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1 Introduction

In the paper, we study the behavior of local solutions of the following super-linear hyper-
bolic equations with (possibly strong) damping

uktt −∆uk − ω∆ukt + µukt + fk(u) = ak|uk|p−2uk in [0, T ]× Ω

u(0, x) = φ(x) ut(0, x) = ψ(x) in Ω

u(t, x) = 0 on [0, T ]× ∂Ω

k = 1, 2. (1)

where Ω is an open bounded Lipschitz subset of Rn (n ≥ 1), T > 0, u = (u1, u2) is
unknown, ak is constant and ak > 0, p > 2, fk is a known continuously differentiable
function . We study the behavior of solutions to (1) in the phase space H1

0 (Ω)×H1
0 (Ω).

Since stationary solutions play a crucial role in the description of the evolution of (1),
several tools from critical point theory turn out to be quite useful for our purposes.

In particular, we consider the mountain pass energy level d (see [1]), the Nehari man-
ifold N (see [20]) of the stationary problem associated to (1) and the two unbounded sets
N+ (inside N ) and N− (outside N ). All these tools are defined in detail in Section 2.
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A first attempt to tackle it with these tools was made by Sattinger ( [26]) who developed
the so called potential well theory in order to study the problem with no damping (that is
ω = µ = 0). In the wave equation blow-up literature, there have been significant progress
made by Merle and Zaag [17,18] and [19] for the semilinear wave equation

utt = ∆u+ |u|p−1u

where p > 1 and p ≤ 1+ 4
N−1

if N ≥ 2. Subsequently, equations with damping terms have
been considered by many authors. For equations with (possibly nonlinear) weak damping
we refer to ( [8] [21] [22] [24] [29] [30]). Much less is known for equations with strong
damping; see the paper( [9] [12] [23] [27]), but still many problems remain unsolved. It is
our purpose to shed some further light on damped wave equations of the kind in both the
cases of weak (ω = 0) and strong (ω > 0) damping. As recently done by the first author
in ( [7] [9]), we will exploit further the properties of the Nehari manifold. However we
mention that, by exploiting a completely different method, the existence of solutions with
arbitrarily high initial energy has been also obtained in ( [11]) for weakly damped wave
equations on the whole Rn. Cazenave ( [2]) proved bounded-ness of global solutions for
ω = µ = 0 while Esquivel-Avila ( [5] [6]) recovered the same result for ω = 0 and µ > 0
and showed that this property may fail in presence of a nonlinear dissipation term.

Motivated by the papers ( [3] [4] [9] [13] [15] [16] [31]), in the present paper we con-
sider problem (1). We shall discuss the existence, uniqueness and blow-up properties of
solutions in for a system (1) in a bounded domain Ω in Rn. The method mainly used here
are the Galerkin method(see [14]), the fixed point method, the potential well method and
the concave method.

The paper is organized as follows. In section 2, we first recall the notations used
throughout this paper and the main assumptions. In section 3, we present the main
result of the paper. From section 4 to 6, we provide the proofs of the results.

2 Notations and assumptions

First we give the notations used throughout this paper. LetWm,q(Ω) be the usual Sobolev
space and its norm is denoted by ∥ · ∥m,q. Specially, W

m,2(Ω) and W 0,q(Ω) will be marked
by Hm(Ω) and Lq(Ω), respectively. Moreover, the norm of Lq(Ω) is denoted by ∥ · ∥q and
when q = 2, the corresponding norm will be written as ∥ · ∥ simply.We denote by (·, ·)
the inner product of L2(Ω). It is well known that H1

0 (Ω) is the closure of C∞
0 (Ω) with

respect to the norm ∥u∥H1
0
= ∥∇u∥. Let X be a Banach space, then Lq([0, T ], X) and

Ck([0, T ], X) stand for the Banach space of the strongly measurable X-valued functions
u : [0, T ] → X with ∥u(·)∥X ∈ Lq([0, T ]) and Ck([0, T ]), respectively, where k ≥ 0 and
∥ · ∥X is the norm defined on X.

Moreover, we denote by ⟨·, ·⟩ the duality pairing between H−1(Ω) and H1
0 (Ω). When

ω > 0 (resp. ω = 0) for all v, w ∈ H1
0 (Ω) (resp. for all v, w ∈ L2(Ω)), we put
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(v, w)∗ = ω

∫
Ω

∇v · ∇w + µ

∫
Ω

vw, ∥v∥∗ = (v, v)1/2∗ ;

∥ · ∥∗ is an equivalent norm over H1
0 (Ω) (resp.L

2(Ω)).

