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Abstract

In this paper, the Lie-group shooting method (LGSM) which is a numerical geomet-
ric integrator, is applied to the intrinsically unstable Troesch’s problem. The calcu-
lated results illuminate the efficiency and precision of Lie-group shooting method
(LGSM) for this problem.
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1 Introduction

In this paper, we consider a nonlinear two-point boundary value problem, Troesch’s
problem, arises in the theory of gas porous electrodes [28,8] and investigation of the
confinement of a plasma column by radiation pressure [37]. Troesch’s problem, is
defined by:

u′′ = µ sinh(µu), (1.1)

u(0) = 0, u(1) = 1, (1.2)

where µ is a positive constant.
Roberts, et al. [31] have been shown that exact solution of Eqs. (1.1)-(1.2) in terms
of the elliptic function sc(n|m) is as follows:
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u(x) =
2

µ
sinh−1

[
u′(0)

2
sc(µx|m)

]
, (1.3)

where m = 1− 1
4
(u′(0))2 and satisfies

sc(µ|m) =
sinh

(
µ
2

)
√
1−m

.

Obviously

xs =
1

µ
ln
( 8

y′(0)

)
,

is the singularity of Troesch’s problem which located at a pole of sc(µx|m), and
singularity lies within the integration range, if y′(0) > 8e−µ. This results in the
problem being very difficult to solve.
Some of the methods, such as the variational iteration method [30], the homotopy
perturbation method [29], the modified homotopy perturbation method [7] and the
Adomian decomposition method [13,6], fail to solve the Troesch’s problem for µ > 1.
However, some other methods such as finite element method [14], the method of
transformation group [5], inverse shooting method [34], the simple shooting method
[11,12,35,1], the invariant imbedding method [33], Monte Carlo method [36] and a
combination of the multi-point shooting method with the continuation and pertur-
bation technique [32] have been successfully applied to this problem.
Difficulties to solve the Eqs. (1.1)-(1.2) take place, when µ > 1. Hence, we split the
topics of this paper in two major cases, µ ≤ 1 and µ > 1. Thus, to avoid overflow
or excessive error growth during numerical integration and also compatibility with
LGSM, we introduce two different transformations.
The present paper, provides a LGSM for Troesch’s problem, which is based on the
group preserving scheme (GPS), developed by Liu [16] for the integration of initial
value problems. Also a combination of GPS and Lie symmetries are introduced by
Hashemi et.al in [9]. The LSGM able our to find the initial slope condition through
a minimum solution of r in interval (0, 1), and determined by matching the right-
end boundary condition. The factor r is used in a generalized mid-point rule for
the Lie-group of one-step GPS. LGSM is an effective and powerful method which
is easy to implement and time saving method.
Recently, LGSM successfully applied to various problems [17–19,2,4,20,21,24,38,25,3,26,27].
Also, Reproducing kernel Hilbert space method is applied to solve the Bratu’s prob-
lem which is an two-point boundary problem, by Inc et. al. in [10].
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2 Coordinate transformations

In this paper, firstly we convert the boundary value problem (1.1)-(1.2) to an initial
value problem by using the LGSM and then we solve it by GPS. Since solving the
Troesch’s problem for µ > 1 is so difficult, we introduce two cases of transformations,
namely (a) : µ ≤ 1 and (b) : µ > 1.

2.1 Case (a): µ ≤ 1

In this case we use the following transformation:

y(x) = u(x)− x+ c, c > 0. (2.4)

Hence, Troesch’s problem transforms to the following problem:

y′′(x) = µ sinh

(
µ
[
y(x) + x− c

])
, (2.5)

y(0) = y(1) = c. (2.6)

Then, we convert (2.5)-(2.6) to the following equivalent system

y′1 = y2, (2.7)

y′2 = µ sinh

(
µ
[
y1 + x− c

])
, (2.8)

y1(0) = c, y2(0) = A, (2.9)

which A is unknown and LGSM has applied to find it.

