1}, G_{2} \in \mathcal{G}$. Then H_{X} is a metric on \mathcal{G} / \sim.

Proof. For
(i) $H_{X}\left(\left[G_{1}\right],\left[G_{2}\right]\right) \geq 0$,
(ii) $H_{X}\left(\left[G_{1}\right],\left[G_{2}\right]\right)=0$ if and only if $\left[G_{1}\right]=\left[G_{2}\right]$, and
(iii) $H_{X}\left(\left[G_{1}\right],\left[G_{2}\right]\right)=H_{X}\left(\left[G_{2}\right],\left[G_{1}\right]\right)$.
we follow the same line of thought as in Theorem 4.14.
Let $G_{1}, G_{2}, G_{3} \in \mathcal{G}$ be arbitrary graphs. We prove that

$$
H_{X}\left(\left[G_{1}\right],\left[G_{3}\right]\right) \leq H_{X}\left(\left[G_{1}\right],\left[G_{2}\right]\right)+H_{X}\left(\left[G_{2}\right],\left[G_{3}\right]\right)
$$

Let $i, j \in\{1,2,3\}$, where $i<j$. Then let $A_{i, j}$ be a convex amalgam of G_{i} and G_{j} with $d_{i, j}:=d_{C\left(A_{i, j}\right)}\left(G_{i}^{A_{i, j}}, G_{j}^{A_{i, j}}\right)=H_{X}\left(\left[G_{i}\right],\left[G_{j}\right]\right)$. In other words, $A_{i, j}$ is the graph which gives rise to the minimum for $H_{X}\left(\left[G_{i}\right],\left[G_{j}\right]\right)$. Denote by $H_{i, j}$ the convex graph $\left(G_{i}^{A_{i, j}}\right) \cap\left(G_{j}^{A_{i, j}}\right)$.

Now, create an amalgam of $A_{1,2}$ and $A_{2,3}$ by identifying the vertices in the covers $G_{2}^{A_{1,2}}$ and $G_{2}^{A_{2,3}}$, denote the resulting graph by A. Note, this amalgam may not be the one giving rise to the minimum for $H_{X}\left(\left[A_{1,2}\right],\left[A_{2,3}\right]\right)$, but it clearly is a convex amalgam.

First, assume that the graphs G_{1}^{A} and G_{3}^{A} corresponding to G_{1} and G_{3}, respectively, in the graph A have a non-empty intersection, denote the set of vertices in this intersection by S. Since the graph $\langle S\rangle=H_{1,2}^{A} \cap H_{2,3}^{A}$ is the intersection of two convex subgraphs of $G_{2}^{A},\langle S\rangle$ is also convex in G_{2}^{A} (as well as in G_{1}^{A} and G_{3}^{A}). Therefore, clearly $\langle S\rangle$ is convex in A. Let $d^{\prime}=d_{C\left(A^{\prime}\right)}\left(G_{1}^{A^{\prime}}, G_{3}^{A^{\prime}}\right)$, where A^{\prime} is the graph obtained from A by removing all vertices of graph G_{2}^{A}, which are not in the graphs G_{1}^{A} and G_{3}^{A}. Note that A^{\prime} is a convex amalgam of graphs G_{1} and G_{3}. Therefore $H_{X}\left(\left[G_{1}\right],\left[G_{3}\right]\right) \leq d^{\prime}$. It follows from Corollary 4.12 that there exist vertices $u \in S$ and $v \in V\left(G_{i}^{A^{\prime}}\right)$ for an index $i \in\{1,3\}$, such that $d_{A^{\prime}}(u, v)=d^{\prime}$. Without loss of generality suppose that $i=3$. Let $P=\left(u=u_{1}, u_{2}, \ldots, u_{k}, u_{k+1}, \ldots, u_{d+1}=v\right)$ be a shortest path from u to v in A^{\prime}, where for each $j \leq k, u_{j} \in H_{2,3}^{A}$ and for each $j>k, u_{j} \notin H_{2,3}^{A}$. Clearly, P is also a shortest path from u to v in A. Then $d^{\prime}=d_{A^{\prime}}\left(u, u_{k}\right)+d_{A^{\prime}}\left(u_{k+1}, v\right)=d_{A^{\prime}}\left(u, u_{k}\right)+d_{A_{2,3}}\left(u_{k+1}, v\right) \leq d_{1,2}+d_{2,3}$.