We may consider the C1 functionals Ik, Jk : H
1
0 (Ω) → R defined by

Ik(u) = ∥∇u∥22 − ak∥u∥pp and Jk(u) =
1

2
∥∇u∥22 −

ak
p
∥u∥pp

The mountain pass value of Jk (also known as potential well depth) is defined as

dk = inf
u∈H1

0 (Ω)\{0}
max
λ≥0

Jk(λu)

All nontrivial stationary solutions belong to the so-called Nehari manifold (see [20]
and also [28]) defined by

Nk = {u ∈ H1
0 (Ω)\{0} : Ik(u) = 0}.

It is easy to show that each half line starting from the origin of H1
0 (Ω) intersects

exactly once the manifold Nk and that Nk separates the two unbounded sets

Nk+ = {u ∈ H1
0 (Ω) : Ik(u) > 0} ∪ {0}

Nk− = {u ∈ H1
0 (Ω) : Ik(u) < 0} ∪ {0}

We also consider the (closed) sub-levels of Jk

Ja
k = {u ∈ H1

0 (Ω) : Jk(u) ≤ a} (a ∈ R)

and we introduce the stable set Wk and the unstable set Uk defined by

Wk = Jd
k ∩Nk+ and Uk = Jd

k ∩Nk−

Here d = min{d1, d2}, d is the mountain pass level.

It is readily seen (see [28]) that the mountain pass level dk may also be characterized
as

dk = inf
u∈Nk

Jk(u)

Finally, we consider the energy functional E(t)
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E(t) =
2∑

k=1

(
1

2
∥ukt(t)∥2 +

1

2
∥∇uk∥22 −

ak
p
∥uk∥pp) +

∫
Ω

F (u(t))dx.

where F (u) =

∫ u1

0

f1(s, u2)ds+

∫ u2

0

f2(0, s)ds

If
∂f1
∂u2

=
∂f2
∂u1

hold, then

E(t) +
2∑

k=1

∫ t

s

∥ukt(τ)∥2∗dτ = E(s), 0 ≤ s < t < Tmax (∗)

Define

S = {u | u ∈ C0([0, T ], H1
0 (Ω))∩C1([0, T ], L2(Ω))∩C2([0, T ], H−1(Ω)), ut ∈ L2([0, T ], H1

0 (Ω))}

Definition 1. A function u = (u1, u2) is called a weak solution of the initial boundary
value problem (1), if uk(x, t) ∈ S for k = 1, 2, and satisfy

⟨uktt, η⟩+
∫
Ω

∇uk(t)∇η + ω

∫
Ω

∇ukt(t)∇η + µ

∫
Ω

uk(t)η +

∫
Ω

fk(u)η =

∫
Ω

ak|uk|p−2ukη

holds for ∀η ∈ H1
0 (Ω) and a.e.t ∈ [0, T ]

Now we make the following assumptions.

(A1)

φ(x) = (φ1(x), φ2(x)) ∈ H1
0 (Ω)×H1

0 (Ω), ψ(x) = (ψ1(x), ψ2(x)) ∈ L2(Ω)× L2(Ω) (2)

ω ≥ 0, µ > −ωλ1 (3)

λ1 being the first eigenvalue of the operator −∆ under homogeneous Dirichlet bound-
ary conditions.

(A2)

2 < p ≤


2n

n− 2
ω > 0

2n− 2

n− 2
ω = 0

if n ≥ 3, and 2 < p <∞, if n = 1, 2. (4)
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(A3) fk : R2 → R is continuously differentiable such that for each u = (u1, u2) ∈
H1

0 (Ω)×H1
0 (Ω), ukfk(u) ∈ L1(Ω), k = 1, 2, F (u) ∈ L1(Ω).

(A4) fk : H1
0 (Ω)×H1

0 (Ω) → L2(Ω), k = 1, 2, satisfies a local Lipschitz condition, i.e.,
for any δ > 0, there exists a positive constant C(δ) such that
∥fk(u)− fk(v)∥ ≤ C(δ)∥u− v∥H1

0×H1
0
for u, v ∈ H1

0 ×H1
0 with

∥u∥H1
0×H1

0
≤ δ, ∥v∥H1

0×H1
0
≤ δ.

(A5)
∂f1
∂u2

=
∂f2
∂u1

.

(A6) u1f1 + u2f2 ≥ F (u) ≥ 0,∀u1, u2 ∈ R.

(A7) There exists a positive constant n0 ≥ 1/p such that

max{u1f1 + u2f2, 0} ≤ 1

n0

F (u), ∀u1, u2 ∈ R.

Remark1: consider a particular problem (1)in Rn(n ≤ 3) with f1(u1, u2) = γu1u
2
2,

f2(u1, u2) = γu21u2, γ is a constant. If γ ≥ 0, we see that fi and F satisfy the assumptions
(A2-A6). Moreover let n0 =

1
4
, take p = 3 whether n ≤ 2 or n = 3, we see that p, fi and

F satisfy assumptions (A2-A5) and (A7).