2.2 Case (b): µ > 1

For this case which is difficult than the first one, we introduce the following trans-
formation:

y(x) = tanh
(
µu(x)/4

)
− tanh

(
µ/4

)
x+ c, c > 0. (2.10)

Hence, Troesch’s problem transforms to the following problem:
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y′′(x)= 2
y(x) + tanh

(
µ/4

)
x− c(

y(x) + tanh
(
µ/4

)
x− c

)2

− 1

(
y′(x) + tanh

(
µ/4

))2

(2.11)

+µ2

(
y(x) + tanh

(
µ/4

)
x− c

)(
1 +

(
y(x) + tanh

(
µ/4

)
x− c

)2
)

1−
(
y(x) + tanh

(
µ/4

)
x− c

)2 ,

y(0)= y(1) = c, (2.12)

which equivalent one-order ODEs system is as follows

y′1 = y2, (2.13)

y′2 =2
y1 + tanh

(
µ/4

)
x− c(

y1 + tanh
(
µ/4

)
x− c

)2

− 1

.
(
y2 + tanh

(
µ/4

))2

+µ2

(
y1 + tanh

(
µ/4

)
x− c

)(
1 +

(
y1 + tanh

(
µ/4

)
x− c

)2
)

1−
(
y1 + tanh

(
µ/4

)
x− c

)2 , (2.14)

y1(0)= c, y2(0) = A, (2.15)

where A is unknown and we apply the LGSM to find it.

3 One-step group-preserving scheme

3.1 The group-preserving scheme

Let us write Eqs. (2.7)-(2.8) and Eqs. (2.13)-(2.14) in a vector form:

Y′ = f(x,Y), (3.16)

where for case a) :

Y :=

 y1
y2

 , f :=

 y2

µ sinh

(
µ
[
y1 + x− c

])
 , (3.17)

and for case b) :

Y :=

 y1
y2

 , f :=

 y2
f2

 , (3.18)
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where

f2=2
y1 + tanh

(
µ/4

)
x− c(

y1 + tanh
(
µ/4

)
x− c

)2

− 1

(
y2 + tanh

(
µ/4

))2

+µ2

(
y1 + tanh

(
µ/4

)
x− c

)(
1 +

(
y1 + tanh

(
µ/4

)
x− c

)2
)

1−
(
y1 + tanh

(
µ/4

)
x− c

)2 .

Liu [16] has embedded Eq. (3.16) in general form, into an augmented system:

X′ :=
d

dx

 Y

∥Y∥

 =

 02×2
f(x,Y)
∥Y∥

fT (x,Y)
∥Y∥ 0


 Y

∥Y∥

 := AX, (3.19)

where A is an element of the Lie algebra so(2, 1) satisfying

ATg + gA = 0, (3.20)

with

g =

 I2 02×1

01×2 −1

 , (3.21)

a Minkowski metric. The augmented variable X satisfies the cone condition:

XTgX = Y ·Y = ∥Y∥2 = 0. (3.22)

Accordingly, Liu [16] has developed a group-preserving scheme (GPS) as follows:

Xn+1 = G(n)Xn, (3.23)

whereXn denotes the numerical value ofX at the discrete xn, and G(n) ∈ SOo(2, 1)
satisfies

GTgG = g, (3.24)

det(G) = 1, (3.25)

G0
0 > 0, (3.26)

where G0
0 is the 00′th component of G and SOo(2, 1) is the 3-dimensional Lorentz

group.
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3.2 Generalized mid-point rule

Applying scheme (3.23) to Eq. (3.19) with a specified initial condition X(0) = X0,
we can compute the solution X(x) by GPS. Assuming that the step size used in
GPS is ∆x = 1/K and starting from an initial augmented condition X0 = X(0) =(
(Y0)T , ∥Y0∥

)T
, we attempt to calculate the value X(1) =

(
YT (1), ∥Y(1)∥

)T
at

x = 1.
By applying Eq. (3.23) step-by-step we can obtain

X(1) ∼= Xf = GK(∆x) · · ·G1(∆x)X0. (3.27)

However, let us recollect that each Gi, i = 1, . . . , K, is an element of the Lie group
SOo(n, 1), and by the closure property of the Lie groups, GK(∆x) · · ·G1(∆x) is also
a Lie group denoted by G. Hence we have

Xf = GX0, (3.28)

which is a one-step transformation from X0 to Xf .
We can calculate G by a generalized mid-point rule, which is obtained from an
exponential mapping of A by taking the values of the argument variables of A at
a generalized mid-point. The Lie group generated from A ∈ so(2, 1), is known as a
proper orthochronous Lorentz group, which admits a closed-form representation:

