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Abstract
In this note, we establish a distortion theorem for locally biholomorphic Bloch mappings f sat-

isfying ||f ||0 = 1 and det f ′(0) = α ∈ (0, 1], where ‖f‖0 = sup{(1− |z|2)
n+1
2n | det f ′(z)|

1
n : z ∈ Bn}.

This result extends the result of Bonk, Minda and Yanagihara of one complex variable to higher

dimensions. Moreover, a lower estimate for the radius of the largest univalent ball in the image of

f centered at f(0) is given.
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tance.
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1. INTRODUCTION

In 1988, Bonk in [1] established the well-known Bonk Distortion Theorem for Bloch functions

in the unit disk D in C which inspired further work in one and several complex variables. In one

complex variable, Bonk et al. in [2] and [3] studied the general distortion theorems for locally

univalent Bloch functions and Bloch functions, respectively. In several complex variables, Liu in

[4] investigated the properties of Bloch functions defined in the unit ball in Cn and generalized the

Bonk Distortion Theorem to higher dimensions. Moreover, Liu gave the following Bonk Distortion

Theorem for locally biholomorphic Bloch functions with values in Cn.

Theorem [4] Suppose f ∈ H(Bn), ‖f‖0 = 1 and det f ′(0) = 1. If det f ′(z) 6= 0 for all z ∈ Bn,
then

|det f ′(z)| ≥ (1− |z|)−(n+1) exp{−(n+ 1)|z|
1− |z|

}

∗‡ This work was supported by the National Natural Science Foundation of China (No. 11001246, 11101139) and
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for all z ∈ Bn. Moreover, the above inequality is best possible.

By making use of the above distortion theorem, Liu obtained estimates of Bloch constants for

various subfamilies of locally biholomorphic mappings defined in the unit ball Bn of Cn which

generalized a result of Liu and Minda in [5] to higher dimensions. FitzGerald and Gong in [6]

extended the above distortion theorem to the first type of the classical domains in the sense of Hua.

Later, Gong and Yan in [7] and Gong in [8] established the distortion theorems for holomorphic

mappings and locally biholomorphic mappings on irreducible bounded symmetric domains using Lie

algebra’s method, respectively. For detailed information of distortion theorems and Bloch constants

the reader may consult the book of Gong, Yu and Zheng in [9].

In this article, we will establish a distortion theorem for locally biholomorphic Bloch mappings

on the unit ball Bn which is a generalization of the above Theorem [4]. While the distortion

theorem for holomorphic Bloch mappings on the unit ball Bn is obtained by us in [10], the general

results for α−Bloch mappings are due to Chen, Ponnusamy and Wang in [11]. As a special case

of the unit disk, the distortion theorem reduces to that of Bonk, Minda and Yanagihara in [2].

As an application, we give a lower estimate for the radius of the largest univalent ball for various

subfamilies of Bloch mappings defined in Bn. In the proof we use a type of subordination lemma for

horodisk in the unit disk D. This subordination lemma enables us to obtain our distortion theorem

from a unified perspective. In particular, some hyperbolic geometric properties play an important

role to obtain the subordination lemma.

2. PRELIMINARIES

We will first make use of the following notation and give some definitions in this paper.

Let D be the unit disk in the complex plane C. Denote by Cn as the n-dimensional complex

Hilbert space with the inner product and the norm given by

< z,w >=

n∑
j=1

zjw̄j , |z| = (< z, z >)
1
2 ,

where z, w ∈ Cn. Let Bn be the open unit ball in Cn, i.e. Bn = {z ∈ Cn : |z| < 1}. The unit

sphere of Cn is denoted by ∂Bn = {z ∈ Cn : |z| = 1}. Denote by Bn(x, r) as the ball of radius r

with the center x. Let H(Bn) be the set of all holomorphic mappings from Bn to Cn. Denote by

Hloc(Bn) as the set of all locally biholomorphic mappings from Bn to Cn, that is, f ∈ Hloc(Bn)

means f ∈ H(Bn) and det f ′(z) 6= 0 for all z ∈ Bn. Throughout the paper, we will write a point

z ∈ Cn as a column vector in the following n× 1 matrix form

z =


z1

z2

...

zn

 .
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For a holomorphic mapping f ∈ H(Bn), we also write f as the n× 1 matrix form

f =


f1

f2

...

fn

 ,

where all of the fi are holomorphic functions from Bn to C. The derivative of the mapping f ∈ H(Bn)

at a point a ∈ Bn is the complex Jacobian matrix of f given by

f ′(a) =

(
∂fi
∂zj

)
z=a

.