3 The main results

Theorem 1. Let the assumptions (A1)-(A5) be fulfilled. Then problem (1) admits
a unique weak solution (u1, u2) defined on [0, Tmax), and at least one of the following
statements is valid:
(1) Tmax = ∞;
(2) Tmax <∞, and

lim
t→Tmax

2∑
k=1

∥ukt(t)∥22 + ∥∇uk∥22 = ∞

E(t) +
2∑

k=1

∫ t

0

∥ukt(τ)∥2∗dτ = E(0)

Definition 2. Let Tmax = sup{T > 0 : v = v(x, t) exists on [0, T )}. If Tmax <∞, we say
that the solution to (1) blows up and that Tmax is the blow up time. If Tmax = ∞, we say
that the solution is global.

Theorem 2. Assume that (A1)-(A6) hold and let (u1, u2) be the unique local solution
to (1). In addition, assume that there exists t̄ ∈ [0, Tmax) such that

uk(t̄) ∈ Wk and E(t̄) ≤ d.
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where d = min{d1, d2}. Then Tmax = ∞ . And for every t > t̄,

∥∇uk(t)∥22 + ∥ukt(t)∥22 ≤
Θ(ω, µ)

t

where

Θ(ω, µ) =

{
Cµ(1 +

1
ω
+ ω) ω > 0

C(1 + 1
µ
+ µ) ω = 0

(5)

and C is independent of µ , whereas Cµ only depends on µ.

Theorem 3. Let the assumptions (A1-A5) and (A7) hold. If I1(φ1) < 0 and I2(φ2) < 0,
E(0) < min{d1, d2}. Then the solution (u1, u2) blows up in finite time, i.e., there exists
Tmax such that

lim
t→T−

2∑
k=1

[∥ukt(t)∥2 + ∥∇uk(t)∥2] = ∞

and an upper bound for Tmax is estimated

Tmax ≤ 1

2θ2β

{[(∑
{2θ(φk, ψk)−∥∇φk∥2}

)2

+4θ2β
∑

∥φk∥
] 1

2
+{∥∇φk∥2−2θ(φk, ψk)}

}

where β = 2(
2∑

k=1

dk − E(0)), θ =
p− 2

4
.

4 Proof of Theorem 1

In the paper, we restrict ourselves to the case ω > 0, µ ̸= 0 and n ≥ 3.

For a given T > 0, consider the spaceH = C([0, T ], H1
0 (Ω))∩C1([0, T ], L2(Ω)) endowed

with the norm

∥u∥2H = max
t∈[0,T ]

(∥∇u(t)∥22 + ∥ut(t)∥22)

Lemma 4.1. For every T > 0, every f ∈ H and every initial data (φ, ψ) ∈ H1
0 (Ω)×L2(Ω),

there exists a unique v ∈ H ∩ C2([0, T ], H−1(Ω)) such that vt ∈ L2([0, T ], H1
0 (Ω)) which

solves the linear problem
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
vtt −∆v − ω∆vt + µvt = f(t, x) in [0, T ]× Ω

v(0, x) = φ(x) vt(0, x) = ψ(x) in Ω

v = 0 on [0, T ]× ∂Ω

(6)

Proof: For every h ≥ 1 , let Wh = Span{w1, ..., wh}, where {wj} is the orthogonal
complete system of eigenfunctions of −△ in H1

0 (Ω) such that ∥wj∥2 = 1 for all j. Then,
{wj} is orthogonal and complete in L2(Ω) and in H1

0 (Ω); denote by {λj} the related

eigenvalues. Let φh(t) =
h∑

j=1

(

∫
Ω

∇φ∇wj)wj and ψ
h(t) =

h∑
j=1

(

∫
Ω

ψwj)wj so that φh ∈ Wh,

ψh ∈ Wh, φ
h → φ in H1

0 (Ω) and ψ
h → ψ in L2(Ω) as h → ∞. For all h ≥ 1 we seek h

functions γh1 , · · · , γhh ∈ C2[0, T ] such that

vh(t) =
h∑

j=1

(γhj (t))wj (7)

solves the problem

{∫
Ω
[v̈h(t)−∆vh(t)− ω∆v̇h(t) + µv̇h(t)]ηdx =

∫
Ω
f(t, x)η(x)dx

vh(0) = φh v̇h(0) = ψh
(8)

for every η ∈ Wh and t ≥ 0. For j = 1, · · · , h, taking η = wj in (8) yields the following
Cauchy problem for a linear ordinary differential equation with unknown γhj :

{
γ̈hj (t) + (ωλj + µ)γ̇hj (t) + λjγ

h
j (t) = Ψj(t)