G =


I2 +

(α−1)

∥f̃∥2 f̃̃f
T βf̃

∥f̃∥

βf̃
T

∥f̃∥ α

 , (3.29)

where

Ỹ= rY0 + (1− r)Yf , (3.30)

f̃= f(x̃, Ỹ), (3.31)

α=cosh
( ∥f̃∥
∥Ỹ∥

)
, (3.32)

β=sinh
( ∥f̃∥
∥Ỹ∥

)
. (3.33)

Here, we employ the initial Y0 = (y1(0), y2(0))
T and the final Yf = (y1(1), y2(1))

T

through a suitable weighting factor r to calculate G, where r ∈ (0, 1) is a parameter
and x̃ = r. The above method is applied by a generalized mid-point rule on the
calculation of G, and the result is a single-parameter Lie group element denoted by
G(r). A suitable r can be determined by matching the right-end boundary condition.
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3.3 A Lie group mapping between two points on the cone

Let us define a new vector

F :=
f̃

∥Ỹ∥
, (3.34)

such that Eqs. (3.29), (3.32) and (3.33) can also be expressed as

G =

 I2 +
(α−1)
∥F∥2 FF T βF

∥F∥

βFT

∥F∥ α

 , (3.35)

α = cosh(∥F∥), (3.36)

β = sinh(∥F∥). (3.37)

From Eqs. (3.28) and (3.35) it follows that

Yf = Y0 + ηF, (3.38)

∥Yf∥ = α∥Y0∥+ β
F ·Y0

∥F∥
, (3.39)

where

η :=
(α− 1)F ·Y0 + β∥Y0∥∥F∥

∥F∥2
. (3.40)

Substituting

F =
1

η
(Yf −Y0) (3.41)

into Eq. (3.39) we obtain

∥Yf∥
∥Y0∥

= α+ β
(Yf −Y0) ·Y0

∥Yf −Y0∥∥Y0∥
, (3.42)

where

α=cosh
(∥Yf −Y0∥

η

)
, (3.43)

β=sinh
(∥Yf −Y0∥

η

)
, (3.44)
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are obtained by inserting Eq. (3.41) for F into Eqs. (3.36) and (3.37).
Let

cos θ :=
(Yf −Y0) ·Y0

∥Yf −Y0∥∥Y0∥
, (3.45)

ζ := ∥Yf −Y0∥, (3.46)

where θ ∈ [0, π] is the intersection angle between vectors Yf −Y0 and Y0 and thus
from Eqs. (3.42)-(3.44) we have

∥Yf∥
∥Y0∥

= cosh
(ζ
η

)
+ cos θ sinh

(ζ
η

)
. (3.47)

By defining

Z := exp
(ζ
η

)
, (3.48)

we obtain a quadratic equation for Z from Eq. (3.47):

(1 + cos θ)Z2 − 2∥Yf∥
∥Y0∥

Z + 1− cos θ = 0. (3.49)

On the other hand, inserting Eq. (3.41) for F into Eq. (3.40) follows that

∥Yf −Y0∥2 = (α− 1)(Yf −Y0) ·Y0 + β∥Yf −Y0∥∥Y0∥. (3.50)

Dividing both sides by ∥Yf −Y0∥∥Y0∥ and using Eqs. (3.43)-(3.46) and (3.48) we
obtain another quadratic equation for Z:

(1 + cos θ)Z2 − 2

 cos θ +
∥Yf −Y0∥

∥Y0∥

Z + cos θ − 1 = 0. (3.51)

By cancelling the quadratic term Z2 from Eqs. (3.49) and (3.51) we obtain

Z =
(cos θ − 1)∥Y0∥

cos θ∥Y0∥+ ∥Yf −Y0∥ − ∥Yf∥
. (3.52)

The above Z is indeed the solution of Eqs. (3.49) and (3.51).
When Z is available from Eq. (3.52), then from Eqs. (3.46) and (3.48) we obtain
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η =
∥Yf −Y0∥

lnZ
. (3.53)

Therefore, between any two points (Y0, ∥Y0∥) and (Yf , ∥Yf∥) on the cone, there
exists a Lie-group element G ∈ SOo(2, 1) mapping (Y0, ∥Y0∥) onto (Yf , ∥Yf∥),
which is given by

 Yf

∥Yf∥

 = G

 Y0

∥Y0∥

 , (3.54)

where G is uniquely determined by Y0 and Yf through the Eqs. (3.35), (3.36),
(3.37), (3.41) and (3.53).

