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Abstract. For G a finite group and p a prime this paper proves two theorems

under hypotheses that restrict the index of the subgroup generated by every

p-element x in certain subgroups generated by pairs of its conjugates. Under
one set of hypotheses G is shown to be supersolvable. Simple groups satisfying

a complementary fusion-theoretic hypothesis are classified.

1. Introduction

The role of fusion of elements of prime power order in finite group theory has
a long and rich history, punctuated with highlights such as the Focal Subgroup
Theorem, the Glauberman Z∗-Theorem and the Baer–Suzuki Theorem. The latter
result states that in a finite group G, for p a prime and x any p-element in G, if
〈x, xg 〉 is a p-group for all conjugates xg of x, then x ∈ Op(G), the largest normal
p-subgroup of G. In their paper [8], Li and Xu consider finite groups G in which,
for any p-element x and any g ∈ G, the index of 〈x 〉 in 〈x, xg 〉 is squarefree, for
all primes p dividing the order of G. Under this hypothesis they prove G must be
supersolvable. The first main result of this note gives an independent, self-contained
and elementary proof of a generalization of their result.

Theorem 1. Let G be a finite group. Assume for all pairs of distinct primes p, q
that q2 does not divide the order of 〈x, xy 〉, for all p-elements x and q-elements y
in G. Then G is supersolvable.

The techniques used in the proof of Theorem 1 also indicate how one might
further investigate the structure of (now supersolvable) groups satisfying its fusion
hypotheses. In particular, the result and its proof illuminate the p, q-Hall nature
that turns out to be the key fusion ingredient.

It is generally quite difficult to determine the structure or order of the subgroup
generated by two arbitrary conjugates of a p-element, so it seems natural to impose
restrictions on such subgroups to make them more tractable. The second main
result of this paper therefore examines a “complementary” fusion hypothesis, which
is even more closely aligned with the classical theorems mentioned at the outset, and
which may be easily transported to the very active area of modern fusion systems
(which we say more about at the end of the Introduction).

For any finite group G and prime p we say G is p-fusion modular if for every
p-element x in G and every g ∈ G such that 〈x, xg 〉 is a p-group, the index of 〈x 〉
in 〈x, xg 〉 is 1 or p. In this situation the p-group 〈x, xg 〉 has a cyclic subgroup of
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index at most p, so it is cyclic, abelian of type (pm, p) or modular; when p = 2,
it may also be quaternion of order 8 (see Lemma 3.1). Recall that the modular
p-group of order pn+1 is

Mn+1(p) = 〈 a, b | ap
n

= bp = 1, b−1ab = a1+pn−1
〉,

so these are the “generic” non-abelian subgroups generated by pairs of fused p-
elements, which motivates our choice of terminology. Any group whose Sylow
p-subgroups are either cyclic or elementary abelian is necessarily p-fusion modular
(such as L2(2n), for all primes p). A well-known transfer theorem, however, shows
that for odd p, a Sylow p-subgroup of a simple group cannot be isomorphic to
Mn+1(p) for any n ≥ 2 (see [7], Theorem 10.12).

It is an exercise that the p-fusion modular property inherits to both subgroups
and quotient groups, so, in the spirit of Theorem 1, we are naturally led to examine
the possible composition factors of such groups. For odd p the simple groups that
are p-fusion modular are quite common for the aforementioned reasons (the Sylow
p-subgroups of the simple groups of Lie type are nicely described in Sections 3.3 and
4.10 of [6]). Our second main result classifies the 2-fusion modular simple groups.

Theorem 2. If G is a non-abelian finite simple group that is 2-fusion modular,
then G has abelian Sylow 2-subgroups. More specifically, G ∼= L2(2n), L2(q) for
some prime power q ≡ ±3 (mod 8), Re(3n), or J1.

The groups Re(3n) are not 3-fusion modular (Lemma 3.1(g)), whereas all the re-
maining Goldschmidt groups in the conclusion are p-fusion modular for all primes p.

Results that are similar in nature to the above appear in [1] and [10].
Finally, we observe that the arguments in the proof of Theorem 2 primarily

involve fusion and transfer, hence are highly adaptable to the theory of fusion
systems. We therefore surmise that a corresponding result in this realm could be
achieved, perhaps even classifying simple p-fusion modular saturated fusion systems
for all primes p. For the sake of cohesiveness we have chosen not to pursue this but
to keep all our results couched in finite group theory.

2. The Proof of Theorem 1

The notation in the proofs is standard, and familiar results from finite group
theory, which may all be found for instance in Gorenstein’s book [4], are invoked
without specific reference.

Before starting the proof, recall first that a finite group G is supersolvable if it
has a chief series all of whose chief factors are of prime order. Moreover, a chief
series may be constructed so that as the terms ascend from the identity to G, the
sequence of orders of these chief factors is nonincreasing. Let p1 < p2 < · · · < pr be
the distinct primes dividing |G | and let πi = {pr, pr−1, . . . , pr−i}. Supersolvability
then implies, but is not equivalent to, the existence of a normal πi-Hall subgroup for
0 ≤ i < r (and these are necessarily characteristic and form an increasing tower).