γhj =
∫
Ω
φwjdx γ̇hj =

∫
Ω
ψwjdx

(9)

where Ψj(t) =

∫
Ω

f(t, x)wj(x)dx ∈ C[0, T ]. For all j , the above Cauchy problem yields

a unique global solution γhj ∈ C2[0, T ]. In particular, (7) implies that v̇h(t) ∈ H1
0 (Ω) for

every t ∈ [0, T ] so that Sobolev inequality entails

∥v̇h∥2∗ ≤ C∥∇v̇h∥2, where 2∗ =
n(p− 2)

2
, for every t ∈ [0, T ]. Taking η = v̇h into (9), and

integrating over [0, t] ⊂ [0, T ], we obtain

∥∇vh(t)∥22+∥v̇h(t)∥22+2

∫ t

0

∥v̇h(τ)∥2∗dτ = ∥∇φh∥22+∥ψh∥22+2

∫ t

0

∫
Ω

f(τ, x)v̇h(τ)dτ (10)
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for every h ≥ 1. We estimate the last term in the right-hand side thanks to Holder,
Sobolev and Young inequalities

2

∫ t

0

∫
Ω

f(τ, x)v̇h(τ)dτ ≤ CT +

∫ t

0

∥v̇h(τ)∥2∗dτ (11)

Recalling that from (10) and (11) we obtain

∥vh∥2H +

∫ T

0

∥v̇h(τ)∥2∗dτ ≤ C(T )

for every h ≥ 1, where C(T ) > 0 is independent of h. By this uniform estimate and using
(8), we have:

{vh} is bounded in L∞([0, T ], H1
0 (Ω))

{v̇h} is bounded in L∞([0, T ], L2(Ω)) ∩ L2([0, T ], H1
0 (Ω))

{v̈h} is bounded in L2([0, T ], H−1(Ω))

Therefore, up to a subsequence, we may pass to the limit in (8) and obtain a weak
solution v of (6) with the above regularity. Since v ∈ H1([0, T ], H1

0 (Ω)), we get v ∈
C([0, T ], H1

0 (Ω)). Moreover, since v̇ ∈ L∞([0, T ], L2(Ω)) ∩ L2([0, T ], H1
0 (Ω)) and v̈ ∈

L2([0, T ], H−1(Ω)) ,we have v̇ ∈ C([0, T ], L2(Ω)). Finally, from (6) we get v̈ ∈ C([0, T ], H−1(Ω)).
The existence of v solving (6) is so proved.

Uniqueness follows arguing for contradiction: if v and w were two solutions of (6)
which share the same initial data, by subtracting the equations and testing with vt −wt,
instead of (10) we would get

∥∇v(t)−∇w(t)∥22 + ∥vt(t)− wt(t)∥22 + 2

∫ t

0

∥vt(τ)− wt(τ)∥2∗dτ = 0

which immediately yields w ≡ v. The proof of the lemma is now complete.

Take (φ, ψ) satisfying (2), let R2 = 2(∥∇φ∥22 + ∥ψ∥22) and for any T > 0 consider

ΓT = {u ∈ H : u(0) = φ, ut(0) = ψ and ∥u∥H ≤ R}

By Lemma 4.1, for any u ∈ ΓT × ΓT , we may define v = Φ(u), being v the unique
solution to problem


(vktt −∆vk − ω∆vkt + µvkt = ak|uk|p−2uk − fk(u) in [0, T ]× Ω

v(0, x) = φ(x) vt(0, x) = ψ(x) in Ω

u(t, x) = 0 on [0, T ]× ∂Ω

k = 1, 2; (12)
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We claim that, for a suitable T > 0, Φ is a contractive map satisfying
Φ(ΓT × ΓT ) ⊆ ΓT × ΓT . Given u ∈ ΓT , the corresponding solution v = Φ(u) satisfies for
all t ∈ (0, T ] the energy identity :

∥∇vk(t)∥22 + ∥vkt(t)∥22 + 2

∫ t

0

∥vkt(τ)∥2∗dτ

= ∥∇φ∥22 + ∥ψ∥22 + 2

∫ t

0

∫
Ω

fk(u)vt(τ)dτ + 2

∫ t

0

∫
Ω

ak|uk|p−2ukvt(τ)dτ

(13)

For the last term, we argue in the same spirit (although slightly differently) as for (11)
and we get

2

∫ t

0

∫
Ω

ak|uk|p−2ukvt(τ)dτ ≤ C

∫ T

0

∥uk∥p−1
2∗ ∥vt∥2∗dτ

≤ C

∫ T

0

∥uk∥p−1
∗ ∥vt∥∗dτ ≤ CTR2(p−1) + 2

∫ T

0

∥vt∥2∗dτ
(14)

and

2

∫ t

0

∫
Ω

fk(u)vt(τ)dτ ≤ C

∫ t

0

∥fk(u)∥2∥vt(τ)∥2dτ ≤ CRT + 2

∫ T

0

∥vt∥2∗dτ

for all t ∈ (0, T ]. Combining (13) with (14) and taking the maximum over [0, T ] gives