4 The Lie-group shooting method

In this section, we apply the LGSM to different cases: (a) : µ ≤ 1 and (b) : µ > 1.

4.1 Case (a):

From Eqs. (2.7)-(2.9) it follows that

y′1 = y2, (4.55)

y′2 = µ sinh

(
µ
[
y1 + x− c

])
, (4.56)

y1(0) = c, y1(1) = c, (4.57)

y2(0) = A, y2(1) = B, (4.58)

where A and B are two unknown constants, and c is a given constant.
From Eqs. (3.38), (4.57) and (4.58) it follows that

F :=

F1

F2

 =
1

η

 0

B − A

 . (4.59)

From Eqs. (3.45), (3.52) and (3.53) by inserting Eq. (3.17) for Y and noting that

Y0 =

 y1(0)
y2(0)

 =

 c

A

 , Yf =

 y1(1)
y2(1)

 =

 c

B

 , (4.60)
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we obtain

η =

√
(A−B)2

lnZ
, (4.61)

Z =

√
c2+B2√
c2+A2 +

√
c2+B2

c2+A2 − 1 + cos2 θ

1 + cos θ
, (4.62)

cos θ =
A(B − A)√

(A−B)2
√
c2 + A2

. (4.63)

When comparing Eq. (4.59) with Eq. (3.34), with the aid of Eqs. (3.30), (3.31) and
(4.55)-(4.58) we obtain

rA+ (1− r)B = 0, (4.64)

A−B +
µη

ξ
sinh(µr) = 0, (4.65)

where

ξ :=

√
c2 +

[
rA+ (1− r)B

]2
= c. (4.66)

From (4.64) we obtain B = rA/(r − 1) which has a different sign with A because
0 < r < 1. Therefore, we obtain an algebraic equation for A:

A+
µ
√
A2

c lnZ
sinh(µr) = 0, (4.67)

where

Z =

√
c2 +B2 +

√
B2

√
c2 + A2 −

√
A2

. (4.68)

4.2 Case (b):

From Eqs. (2.13)-(2.15) it follows that
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y′1 = y2, (4.69)

y′2 = 2
y1 + tanh

(
µ/4

)
x− c(

y1 + tanh
(
µ/4

)
x− c

)2

− 1

(
y2 + tanh

(
µ/4

))2

+µ2

(
y1 + tanh

(
µ/4

)
x− c

)(
1 +

(
y1 + tanh

(
µ/4

)
x− c

)2
)

1−
(
y1 + tanh

(
µ/4

)
x− c

)2 , (4.70)

y1(0) = c, y1(1) = c, (4.71)

y2(0) = A, y2(1) = B, (4.72)

where A and B are two unknown constants, and c is a given constant.
From Eqs. (3.38), (4.71) and (4.72) it follows that

F :=

F1

F2

 =
1

η

 0

B − A

 . (4.73)

From Eqs. (3.45), (3.52) and (3.53) by inserting Eq. (3.18) for Y and noting that

Y0 =

 y1(0)
y2(0)

 =

 c

A

 , Yf =

 y1(1)
y2(1)

 =

 c

B

 , (4.74)

we obtain

η =

√
(A−B)2

lnZ
, (4.75)

Z =

√
c2+B2√
c2+A2 +

√
c2+B2

c2+A2 − 1 + cos2 θ

1 + cos θ
, (4.76)

cos θ =
A(B − A)√

(A−B)2
√
c2 + A2

. (4.77)

When comparing Eq. (4.59) with Eq. (3.34), with the aid of Eqs. (3.30), (3.31) and
(4.69)-(4.72) we obtain

rA+ (1− r)B = 0, (4.78)

A−B +
2η

ξ

(
tanh3(µ

4
)r

tanh2(µ
4
)r2 − 1

)
+

ηµ2

ξ
tanh(

µ

4
)r
(
1 + tanh2(µ

4
)r2

1− tanh2(µ
4
)r2

)
= 0, (4.79)

where
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ξ :=

√
c2 +

[
rA+ (1− r)B

]2
= c. (4.80)