Second, assume that the graphs G_{1}^{A} and G_{3}^{A} corresponding to G_{1} and G_{3}, respectively, in the graph A have an empty intersection. Following Corollary 4.12 we choose the following vertices: $u_{1} \in V\left(A_{1,2}\right), u_{2} \in V\left(A_{2,3}\right), u_{3} \in$ $V\left(A_{1,3}\right)$ and $v_{1} \in V\left(H_{1,2}^{A_{1,2}}\right), v_{2} \in V\left(H_{2,3}^{A_{2,3}}\right), v_{3} \in V\left(H_{1,3}^{A_{1,3}}\right)$, such that $d_{1,2}=$ $d_{A_{1,2}}\left(u_{1}, v_{1}\right), d_{2,3}=d_{A_{2,3}}\left(u_{2}, v_{2}\right)$ and $d_{1,3}=d_{A_{1,3}}\left(u_{3}, v_{3}\right)$. Without loss of generality assume that $u_{1} \in V\left(G_{1}^{A_{1,2}}\right), u_{2} \in V\left(G_{2}^{A_{2,3}}\right), u_{3} \in V\left(G_{1}^{A_{1,3}}\right)$. Let $u_{1}^{A}, v_{1}^{A}, u_{2}^{A}, v_{2}^{A}$ be the vertices in A corresponding to vertices $u_{1}, v_{1}, u_{2}, v_{2}$, respectively. Next let u_{3}^{\prime} and v_{3}^{\prime} be the vertices in G_{1}^{A} corresponding to u_{3} and v_{3} in $G_{1}^{A_{1,3}}$. Finally, let $v_{3}^{\prime \prime}$ be the vertex in G_{3}^{A} corresponding to v_{3} in $G_{3}^{A_{1,3}}$. See Figure 8 for reference.

Next we define the graph G as the graph obtained from A by identifying the vertices v_{1}^{A} and v_{2}^{A}. Denote the resulting vertex in G by x, also denote by

Figure 8: Graphs, vertices and notation from the proof of Theorem 4.17.
u_{3}^{G} and v_{3}^{G} the vertices in G corresponding to u_{3}^{\prime} and v_{3}^{\prime} in A, respectively. Note that distances between two vertices of $G_{1}\left(G_{3}\right)$ remain the same when observed in A or in G. Hence,

$$
\begin{aligned}
d_{1,3}=d_{A_{1,3}}\left(u_{3}, v_{3}\right)=d_{A}\left(u_{3}^{\prime}, v_{3}^{\prime}\right)=d_{G}\left(u_{3}^{G}, v_{3}^{G}\right) & \leq \\
d_{G}\left(u_{3}^{G}, x\right)+d_{G}\left(x, v_{3}^{G}\right)=d_{A}\left(u_{3}^{\prime}, v_{1}^{A}\right)+d_{A}\left(v_{2}^{A}, v_{3}^{\prime \prime}\right) & \leq \\
d_{A}\left(u_{1}^{A}, v_{1}^{A}\right)+d_{A}\left(v_{2}^{A}, u_{2}^{A}\right)=d_{A_{1,2}}\left(u_{1}, v_{1}\right)+d_{A_{2,3}}\left(u_{2}, v_{2}\right) & = \\
d_{1,2}+d_{2,3} . &
\end{aligned}
$$

Finally we define the Hausdorff distance $\mathcal{H}: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$ on \mathcal{G}.
Definition 4.18. For any graphs $G_{1}, G_{2} \in \mathcal{G}$, we define

$$
\mathcal{H}\left(G_{1}, G_{2}\right)=H_{X}\left(\left[G_{1}\right],\left[G_{2}\right]\right)
$$

We call \mathcal{H} the Hausdorff distance on \mathcal{G}.
Let us point out that the Hausdorff distance is not a metric on \mathcal{G}, since from $\mathcal{H}\left(G_{1}, G_{2}\right)=0$ it follows that $G_{1} \sim G_{2}$ and not necessarily $G_{1}=G_{2}$. The following theorem follows directly from Theorem 4.17.

Theorem 4.19. Let $G_{1}, G_{2}, G_{3} \in \mathcal{G}$ be arbitrary graphs. Then
(i) $\mathcal{H}\left(G_{1}, G_{2}\right) \geq 0$,
(ii) $\mathcal{H}\left(G_{1}, G_{2}\right)=0$ if and only if $G_{1} \sim G_{2}$,
(iii) $\mathcal{H}\left(G_{1}, G_{2}\right)=\mathcal{H}\left(G_{2}, G_{1}\right)$, and
(iv) $\mathcal{H}\left(G_{1}, G_{3}\right) \leq \mathcal{H}\left(G_{1}, G_{2}\right)+\mathcal{H}\left(G_{2}, G_{3}\right)$.