∥v∥2H×H ≤ 1

2
R2 + CTR2(p−1)

Choosing T sufficiently small, we get

∥v∥2H×H ≤ R

which shows that Φ(ΓT ×ΓT ) ⊆ ΓT ×ΓT . Now,take w1 and w2 in ΓT ×ΓT . subtracting
the two equations (6) for v1 = Φ(w1) and v2 = Φ(w2), and setting v = v1 − v2 we obtain
for all η ∈ H1

0 (Ω) and a.e. t ∈ (0, T ]

⟨vktt, η⟩+
∫
Ω

∇vk(t)∇η + ω

∫
Ω

∇vkt(t)∇η + µ

∫
Ω

vk(t)η

=

∫
Ω

ak(|v1k|p−2v1k − |v2k|p−2v2k)η − (

∫
Ω

fk(v1)− fk(v2)η)
(15)

by Lagrange Theorem and (A4). Therefore, by taking η = vkt in (15) and arguing as
above, we obtain

9



∥Φ(w1)− Φ(w2)∥2H×H = ∥v∥2H×H ≤ CR2p−4T∥w1 − w2∥2H×H ≤ δ∥w1 − w2∥2H×H

for some δ < 1 provided T is sufficiently small. This proves the claim. By the
Contraction Mapping Principle, there exists a unique (weak) solution to (1) defined on
[0, T ].

Exploiting a standard continuation principle (see [25]), and multiplying by ukt both
sides of (1) and then integrating by parts over [0, t) × Ω, by use of the assumptions
(A1)–(A5), we get that Theorem 1.

5 Proof of Theorem 2

In the following we consider the case ω > 0. Without loss of generality, we may assume
that t̄ = 0. we know that the energy map E(t) is decreasing. Then, if condition

uk(t̄) ∈ Wk and E(t̄) ≤ d (16)

holds true, we have uk(t) ∈ Wk and E(t) ≤ d for every t ∈ (0, Tmax). Indeed, if it
was not the case, there would exist t∗ > 0 such that uk(t∗) ∈ Nk. By the variational
characterization of d, d ≤ Jk(uk(t∗)) ≤ E(t∗) < d, a contradiction to (16). As a further
consequence of (16), a simple computation entails

Jk(uk(t)) ≥
p− 2

2p
∥∇uk(t)∥22 (17)

for every t ∈ (0, Tmax), For all t ∈ (0, Tmax) by (*) we obtain

2∑
k=1

1

2
∥ukt∥22 + Jk(uk(t)) +

∫ t

0

∥ukt(τ)∥2∗dτ = E(0) ≤ d <∞

Therefore, by virtue of (17) the Continuation Principle yields Tmax = ∞ and

2∑
k=1

∥∇uk∥22 + ∥ukt∥22 ≤ C ∀t ∈ [0,∞)

2∑
k=1

∫ t

0

∥∇ukt(τ)∥22dτ ≤ C

ω
∀t ∈ [0,∞) (18)

Hence, by Poincaré inequality, we get
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∫ t

0

∥ukt(τ)∥22dτ ≤ C

ω
for every t ∈ [0,∞) (19)

We integrate over [0, t]

d

dt
((1 + t)E(t)) ≤ E(t)

and recall that by (see [10]) there holds

Jk(uk(t)) ≤ CIk(uk(t)) for every t ∈ [0,∞)

we reach the inequality

(1 + t)E(t) ≤ d+
1

2

2∑
k=1

∫ t

0

∥ukt(τ)∥22dτ + C
2∑

k=1

∫ t

0

∥Ik(ukt(τ))∥dτ (20)

for every t ∈ [0,∞). Observe also that, by direct computation, there hold

⟨uktt, uk⟩ =
d

dt

∫
uktuk − ∥ukt∥22 (21)

for a.e. t ∈ [0,∞). Moreover, by testing the equation with uk, we obtain

⟨uktt, uk⟩+ ∥∇uk∥2 + (uk, ukt)∗ +

∫
fkuk = ak∥uk∥pp

for a.e. t ∈ [0,∞). Using (21), this yields

2∑
k=1

d

dt
(

∫
uktuk +

1

2
∥uk∥∗) +

∫
F (u) =

2∑
k=1

∥ukt∥22 − Ik(uk) (22)

By integrating (22) on [0, t] and by (18) and (19), we have

2∑
k=1

∫ t

0

Ik(uk(τ))dτ ≤
2∑

k=1

∫ t

0

∥ukt∥22 + ∥φk∥2∥ψk∥2 + ∥ukt∥2∥uk∥2

+
1

2
(∥φk∥2∗ − ∥uk∥2∗)−

∫ t

0

∫
Ω

F (u)dxdt ≤ C +
C

ω
+ Cω

(23)

for every t ∈ [0,∞). Then, by combining the above inequalities, from (20) we get

E(t) ≤ C(1 +
1

ω
+ ω)

1

t
for every t ∈ [0,∞)
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Consequently, by (17) we immediately obtain

∥∇uk(t)∥22 + ∥ukt(t)∥22 ≤
Θ(ω, µ)

t
for every t ∈ [0,∞)

where Θ is the map defined in (5).