Proof of Theorem 1: Let G be a counterexample of minimal order. Since the
hypotheses clearly inherit to subgroups and quotient groups, every proper subgroup
and quotient group of G is supersolvable.

Using the same notation as above, we first show that

(1) G has a an increasing tower of normal πi-Hall subgroups, for 0 ≤ i < r.
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This follows by induction once we prove G has a normal p1-complement. To see
the latter let P be any nontrivial p1-subgroup. If NG(P ) is proper in G, it is
supersolvable, hence has a normal p1-complement. By Frobenius’ Theorem, if this
is true for all P , then G has a normal p1-complement too, as claimed. By way
of contradiction we may assume P is normal and G does not have a normal p1-
complement. Thus some element x of prime power order qα with q 6= p1 acts
nontrivially on P . By Burnside’s Basis Theorem and Maschke, x has a nontrivial
irreducible submodule in its action on P/Φ(P ). It follows from the minimality of
G that Φ(P ) = 1 with x acting irreducibly on P , and G = P 〈x 〉. Since q >
p1, dimFp1

P ≥ 2. For any nonidentity y ∈ P , 1 6= [y, x] ∈ P ∩ 〈x, xy 〉. By
the irreducible action, P ≤ 〈x, xy 〉, contrary to p2

1 not dividing this order. This
contradiction establishes (1).

Next let E be any minimal normal subgroup of G and let q = pr. By (1) we
may assume E is an elementary abelian q-subgroup. If |E | = q, then since G/E
is supersolvable, so too is G, a contradiction. Thus dimFq

E ≥ 2. Since a Sylow
q-subgroup is normal in G, the irreducible action of G on E forces E to be in the
center of the Sylow q-subgroup. Let H be a q′-Hall subgroup, i.e., a complement to
the normal Sylow q-subgroup. Thus H acts irreducibly on E, hence by minimality
of G it follows easily that

G = EH and CH(E) = 1.

Now H is supersolvable so it possesses a normal subgroup M of prime index p.
Let H = M〈x 〉, where x is a p-element of H. By minimality, EM is supersolvable
and so M stabilizes some 1-dimensional subspace of E; in particular, M does not
act irreducibly on E. By Clifford’s Theorem therefore

E = E1 ⊕ E2 ⊕ · · · ⊕ Ep

where each Ei is an irreducible FqM -module and 〈x 〉 permutes these constituents
transitively by conjugation. As noted, the irreducible FqM -submodules of E are
1-dimensional, i.e.

(2)
Ei = Fqei 1 ≤ i ≤ p and

M is represented by diagonal matrices with respect to the basis e1, . . . , ep.

Now E is a cyclic Fq〈x 〉-module generated by e1, and so the Fq〈x 〉-submodule
generated by [e1, x] = (x− 1)e1 is a homomorphic image of the augmentation ideal
of that ring, which is of codimension one. As before, [e1, x] ∈ 〈x, xe1 〉; and since
q2 does not divide the order of the latter group, [e1, x] must span a 1-dimensional
Fq〈x 〉-submodule of E. This proves

dimFq
E = 2 and p = 2.

Suppose first that we may choose the 2-element x of order > 2 in H −M . For
arbitrary first basis vector e1 ∈ E1 let e2 = ex1 ∈ E2. The matrix, [x], of x with
respect to the basis e1, e2 is

[x] =
(

0 a
1 0

)
,

where a 6= 1 because |x | > 2. Thus [(e1 + e2), x] = (a − 1)e1 ∈ 〈x, xe1+e2 〉 ∩ E;
so e1 lies in this intersection. But now the action of 〈x 〉 forces E ≤ 〈x, xe1+e2 〉,
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again contradicting the hypothesis that q2 does not divide the latter group order.
This proves

(3) every 2-element in H −M has order 2.

If M acted entirely as scalar matrices on E, then H = M〈x 〉 would be abelian.
In this case x would fix the vector e1+ex1 , and this would span the H-stable subspace
CE(x), contrary to the irreducibility of H. Thus M contains non-scalar matrices
(and H is non-abelian).

Let h be any nontrivial element of prime power order in M represented as in (2)
by the diagonal matrix diag (a, b) on E, with h not a scalar (i.e., a 6= b). Note that
the only h-stable 1-dimensional subspaces of E are E1 and E2. Then

[e1 + e2, h] = (a− 1)e1 + (b− 1)e2 = v.