Then f ′(a) is a linear mapping from Cn to Cn. Denote by ‖f ′(a)‖ as the norm of complex Jacobian

matrix f ′(a). Let Aut(Bn) denote the group of holomorphic automorphisms of Bn.

Definition 1 [4] A holomorphic mapping f ∈ H(Bn) is called a Bloch mapping if the family

Ff = {g : g(z) = f(ϕ(z))− f(ϕ(0)), ϕ ∈ Aut(Bn)}

is a normal family. The Bloch semi-norm of the Bloch mapping f(z) is defined as

‖f‖B = sup{
∥∥∥∥∂(f ◦ ϕ)

∂z
(0)

∥∥∥∥ : ϕ ∈ Aut(Bn) }.

Denote by β(K) as the set of Bloch mappings f with ||f ||B ≤ K, where 1 ≤ K ≤ ∞.
Definition 2 [4] Suppose f ∈ H(Bn). We define the prenorm ‖f‖0 of f given by

‖f‖0 = sup{|det g′(0)|
1
n : g ∈ Ff} = sup{(1− |z|2)

n+1
2n |det f ′(z)|

1
n : z ∈ Bn}.

It is easy to show that ‖f‖0 is invariant under the group of holomorphic automorphisms Aut(Bn).

Definition 3 [12] If G ⊂ C is a domain including the origin and f and g are two holomorphic

functions on G, then f is subordinate to g if there is a holomorphic function ϕ : G→ G such that

ϕ(0) = 0 and f = g ◦ ϕ. We write f ≺ g to denote this subordination relation.

Given a holomorphic mapping f ∈ H(Bn), we denote by r(a, f) as the radius of the biggest

univalent ball of f centered at f(a)(a univalent ball Bn(f(a), r) ⊂ f(Bn) means that f maps

biholomorphically an open subset of Bn containing the point a onto this ball).

Next we recall some basic facts about hyperbolic geometry on a hyperbolic domain Ω in the

complex plane C, that is , C\Ω contains at least two points. For an arbitrary hyperbolic domain Ω,

we have the hyperbolic metric λΩ(z)|dz| with the Gaussian curvature −4. The hyperbolic metric

on the unit disk D is

λD(z)|dz| = |dz|
1− |z|2

.

The density λΩ(z)|dz| of the hyperbolic metric on a hyperbolic domain Ω is determined from

λΩ(f(z))|f ′(z)| = λD(z),
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where f : D → Ω is a conformal mapping. We denote the hyperbolic distance on Ω by dΩ. For

A,B ∈ Ω, the hyperbolic distance between them is determined by

dΩ(A,B) = inf

∫
γ
λΩ(w)|dw|,

where the infimum is taken over all paths γ in Ω joining A and B. For example, the hyperbolic

distance dD(a, u) between the points a and u in D is obtained in the following way:

dD(a, u) =
1

2
log{

1 + | a−u1−āu |
1− | a−u1−āu |

} = arctanh(| a− u
1− āu

|).

For r > 0, let ∆(1, r) be a horodisk in D, that is,

∆(1, r) = {z ∈ D :
|1− z|2

1− |z|2
< r} = De(

1

1 + r
,

r

1 + r
),

where De(
1

1+r ,
r

1+r ) is a euclidean disk with a center 1
1+r and radius r

1+r . And ∆(1, r) is a circle

internally tangent to the unit circle at 1. Note that f(z) = r
1+rz + 1

1+r is a conformal map of D
onto De(

1
1+r ,

r
1+r ). Hence, the hyperbolic metric on ∆(1, r) = De(

1
1+r ,

r
1+r ) is

λ∆(1,r)(w)|dw| =
r

1+r |dw|
( r

1+r )2 − |w − 1
1+r |2

.

In this paper, we always assume r > 1 for the horodisk ∆(1, r).

3. SOME LEMMAS

We present the following lemmas to establish the distortion theorem.