The proof in the case ω = 0 (and µ ≥ 0) is similar and follows by obvious modifications
of inequalities (19) and (23).

6 Proof of Theorem 3

Lemma 6.1. Suppose that F (s) ≥ 0 with s = (s1, s2) ∈ R1 ×R1. Let (u1, u2) defined on
[0, Tmax) be a weak solution of problem (1). For each t ∈ [0, Tmax)

If for all k ∈ {1, 2}, Ik(uk(t)) ≥ 0 , then

∑
Jk(uk(t)) ≥

∑ p− 2

2p
∥∇uk(t)∥2;

∑ p− 2

2p
∥∇uk(t)∥2 ≤ E(t) (24)

.

If for all k ∈ {1, 2}, Ik(uk(t)) < 0 , then

p− 2

2p
∥∇uk(t)∥2 > dk (25)

.

Proof: If Ik(uk(t)) ≥ 0 for each t ∈ [0, Tmax), we obtain

E(t) ≥
∑

Jk(uk(t)) =
1

2

∑
∥∇uk(t)∥2 −

∑ ak
p
∥uk(t)∥pp ≥

p− 2

2p

∑
∥∇uk(t)∥2

Let Ik(uk(t)) < 0 for each t ∈ [0, Tmax), there exists t0 ∈ [0, Tmax) such that

p− 2

2p
∥∇u1(t0)∥2 ≤ d1 or

p− 2

2p
∥∇u2(t0)∥2 ≤ d2

we then obtain

a1∥u1(t0)∥pp ≤ ∥∇u1(t0)∥2 or a2∥u2(t0)∥pp ≤ ∥∇u2(t0)∥2

A contradiction with Ik(uk) < 0. In fact, since d1 ≤ max
λ>0

J1(λu1(t0)) =
1
2
λ2∥∇u1(t0)∥2−

a1
p
λp∥u1∥pp, taking differentiation with respect to λ in order to seek for a maximal point,

we see that d1 ≤ p−2
2p

∥∇u1(t0)∥2p/(p−2)

(a1∥u1(t0)∥p)2p/(p−2) . Now a simple computation leads to this inequality.
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Lemma 6.2. Suppose that F (s) ≥ 0 with s = (s1, s2) ∈ R1 × R1. Let (u1, u2) defined
on [0, Tmax) be a weak solution of problem (1). We have the following results.For any
0 ≤ t < Tmax.

If for all k ∈ {1, 2}, Ik(φk) ≥ 0 , E(0) < min{d1, d2}, then

∑
J(uk(t)) ≥

∑ p− 2

2p
∥∇uk(t)∥2,

∑ p− 2

2p
∥∇uk(t)∥2 ≤ E(t) (26)

If for all k ∈ {1, 2}, Ik(φk) < 0, E(0) < min{d1, d2},then

p− 2

2p
∥∇uk(t)∥2 > dk (27)

Proof: Since Ik(φk) ≥ 0, by Lemma 6.1, we get that

E(0) ≥
∑

Jk(φk) ≥
∑ p− 2

2p
∥∇φk∥2

Define

T ∗ = sup{t ∈ [0, Tmax] : E(0) ≥
∑ p− 2

2p
∥∇uk(s)∥2, 0 ≤ s < t}

If T ∗ < Tmax , then we have

∑ p− 2

2p
∥∇uk(T ∗)∥2 = E(0)

and ∑ p− 2

2p
∥∇uk(t)∥2 > E(0), ∀t ∈ (T ∗, Tmax) (28)

Since E(0) < min{d1, d2}, we get that
p− 2

2p
∥∇uk(T ∗)∥2 < dk. By the continuity of

∥∇uk(.)∥ , there exists an interval (T ∗, T̂ ) ⊂ (T ∗, Tmax) such that Ik(uk(t)) > 0, ∀t ∈
(T ∗, T̂ ). Again using Lemma 6.1, it yields

∑ p− 2

2p
∥∇uk(t)∥2 ≤ E(t) ≤ E(0), ∀t ∈

(T ∗, T̂ ). This contradicts with (28). The contradiction implies that T ∗ meets with Tmax

and (26) holds.