Example 4.20. On Figure 9 there are all non-isomorphic convex amalgams of P_{2} and P_{3}, which are denoted by A_{1}, A_{2} and A_{3}. Moreover there are all non-isomorphic convex amalgams of Q_{3} and P_{3}, which are denoted by B_{1}, B_{2} and B_{3}.

Figure 9: Graphs from Example 4.20.

Since $d_{C\left(A_{1}\right)}\left(P_{2}^{A_{1}}, P_{3}^{A_{1}}\right)=d_{C\left(A_{2}\right)}\left(P_{2}^{A_{2}}, P_{3}^{A_{2}}\right)=1$ and $d_{C\left(A_{3}\right)}\left(P_{2}^{A_{3}}, P_{3}^{A_{3}}\right)=$ 2, it follows that the Hausdorff distance between P_{2} and P_{3} is $\mathcal{H}\left(P_{2}, P_{3}\right)=1$. Similarly, it follows from $d_{C\left(B_{2}\right)}\left(Q_{3}^{B_{2}}, P_{3}^{B_{2}}\right)=d_{C\left(B_{3}\right)}\left(Q_{3}^{B_{3}}, P_{3}^{B_{3}}\right)=3$ and $d_{C\left(B_{1}\right)}\left(Q_{3}^{B_{1}}, P_{3}^{B_{1}}\right)=2$, that the Hausdorff distance between Q_{3} and P_{3} is $\mathcal{H}\left(Q_{3}, P_{3}\right)=2$.

5 Applications

We see applications of our method of measuring closeness of two graphs in all areas where the objects in question can be represented as graphs. Among others, such applications may be found in
(i) computer science (e.g. representations of networks and their comparisons);
(ii) chemistry (e.g. representations of molecules and their comparisons);
(iii) linguistics (e.g. representations of phrase structures and their comparisons);
(iv) physics (e.g. representations of complicated simulated atomic structures in condensed matter physics and their comparisons);
(v) sociology (e.g. representations of social networks and their comparisons);
(vi) biology (e.g. representations of species habitats and their comparisons).

Here we present one possible application of our method in biology, where similarity of two species is often studied by observing and comparing various parameters of two specimens (e.g. skull features, teeth positions, vein systems in leaves). One such method, recognized by biologists, is called landmark-based geometric morphometrics, where landmark (special points, e.g. intersection points of veins) coordinates are used as reference points to determine similarity of two objects compared (for an example see [7]). Unfortunately, this method fails when two such representations of objects differ immensely. Our method has no such limits.

Next we present an easy application of the Hausdorff distance in biology. We compare three different trees by using their leaves; two of them from the same tree species and one from a different tree species. We use the vein systems of the leaves to represent them as graphs, see Figures 10 and 11.

It can be easily checked that the Hausdorff distance between the graphs of leaves in Figure 10 is $\mathcal{H}\left(T_{1}, T_{2}\right)=1$, so they are very close - related with respect to the meaning of the Hausdorff distance.

Let us now compare graphs T_{1} and T_{3}. Since T_{1} is a convex subgraph of T_{3}, one can easily see that $\mathcal{H}\left(T_{1}, T_{3}\right) \geq 5$, therefore the two trees corresponding to T_{1} and T_{3} are not as related (w.r.t. the Hausdorff distance) as those corresponding to T_{1} and T_{2}.

This example shows that Hausdorff distance can be used to determine a relationship between the three trees compared. Namely, with respect to the Hausdorff distance, the first two trees are more related than the first and the third.

Figure 10: Two leaves from the same tree species and their graph representations T_{1} and T_{2}.

Figure 11: A leaf from a different tree species than those in Figure 10 and its graph representation T_{3}.

6 Open problems

In the last section we introduce some open problems about Hausdorff graphs and the Hausdorff distance. First we introduce a natural question that arises when constructing Hausdorff graphs and the introduced families of their subgraphs.

Question 6.1. Let G and H be arbitrary graphs. Are the following statements equivalent?
(i) G is isomorphic to H.
(ii) 2^{G} is isomorphic to 2^{H}.
(iii) $C(G)$ is isomorphic to $C(H)$.
(iv) $C I(G)$ is isomorphic to $C I(H)$.
(v) $K(G)$ is isomorphic to $K(H)$.