Lemma 1 Suppose f ∈ H(D), f(0) = a ∈ R and f(4(1, r)) ⊂ {w : Re w < s}. Then

(1) f(z) ≺ G0(z) = b z+1
z−1 + b+ a on 4(1, r), where b = r(s−a)

r−1 > 0.

(2) Re f(x) ≥ G0(x) = 2bx
x−1 + a for 0 < x < 1 with equality holds for some x if and only if f = G0.

(3) Re f(x) ≤ G0(−x) = 2bx
x+1 + a for 0 < x ≤ r−1

r+1 with equality holds for some x if and only if

f = G0.

Proof. (1) Note that G0(0) = a = f(0), and

Re G0(z) = b
|z|2 − 1

|1− z|2
+ b+ a.

We set Γ(r) = ∂4(1, r) = {z ∈ D : |1−z|
2

1−|z|2 = r}.
Then

Re G0(Γ(r)) = − b
r

+ b+ a = s.

HenceG0(4(1, r)) = {ω : Re ω < s}.We define ϕ(z) = G−1
0 ◦f(z). Then ϕ ∈ H(4(1, r),4(1, r)).

It implies f ≺ G0 on 4(1, r).
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(2) Let δx ⊂ 4(1, r) be the hyperbolic circle (relative to hyperbolic geometry on 4(1, r))with

center 0 which passes through x. Then δx is symmetric about the real axis. By making use of

f ≺ G0 on 4(1, r), we have f maps the circle δx into the closed disk bounded by the circle G0(δx).

Since G0 is decreasing on δx
⋂
R and symmetric about R, the point of G0(δx) with the smallest

real part is G0(x).

Hence for all x ∈ (0, 1), we have

Re f(x) ≥ min{Re G0(z) : z ∈ δx} = G0(x) =
2bx

x− 1
+ a.

Moreover, the equality holds for some x if and only if f = G0.

(3) The proof is similar to that of the inequality in part (2). For 0 < x ≤ r−1
r+1 , let δ−x ⊂ 4(1, r)

be the hyperbolic circle (relative to hyperbolic geometry on 4(1, r))with center 0 which passes

through −x. From f ≺ G0 on 4(1, r), we have f maps the circle δ−x into the closed disk bounded

by the circle G0(δ−x). Since G0 is decreasing on δ−x
⋂
R and symmetric about R, the point of

G0(δ−x) with the biggest real part is G0(−x), that is,

Re f(x) ≤ min{Re G0(z) : z ∈ δ−x} = G0(−x) =
−2bx

−x− 1
+ a =

2bx

x+ 1
+ a.

Moreover, the equality holds for some x if and only if f = G0.

Lemma 2 [4] Suppose that A = (aij) is an n × n complex matrix . If ‖A‖ > 0, then for any

unit vector ξ ∈ ∂Bn, the following inequality holds:

|Aξ| ≥ |detA|
||A||n−1

.

Lemma 3 [4] If f is a Bloch mapping on the unit ball Bn, then we have

‖f ′(z)‖ ≤ ‖f‖B
1− |z|2

.

4. MAIN THEOREMS AND PROOFS

First of all, we need to introduce the function m(α) to present the main results.

We define f(t) = e−
n+1
2
t(1 + t)

n+1
2 . Then f is decreasing on [0,+∞) and f(0) = 1, f(+∞) = 0.

Denote by m as the inverse function of f : (0, 1] → [0,+∞). Then for any α ∈ (0, 1], there is

the unique number m(α) such that

e−
n+1
2
m(α)(1 +m(α))

n+1
2 = α.

It is clear that m(1) = 0.

Now we present the following distortion theorem.

Theorem 1 If f ∈ Hloc(Bn), ||f ||0 = 1, det f ′(0) = α ∈ (0, 1], then

(1)

| det f ′(z)| ≥ α

(1− |z|)n+1
exp{(1 +m(α))

−(n+ 1)|z|
1− |z|

}
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for any z ∈ Bn, where m(α) is the real root of an equation e
−(n+1)

2
t(1 + t)

n+1
2 = α in the interval

[0,+∞).

(2)

|det f ′(z)| ≤ α

(1 + |z|)n+1
exp{(1 +m(α))

(n+ 1)|z|
1 + |z|

}

for |z| ≤ m(α)
2+m(α) . Moreover, the inequalities (1) and (2) are sharp.

Proof. (1) The case α = 1 is due to Liu [4, Theorem 7]. So we will only discuss the case

α ∈ (0, 1).