Let Ik(φk) < 0, then by Lemma 6.1, we get that
p− 2

2p
∥∇φk∥2 > dk, k = 1, 2. Define

T∗ = sup{t ∈ [0, Tmax] :
p− 2

2p
∥∇uk(s)∥2 > dk, k = 1, 2, 0 ≤ s < t}
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If T∗ < Tmax, then we have

p− 2

2p
∥∇u1(T∗)∥2 = d1,

p− 2

2p
∥∇u2(T∗)∥2 ≤ d2

or

p− 2

2p
∥∇u1(T∗)∥2 ≤ d1,

p− 2

2p
∥∇u2(T∗)∥2 = d2

Therefore, Ik(uk(T∗)) > 0, k = 1, 2. Then by use of Lemma 6.1, we obtain

∑ p− 2

2p
∥∇uk(T∗)∥2 ≤ E(T∗) (29)

Combining (*), (29) and noting that E(0) < min{d1, d2}, we get that
p− 2

2p
∥∇uk(T∗)∥2 < dk. A contradiction. Thus (27) is true.

We give the estimates in the following. For any T > 0 we may consider L : [0, T ] → R+

defined by

L(t) =
2∑

k=1

∥uk(t)∥22 +
∫ t

0

∥uk(τ)∥2∗dτ + (T − t)∥φk∥2∗ + β(t+ s0)
2 (30)

where β and s0 > 0 are constants to be determined.

Lemma 6.3. Let the assumptions of Theorem 3 be satisfied. then

L′′(t) ≥ (2 + p)
2∑

k=1

∥ukt∥2 + 2p
2∑

k=1

∫ t

0

∥ukt∥2∗ + (2 + p)β

Proof:

L′(t) =
2∑

k=1

2

∫
Ω

ukukt + ∥uk∥2∗ − ∥φk∥2∗ + 2β(t+ s0)

=
2∑

k=1

2

∫
Ω

ukukt + 2

∫ t

0

(uk(τ), ukt(τ))∗dτ + 2β(t+ s0)

(31)

L′′(t) =
2∑

k=1

2⟨uktt, uk⟩+ 2∥ukt∥2∗ + 2(ukt, uk)∗ + 2β (32)

By (32), we get that
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L′′(t) = 2
[ 2∑

k=1

(∥ukt∥2 − ∥∇uk∥2 −
∫
Ω

ukfk(u)dx+ ak∥uk∥pp)
]
+ 2β

Using the energy equality and A6 and Lemma 6.2 , we have

L′′(t) ≥ (2 + p)
2∑

k=1

∥ukt∥2 + (p− 2)
2∑

k=1

∥∇uk∥2 + 2p
2∑

k=1

∫ t

0

∥ukt(τ)∥2∗dτ

−2pE(0) + 2p

∫
Ω

F (u)dx−
∫
Ω

ukfk(u)dx+ 2β

≥ (2 + p)
2∑

k=1

∥ukt∥2 + 2p
2∑

k=1

∫ t

0

∥ukt(τ)∥2∗dτ + (p− 2)
2∑

k=1

2p

p− 2
dk

−2pE(0) + 2
[ 1

n0

∫
Ω

F (u)dx−
2∑

k=1

∫
Ω

ukfk(u)dx
]
+ 2β

≥ (2 + p)
2∑

k=1

∥ukt∥2 + 2p
2∑

k=1

∫ t

0

∥ukt(τ)∥2∗dτ + 2p
2∑

k=1

dk − 2pE(0) + 2β

By the assumptions 2p
2∑

k=1

dk − 2pE(0) > 0. Now take β = 2(
2∑

k=1

dk − E(0))

we get that

L′′(t) ≥ (2 + p)
2∑

k=1

∥ukt∥2 + 2p
2∑

k=1

∫ t

0

∥ukt∥2∗ + (2 + p)β

Proof of Theorem 3

Assume by contradiction that the solution u is global. Define :

P =
2∑

k=1

(∥uk∥2 +
∫ t

0

∥uk(τ)∥2∗dτ) + β(t+ s0)
2

Q =
2∑

k=1

(
(uk, ukt) +

∫ t

0

(uk, ukt)∗dτ
)
+ β(t+ s0)

U =
2∑

k=1

(∥ukt∥2 +
∫ t

0

∥ukt(τ)∥2∗dτ) + β

15



It is easy to check 0 < P ≤ L(t), Q = 1
2
L′(t), 0 < U ≤ L′′(t)

2 + p
. For any real pair (λ, η)

and for all t ∈ [0, T ], we have

Pλ2 + 2Qλη + Uη2 =
2∑

k=1

∥λuk + ηukt∥2 +
2∑

k=1

∫ t

0

∥λuk + ηukt∥2∗dτ + β[(t+ s0)λ+ η]2

Therefore, PU −Q2 ≥ 0. we infer from the above inequality that

L(t)L′′(t)− 2 + p

4
(L′(t))2 ≥ 0, t ∈ [0, T ] (33)