From (4.64) we obtain B = rA/(r−1) which because of 0 < r < 1, it has a different
sign with A. Therefore, we obtain an algebraic equation for A:

A+

√
A2

c. lnZ
T (r) = 0, (4.81)

where

T (r) =
2 tanh3(µ

4
)r

tanh2(µ
4
)r2 − 1

+ µ2 tanh(
µ

4
)r
(
1 + tanh2(µ

4
)r2

1− tanh2(µ
4
)r2

)
, (4.82)

Z =

√
c2 +B2 +

√
B2

√
c2 + A2 −

√
A2

. (4.83)

5 The solution of A

Firstly, Liu [19] analytically solved A for general second-order BVPs. Here we con-
sider only the case A < 0 for Troesch’s problem. From (4.67) and (4.81) we obtain:
case (a):

lnZ =
µ

c
sinh(µr), (5.84)

case (b):

lnZ =
−T (r)

c
, (5.85)

where T (r) defined by (4.82). Defining

Θ(r) := exp
(µ
c
sinh(µr)

)
, (5.86)

for case (a) and

Θ(r) := exp
(−T (r)

c

)
, (5.87)

for case b) and substituting Eq. (4.68) for Z into Eq. (5.84) and substituting Eq.
(4.83) for Z into Eq. (5.85) we obtain
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Θ =

√
c2 +B2 +

√
B2

√
c2 + A2 −

√
A2

. (5.88)

By using A < 0 and B > 0, Eq. (5.88) can be written as

ΘA+B =
√
c2 +B2 −Θ

√
c2 + A2. (5.89)

Squaring the above equation and cancelling the common terms we can rearrange it
to

2Θ
√
c2 +B2

√
c2 + A2 = (1 + Θ2)c2 − 2ΘAB. (5.90)

Squaring again and cancelling the common term and factor we get

4Θ2(A2 +B2) + 4Θ(1 + Θ2)AB = (1−Θ2)2c2. (5.91)

Inserting B = rA/(r− 1) and through some algebraic manipulations we eventually
obtain

4Θ

(r − 1)2

[
(1 + Θ)2r2 − (1 + Θ)2r +Θ

]
A2 = (1−Θ2)2c2. (5.92)

If the following condition holds

Ψ(r) := (1 + Θ)2r2 − (1 + Θ)2r +Θ > 0, (5.93)

then A has a negative solution:

A = −
√
(r − 1)2(1−Θ2)2c2

4ΨΘ
. (5.94)

The discriminant function Ψ(r) is an open-up distorted parabola of r since Θ is also
a function of r. By inspection, Ψ(r) has the following properties:

Ψ(0) = Ψ(1) = Θ, (5.95)

and there exist two roots of r for Ψ(r) = 0:

r1 =
1

2
− Θ− 1

2(Θ + 1)
=

1

Θ + 1
,

r2 =
1

2
+

Θ− 1

2(Θ + 1)
=

Θ

Θ+ 1
,
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where 0 < r1 < 0.5 < r2 < 1. There exist solutions of A given by Eq. (5.94) in the
following ranges of r:

0 < r < r1, r2 < r < 1. (5.96)

6 Adjusting the slope A

We have derived a closed-form solution to calculate the slope A for each r in its
admissible range. If A is available, then we can apply the GPS method given below
to integrate the (Y, x) − IV P in Eqs. (4.55)-(4.58) and (4.69)-(4.72). Up to this
point we should note that the LGSM is an exactly solving technique for the second-
order nonlinear BVPs without making any assumption or the approximation in
derivations of all required formulas. However, how to determine a correct r and
thus A requires a numerical integration of the nonlinear ODEs.

6.1 The GPS

We have derived the closed-form solutions to calculate the slope A for each r in its
admissible range, and thus we can integrate the (Y, x)− IV P in Eqs. (4.55)-(4.58)
and (4.69)-(4.72) by the following GPS method:

Yn+1 = Yn +
2τ∥Yn∥2 + 2τ 2fn ·Yn

∥Yn∥2 − τ 2∥fn∥2
fn, (6.97)

where

fn = f(xn,Yn), τ = h/2. (6.98)