Fix ξ ∈ ∂Bn, we define

g(u) = (1− u)n+1 det f ′(uξ).

Since

‖f‖0 = sup{(1− |z|2)
n+1
2n | det f ′(z)|

1
n : z ∈ Bn}.

From Definition 2 and ‖f‖0 = 1, we have

(1− |z|2)
n+1
2n | det f ′(z)|

1
n ≤ 1.

Hence

|g(u)| ≤ |1− u|n+1|det f ′(uξ)| ≤ (
|1− u|2

1− |u|2
)
n+1
2 .

Note that f ∈ Hloc(Bn), then g ∈ H(D) and g(u) 6= 0 for all u ∈ D.

Setting h(u) = log g(u), where the branch of logarithm is chosen such that h(0) = log g(0) = logα

is real. We then have

Re h(u) = log |g(u)| ≤ n+ 1

2
log
|1− u|2

1− |u|2
.

Note that m(α) is the unique root of an equation e
−(n+1)

2
t(1 + t)

n+1
2 = α in the interval [0,+∞),

i.e. n+1
2 log(1 +m(α))− n+1

2 m(α) = logα.

If u ∈ 4(1, 1 +m(α)), then we have

h(4(1, 1 +m(α))) ⊂ {ω : Re ω <
n+ 1

2
log(1 +m(α))}.

In view of Lemma 1(1), we have h ≺ G0 on 4(1, 1 +m(α)), where

G0(u) = b
u+ 1

u− 1
+ b+ logα,

b =
1 +m(α)

m(α)
(
n+ 1

2
log(1 +m(α))− logα) =

n+ 1

2
(1 +m(α)).

For any 0 < x < 1, by Lemma 1(2), we have

Re h(x) ≥ n+ 1

2
(1 +m(α))

2x

x− 1
+ logα

= (n+ 1)(1 +m(α))
x

x− 1
+ logα.
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Hence

log |g(x)| ≥ (n+ 1)(1 +m(α))
x

x− 1
+ logα.

It means that

|g(x)| ≥ α exp{(n+ 1)(1 +m(α))
x

x− 1
}.

If z ∈ Bn, we take x = |z| and ξ = z
|z| .

From g(x) = (1− x)n+1 det f ′(xξ), we obtain

| det f ′(z)| ≥ α

(1− |z|)n+1
exp{(1 +m(α))

−(n+ 1)|z|
1− |z|

}.

(2) If 0 < x ≤ m(α))
2+m(α) , by Lemma 1 (3), we have

Re h(x) ≤ G0(−x) = (n+ 1)(1 +m(α))
x

x+ 1
+ logα.

For any z ∈ Bn and |z| ≤ m(α)
2+m(α) , we take x = |z| and ξ = z

|z| .

Note that g(x) = (1− x)n+1 det f ′(xξ), we similarly have

| det f ′(z)| ≤ α

(1 + |z|)n+1
exp{(1 +m(α))

(n+ 1)|z|
1 + |z|

}.

Finally, we shall testify the inequalities (1) and (2) are sharp.

In fact, we can take f ∈ Hloc(Bn) satisfying

f(z) =



∫ z1
0

α
(1−t)n+1 exp{(1 +m(α))−(n+1)t

1−t }dt

z2

...

zn


.

Then det f ′(0) = α. Hence we will only show that ‖f‖0 = 1.

For any z ∈ Bn, note that e
−(n+1)

2
m(α)(1 +m(α))

n+1
2 = α, we have

{(1− |z|2)
n+1
2 | det f ′(z)|}

2
n+1 =

1− |z|2

|1− z1|2
α

2
n+1 | exp{−(1 +m(α))

2z1

1− z1
)}|

≤ 1− |z1|2

|1− z1|2
(1 +m(α)) exp(−m(α))| exp{−(1 +m(α))

2z1

1− z1
)}|

≤ e(1 +m(α))
1− |z1|2

|1− z1|2
exp{−(1 +m(α))

1− |z1|2

|1− z1|2
}

≤ 1.
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The last inequality is obtained by the inequality

xe1−x ≤ 1

for any x > 0 with equality only for x = 1.

From the definition of ‖f‖0 = sup(1− |z|2)
n+1
2n | det f ′(z)|

1
n : z ∈ Bn}, we have ||f ||0 ≤ 1.