(33) implies that [L−θ(t)]′′ ≤ 0, t ∈ [0, T ] where θ = p−2
4
. Now taking

s0 > − 1

β

∑
(φk, ψk), we get that L′(0) > 0 and (L−θ)′(0) < 0 . Choosing

T ≥ − (L−θ)(0)

(L−θ)′(0)
, then by the concavity Lemma, there exists T1 satisfying

0 < T1 ≤ − (L−θ)(0)

(L−θ)′(0)
, L−θ(T1) = 0 (34)

From (34), we see that lim
t→T−

1

L(t) = ∞, which implies that

lim
t→T−

1

2∑
k=1

(∥uk(t)∥22 + ∥∇uk∥22) = ∞. This leads to a contraction with Tmax = ∞. Now we

give the estimate of T . If (34) holds, it suffices∑
∥φk∥2 + βs20

2θ
[∑

(φk, ψk) + βs0

]
− ω

∑
∥∇φk∥2 − µ

∑
∥φk∥2

≤ T

where if it is necessary we may take s0 sufficiently large such that

2θ
[∑

(φk, ψk) + βs0

]
− ω

∑
∥∇φk∥2 − µ

∑
∥φk∥2 > 0

Therefore, we only need to take

T = inf

{ ∑
∥φk∥2 + βs20

2θ
[∑

(φk, ψk) + βs0

]
− ω

∑
∥∇φk∥2 − µ

∑
∥φk∥2

∣∣∣ s0 > − 1

β

∑
(φk, ψk)

}

=
1

2θ2β

{[(∑(
2θ(φk, ψk)− ω

∑
∥∇φk∥2 − µ

∑
∥φk∥2

))2

+ 4θ2β
∑

∥φk∥
] 1

2

+
(
ω
∑

∥∇φk∥2 + µ
∑

∥φk∥2 − 2θ(φk, ψk)
)}
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we have completed the proof of Theorem 3.
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[10] R. Ikehata, T. Suzuki, Stable and unstable sets for evolution equations of parabolic
and hyperbolic type, Hiroshima Math. J. 26 (1996) 475-491.

[11] H.A. Levine, G. Todorova, Blow up of solutions of the Cauchy problem for a wave
equation with nonlinear damping and source terms and positive initial energy, Proc.
Amer. Math. Soc. 129 (2001) 793-805.

[12] H.A. Levine, Some additional remarks on the nonexistence of global solutions to
nonlinear wave equations, SIAM J. Math. Anal. 5 (1974) 138-146.

17

Administrator
Rectangle



[13] M.R. Li, Estimates for the life-span of the solutions of semilinear wave equations,
Proceedings of the Workshop on Differential Equations, Vol. V, Tsinghua University,
Hsinchu, 1997,129-137.

[14] J.L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems, Vol. 2,
Springer, Berlin, 1975.

[15] H.A. Levine, J. Serrin, Global nonexistence theorems for quasilinear evolution equa-
tions with dissipation, Arch. Ration. Mech. Anal. 137 (1997) 341-361.

[16] M.R.Li, L.Y.Tsai, Existence and nonexistence of global solution of some system of
semilinear wave equations,Nonlinear Analysis.TMA. 54(2003) 1397-1415.

[17] F. Merle, H. Zaag, Determination of the blow-up rate for a critical semilinear wave
equation, Math. Annalen, 331(2)(2005) 395-416.

[18] F. Merle, H. Zaag, Existence and universality of the blow-up profile for the semilinear
wave equation in one space dimension, J. Funct. Anal.,253(1)(2007) 43-121.

[19] F. Merle, H. Zaag, Openness of the set of non characteristic points and regularity
of the blow-up curve for the 1 d semilinear wave equation. Comm. Math. Phys.,
282(2008) 55-86.

[20] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer.
Math. Soc. 95 (1960) 101-123.

[21] K. Nishihara, Asymptotic behavior of solutions of quasilinear hyperbolic equations
with linear damping, J. Differential Equations 137 (1997) 384-395.

[22] M. Nakao, K. Ono, Existence of global solutions to the Cauchy problem for the
semilinear dissipative wave equations, Math. Z. 214 (1993) 325-342.

[23] M. Ohta, Remarks on blowup of solutions for nonlinear evolution equations of second
order, Adv. Math. Sci. Appl. 8 (1998) 901-910.

[24] P. Pucci, J. Serrin, Global nonexistence for abstract evolution equations with positive
initial energy, J. Differential Equations 150 (1998) 203-214.

[25] I. Segal, Nonlinear Semigroups, Ann. Math. 78 (1963) 339-364.

[26] D.H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational
Mech. Anal. 30 (1968) 148-172.

[27] F.Sun, M.Wang, Global and blow-up solutions for a system of nonlinear hyperbolic
equations with dissipative terms. Nonlinear Analysis 64 (2006) 739-761.

[28] M. Willem, Minimax Theorems, Progress Nonlinear Differential Equations Appl.,
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