The GPS, was first derived by Liu [16], which has used the Cayley transformation
and the Padé approximations in the augmented space, namely Minkowski. The
major difference between GPS and the traditional numerical methods is that those
schemes are all formulated directly in the usual Euclidean space Rn; none of them
are considered in the Minkowski space Mn+1. One of the benefits of GPS in the
augmented Minkowski space is that the resulting schemes can avoid the spurious
solutions and ghost fixed points.
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6.2 Adjusting A for the Troesch’s problem

For a trial r in admissible range, which can be identify by (5.93), we can calculate
A and then numerically integrate Eqs. (4.55)-(4.58) or (4.69)-(4.72) from x = 0
to x = 1, and compare the end value of yr1(1) with the exact one y1(1) = c. If
|yr1(1)− c| is smaller than a given error tolerance ϵ, then the process of finding A is
finished. Otherwise, we need to calculate the end values of y1(1) corresponding to
different r1 < r and r2 > r, which are denoted by yr11 (1) and yr21 (1), respectively. If(
yr11 (1)− c

)(
yr1(1)− c

)
< 0, then there exists one root between r1 and r; otherwise,

the root is located between r and r2. Then, we apply the half-interval method to
find a suitable r, that requires us to to calculate Eqs. (4.55)-(4.58) or (4.69)-(4.72)
at each of the calculation of yr1(1) − c, until |yr1(1) − c| is small enough to satisfy
the criterion of |yr1(1)− c| < ϵ.

7 Numerical results

7.1 Troesch’s problem for µ = 0.5

We first consider the Troesch’s problem for µ = 0.5, in Eq. (1.1). By taking c = 1
in transformation (2.4), system of (2.7)-(2.9) will be as follows:

y′1 = y2, (7.99)

y′2 = 0.5 sinh

(
0.5
[
y1 + x− 1

])
, (7.100)

y1(0) = 1, y2(0) = A, (7.101)

which firstly we calculate A by the LGSM. Fig. 1, shows A(r) for r ∈ (0, 1), which
can be obtain from Eqs. (5.88), (5.93) and (5.94).
By explained procedure in previous section we obtain r1 = 0.13751069258 and r2 =
0.86735612699, that for both of them we have A(r1) = A(r2) = −0.040944051019.
Positions of these roots displayed at Fig. 2.
By fixing the step-size h = 0.0001 in this calculation, we plot the exact and obtained
solutions for transformed and original equations in Fig. 3. Also, Table 1. shows the
comparison of LGSM absolute errors with other methods.

7.2 Troesch’s problem for µ = 1

For the second test problem, we consider the Troesch’s problem for µ = 1, in Eq.
(1.1). By letting c = 1 in transformation (2.4), system of (2.7)-(2.9) will be as

15



follows:

y′1 = y2, (7.102)

y′2 = sinh
(
y1 + x− 1

)
, (7.103)

y1(0) = 1, y2(0) = A, (7.104)

which firstly by the Lie-group shooting method we calculate A. From Eqs. (5.88),
(5.93) and (5.94), we display the A(r) for r ∈ (0, 1) in Fig. 4.
Roots of r1 = 0.130539194 and r2 = 0.9059082, obtained from explained procedure,
yield A(r1) = A(r2) = −0.154746 that plotted in Fig. 5.
By taking the step-size h = 0.0001 in this calculation, we plot the exact and obtained
solutions for transformed and original equations in Fig. 6. For this case, efficiency
of LGSM with respect to traditional applied methods has been demonstrated in
Table 2.

7.3 Troesch’s problem for µ = 5

Now we consider the Troesch’s problem for µ = 5. By letting c = 1 in transformation
(2.10), system of (2.13)-(2.15) will be as follows:

y′1 = y2, (7.105)

y′2 = 2
y1 + tanh

(
5
4

)
x− 1(

y1 + tanh
(
5
4

)
x− 1

)2

− 1

.
(
y2 + tanh

(5
4

))2

+25

(
y1 + tanh

(
5
4

)
x− 1

)(
1 +

(
y1 + tanh

(
5
4

)
x− 1

)2
)

1−
(
y1 + tanh

(
5
4

)
x− 1

)2 , (7.106)

y1(0) = 1, y2(0) = A. (7.107)