On the other hand, we take z = (z1, 0, ..., 0) ∈ Bn such that |1−z1|
2

1−|z1|2 = 1 + m(α). Then we obtain

(1− |z|2)
n+1
2 |det f ′(z)| = 1. Thus ||f ||0 = 1. It yields that the inequalities (1) and (2) are sharp.

Remark. As a special case of the unit disk D, Theorem 1 reduces to Theorem 3 in [2].

By making use of the above distortion theorem, we can establish a lower estimate for the radius

of the largest univalent ball in the image of f centered at f(0).

Theorem 2 If f ∈ β(K)
⋂
Hloc(Bn), ‖f‖0 = 1 and det f ′(0) = α ∈ (0, 1], then the largest

univalent ball of f centered at f(0) satisfies the following inequalities:

r(0, f) ≥ αK1−n
∫ 1

0

(1− t2)n−1

(1− t)n+1
exp{(1 +m(α))

−(n+ 1)t

1− t
}dt ≥ αK1−n

(n+ 1)(1 +m(α))
,

where m(α) is the real root of an equation e
−(n+1)

2
t(1 + t)

n+1
2 = α in the interval [0,+∞).

Proof. By det f ′(0) = α ∈ (0, 1], there is a small ball centered at the origin such that the

mapping f is biholomorphic on the small ball. If the ball in the range expands, then the preimage

arrives at a point of the unit sphere ∂Bn or a point at which det f ′(z) = 0. Otherwise, we can

enlarge the ball in range f(Bn) according to the estimate of det f ′(z) in Theorem 1. In terms of the

estimate of |det f ′(z)| in Theorem 1, we can suppose |det f ′(z)| is non-zero. Let Γ ⊂ f(Bn) be a

straight line interval which starts at the point f(0) and goes as far as it can with its preimage not

running through the boundary of Bn or det f ′(z) = 0. Note that r(0, f) is the largest nonnegative

number r such that there exists a domain V ⊂ Bn, and f maps V biholomorphically onto a ball

centered at f(0) with radius r. Then

r(0, f) ≥
∣∣∣∣∫

Γ
dw

∣∣∣∣ =

∫
Γ
|dw| =

∫
γ

∣∣∣∣∂f∂z dz

|dz|

∣∣∣∣ · |dz|,
where γ = f−1(Γ).

Lemma 2 implies ∫
γ

∣∣∣∣∂f∂z dz

|dz|

∣∣∣∣ · |dz| ≥ ∫
γ

| det f ′(z)|
‖∂f∂z ‖n−1

d|z|.
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From Theorem 1 (1) and Lemma 3 we obtain the right-hand side of the preceding inequality satisfies

r(0, f) ≥ αK1−n
∫ 1

0

(1− t2)n−1

(1− t)n+1
exp{(1 +m(α))

−(n+ 1)t

1− t
}dt

≥ αK1−n
∫ 1

0

(1 + t)n−1

(1− t)2
exp{(1 +m(α))

−(n+ 1)t

1− t
}dt

≥ αK1−n
∫ 1

0

1

(1− t)2
exp{(1 +m(α))

−(n+ 1)t

1− t
}dt

=
αK1−n

(n+ 1)(1 +m(α))
.

Therefore,

r(0, f) ≥ αK1−n
∫ 1

0

(1− t2)n−1

(1− t)n+1
exp{(1 +m(α))

−(n+ 1)t

1− t
}dt ≥ αK1−n

(n+ 1)(1 +m(α))
.

The proof of Theorem 2 is complete.

Remark. (1) When n = 1, Bn is the unit disk D. Theorem 2 implies

r(0, f) ≥ α

2(1 +m(α))
=

1

2
e−m(α),

which coincides with Corollary 3 in [2].

(2) When α = 1, then m(α) = 0. Theorem 2 reduces to the lower bound for the locally biholomor-

phic Bloch constant obtained by Liu in [4, Theorem 8]:

r(0, f) ≥ K1−n
∫ 1

0

(1− t2)n−1

(1− t)n+1
exp{−(n+ 1)t

1− t
}dt ≥ K1−n

n+ 1
.

(3) Finally, we would like to point out that all of the analogous results for locally biholomorphic

Bloch mappings defined in the unit polydisc can also be obtained.
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