It is obvious that (ii), (iii), (iv) and (v) follow from (i).
We have shown in Example 4.15 that H is not a metric on \mathcal{G} / \sim. Then we obtained a metric on \mathcal{G} / \sim by applying the convex amalgams. In some applications, other types of amalgams may give better results about comparison of two objects (it is all up to the structure of studied objects and the properties to be compared). This is why we conclude the paper with two questions about obtaining new metrics on \mathcal{G} / \sim by applying so-called induced (or isometric) amalgams instead of the convex amalgams.

Definition 6.2. Let $G_{1}, G_{2} \in \mathcal{G}$, let H_{1} be a subgraph of G_{1}, and let H_{2} a subgraph of G_{2}, where H_{1} and H_{2} are isomorphic graphs. If H_{1} and H_{2} are both induced (isometric), then any amalgam of G_{1} and G_{2} obtained by identifying H_{1} and H_{2} is called an induced (isometric) amalgam of G_{1} and G_{2}.

Question 6.3. For arbitrary graphs $G_{1}, G_{2} \in \mathcal{G}$ let
$H_{I}\left(\left[G_{1}\right],\left[G_{2}\right]\right)=\min \left\{h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \mid A\right.$ is an induced amalgam of G_{1} and $\left.G_{2}\right\}$.
Is then H_{I} a metric on \mathcal{G} / \sim ?
Question 6.4. For arbitrary graphs $G_{1}, G_{2} \in \mathcal{G}$ let
$H_{M}\left(\left[G_{1}\right],\left[G_{2}\right]\right)=\min \left\{h_{A}\left(G_{1}^{A}, G_{2}^{A}\right) \mid A\right.$ is an isometric amalgam of G_{1} and $\left.G_{2}\right\}$.
Is then H_{M} a metric on \mathcal{G} / \sim ?

Acknowledgments

The authors thank Sandi Klavžar and Uroš Milutinović for constructive suggestions and discussions. We also thank the anonymous referees for their remarks and suggestions that helped us to correct several mistakes in the original version of the paper and to improve its presentation.

References

[1] H.-J. Bandelt, H. M. Mulder, and E. Wilkeit, Quasi-median graphs and algebras, J. Graph Theory 18, 1994, 681-703.
[2] G. Benadé, W. Goddard, T. A. McKee, and P. A. Winter, On distances between isomorphism classes of graphs, Math. Bohem. 116 (2), 1991, 160-169.
[3] H. Bunke, K. Shearer, A graph distance metric based on the maximal common subgraph, Pattern Recognit. Lett. 19, 1998, 255-259.
[4] G. Chartrand, F. Saba, and H. B. Zou, Edge rotations and distance between graphs, Čas. pěst. mat. 110 (1), 1985, 87-91.
[5] M. Gorše Pihler, J. Žerovnik, Partial cubes are distance graphs, Discrete Math. 308, 2008, 820-826.
[6] A. Illanes, S. B. Nadler, Hyperspaces. Fundamentals and recent advances, Marcel Dekker, Inc., New York, 1999.
[7] F. Janžekovič, B. Kryštufek, Geometric morphometry of the upper molars in European wood mice Apodemus, Folia Zool. 53 (1), 2004, 47-55.
[8] M. Johnson, An ordering of some metrics defined on the space of graphs, Czechoslovak Math. J. 37 (1), 1987, 75-85.
[9] S. Klavžar, Wiener index under gated amalgamations, MATCH Commun. Math. Comput. Chem. 53, 2005, 181-194.
[10] L. C. Simon Romero, The Hyperspace Graph of Connected Subgraphs, Doctoral Dissertation, Eberly College of Arts and Sciences, Morgantown, West Virginia, 2005.
[11] L. C. Simon Romero, Uniqueness of the hyperspace graph of connected subgraphs, Topology Proc. 31 (1), 2007, 283-294.
[12] L. C. Simon Romero, Relations between the hyperspace graph of connected subgraphs and the topological hyperspace of subcontinua, Continuum Theory: in honor of Professor David P. Bellamy on the ocasion of his 60th bithday, Aportaciones Mat. Investig., 19, Soc. Mat. Mexicana, México, 2007, 123-133.
[13] S. B. Nadler, Continuum theory. An introduction, Marcel Dekker, Inc., New York, 1992.

[^0]: 2010 Mathematics Subject Classification: Primary 54B20, 05C99; Secondary 05C40, 05C12.

 Key words and phrases: Graphs, Hausdorff graphs, Hausdorff metric, Hausdorff distance