Similar to previous examples, we apply the LGSM to obtain A. Since, for this case
we have more than two roots, we plot the A(r) for r ∈ (0, 0.14) in Fig. 7, which can
be obtain from Eqs. (5.88), (5.93) and (5.94).
By explained procedure in previous section we obtain one of the roots, i.e. r1 =
0.0348183155869, and hence A(r) = −0.791062. Fig. 8, clarify the position of this
root.
Fig. 9 shows the approximate and exact solutions for transformed and original
equations, by taking h = 0.0001.
Finally, comparison of LGSM absolute errors with finite element method based on
B-Spline technique have been shown in Table 3. at given points.
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8 Conclusion

In this work, the Lie-group shooting method has been used for the approximate
solution of the Troesch’s problem. Because of unstably of Troesch’s problem, two
different transformations has been introduced to overcome this difficulty. From the
test examples, we may conclude the low computational complexity and storage
requirement with high accuracy of the proposed procedure. Also, comparison with
other applied techniques for Troesch problem, clarify that LGSM is better than the
previous ones.
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Table 1: Comparison of absolute errors for µ = 0.5

xi Laplace[13] HPM [7] Finite element[14] LGSM

0.1 7.7× 10−4 8.2× 10−4 7.7× 10−4 1.1× 10−7

0.2 1.5× 10−3 1.6× 10−3 1.5× 10−3 4.6× 10−7

0.3 2.1× 10−3 2.3× 10−3 2.1× 10−3 1.1× 10−6

0.4 2.7× 10−3 2.9× 10−3 2.7× 10−3 1.9× 10−6

0.5 3.0× 10−3 3.2× 10−3 3.0× 10−3 3.0× 10−6

0.6 3.1× 10−3 3.4× 10−3 3.1× 10−3 4.4× 10−6

0.7 3.0× 10−3 3.2× 10−3 3.0× 10−3 6.0× 10−6

0.8 2.4× 10−3 2.7× 10−3 2.4× 10−3 7.9× 10−6

0.9 1.5× 10−3 1.6× 10−3 1.5× 10−3 1.0× 10−5

Table 2: Comparison of absolute errors for µ = 1

xi Laplace[13] HPM [7] Finite element[14] LGSM

0.1 2.9× 10−3 3.6× 10−3 2.8× 10−3 4.8× 10−6

0.2 5.9× 10−3 7.1× 10−2 5.6× 10−3 8.9× 10−6

0.3 8.2× 10−3 1.0× 10−2 8.2× 10−3 1.2× 10−5

0.4 1.0× 10−2 1.3× 10−2 1.0× 10−2 1.4× 10−5

0.5 1.2× 10−2 1.6× 10−2 1.2× 10−2 1.6× 10−5

0.6 1.3× 10−2 1.7× 10−2 1.3× 10−2 1.7× 10−5

0.7 1.3× 10−2 1.7× 10−2 1.3× 10−2 1.6× 10−5

0.8 1.1× 10−2 1.5× 10−2 1.1× 10−2 1.4× 10−5

0.9 7.4× 10−3 9.7× 10−3 7.4× 10−3 1.2× 10−5

Table 3: Comparison of absolute errors for µ = 5
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xi Finite element[14] LGSM

0.1 −− 4.9× 10−6

0.2 7.3× 10−3 9.7× 10−6

0.3 −− 1.5× 10−5

0.4 2.2× 10−3 2.1× 10−5

0.5 −− 2.7× 10−5

0.6 −− 2.9× 10−5

0.7 −− 1.8× 10−5

0.8 1.4× 10−2 1.3× 10−6

0.9 3.0× 10−2 7.8× 10−6
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Fig. 1. Plot of A with respect to r for µ = 0.5.
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Fig. 2. Plot of y1(1)− 1 with respect to r for µ = 0.5.
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Fig. 3. Plot of exact and approximated solutions by GPS for (a) transformed Troesch’s
problem and (b) original Troesch’s problem for µ = 0.5.
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Fig. 4. Plot of A with respect to r for µ = 1.
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Fig. 5. Plot of y1(1)− 1 with respect to r for µ = 1.
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Fig. 6. Plot of exact and approximated solutions by GPS for (a) transformed Troesch’s
problem and (b) original Troesch’s problem for µ = 1.
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Fig. 7. Plot of A with respect to r for µ = 5.
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Fig. 8. Plot of y1(1)− 1 with respect to r for µ = 5.
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Fig. 9. Plot of exact and approximated solutions by GPS for (a) transformed Troesch’s
problem and (b) original Troesch’s problem for µ = 5.
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