Since [e1 + e2, h] ∈ 〈h, he1+e2 〉 whereas q2 does not divide the latter group’s order,
v must be an eigenvector for h. This forces one of a, b to equal 1. Choosing notation
so that 〈h 〉 acts (faithfully) as 〈diag (a, 1) 〉, a must be a primitive |h | root of unity.
But in this case hx acts as diag (1, a′) for some primitive |h | root of unity a′. Thus
M contains the subgroup of all diag (a, a′) for all combinations of |h | roots of unity
a, a′. Unless |h | = 2, since h was arbitrary, there is always a choice of diagonal
matrix h where a 6= a′ and neither a nor a′ is 1. Since every element of M is a
product of prime power elements, this forces

the only non-scalar matrices in M are

diag (−1, 1) and diag (1,−1), and both are in M .

Since x has order 2, D = 〈x, diag (−1, 1) 〉 is dihedral of order 8, with D ∩M a
4-group. This contradicts (3), and so completes the proof. �

3. p-Fusion Modular Groups

Throughout this section p is a prime and G is a finite group. Before proving
Theorem 2 we make some observations that, in particular, restrict the structure of
the Sylow p-subgroups of p-fusion modular groups.

Lemma 3.1. Let G be a p-fusion modular group and let P be a p-subgroup of G.
Assume x, xg ∈ P for some g ∈ G, so that

| 〈x, xg 〉 : 〈x 〉 | = p or 1.

Then the following hold:
(a) If p is odd then 〈x, xg 〉 is either cyclic, abelian of type (pk, p) or modular.
(b) If p = 2 then 〈x, xg 〉 is either cyclic, abelian of type (2k, 2), modular, or

quaternion of order 8. Moreover, P does not contain dihedral or semidihe-
dral subgroups of order ≥ 16, or generalized quaternion subgroups of order
≥ 32.

(c) If x has order p, then 〈xG ∩ P 〉 is a weakly closed elementary abelian
subgroup of P .

(d) The element g normalizes 〈xp 〉. Hence for all x ∈ P , 〈xp 〉 E P , and
Ω1(〈xp 〉) ≤ Z(P ).

(e) P ′ centralizes 〈xp | x ∈ P 〉. Hence if p = 2, P ′ centralizes Φ(P ).
(f) If p = 2 and P has exponent ≤ 4, then Φ(P ) ≤ Ω1(Z(P )) and P has class

at most 2.



GROUPS WITH p-FUSION OF SQUAREFREE TYPE 5

(g) The simple groups Sz(22m−1) and U3(2m) for m ≥ 2 are not 2-fusion mod-
ular. The simple groups Re(3m) for m ≥ 3 are not 3-fusion modular.

Proof. The structure of p-groups that possess a cyclic subgroup of index p is estab-
lished in Section 5.4 of [4], which gives (a) immediately. Assume p = 2 and 〈x, xg 〉
is not cyclic. When |x | ≥ 8, the same reference yields the same families as in (a).
If |x | = 4, then | 〈x, xg 〉 | ≤ 8, so the latter subgroup must be abelian of type (4,2)
or quaternion. If |x | = 2, then the dihedral group 〈x, xg 〉 must be a Klein 4-group.
Note further that semidihedral and dihedral 2-groups of order ≥ 16 each possess
conjugate involutions x, xg that generate a group of order 8, hence these cannot be
subgroups of P . Likewise a generalized quaternion group of order ≥ 32 contains
conjugate elements of order 4 that generate a generalized quaternion group of order
16, so P cannot contain such subgroups. This establishes (b).

If |x | = p then by (a) and (b) any two G-conjugates of x lying in P generate an
abelian subgroup of P of order at most p2, which gives (c).

If x, xg ∈ P then in all cases 〈 (xg)p 〉 = 〈xp 〉; and so g normalizes 〈xp 〉. Apply-
ing this for every g ∈ P then gives (d).

Since P acts on each cyclic normal subgroup 〈xp 〉 for every x, P ′ centralizes
these subgroups. When p = 2 the squares generate the Frattini subgroup. This
proves (e), as well as (f) for P of exponent 4. If P has exponent 2, then Φ(P ) = 1,
proving (f) in all cases.

Each of the simple groups Sz(22m−1) or U3(2m) for m ≥ 2 possesses elements
x1, x2 of order 4 that are conjugate under the action of a Cartan element and with
x2

1 6= x2
2 (see [6], Section 6.5). Thus | 〈x1, x2 〉 | > 8, a contradiction. By [9], the

Ree groups likewise possess a pair of conjugate elements of order 9 that generate a
3-subgroup of order > 27, hence they are not 3-fusion modular. �

Proposition 3.2. Let G be a 2-fusion modular finite group and let T be a Sylow
2-subgroup of G. If T possesses an element y of order 8, then Z = 〈 (y4)G ∩ T 〉
is a strongly closed elementary abelian subgroup of G in which all involutions are
conjugate. Moreover, |Z : CZ(y2) | ≤ 2.

Proof. Under the hypotheses of the lemma let x = y2, z = y4 and Z = 〈 zG ∩ T 〉.
By Lemma 3.1(c),

Z is abelian and weakly closed in T .

It follows that two elements of Z are conjugate in G if and only if they are conjugate
in NG(Z).

Let N = NG(Z) and let N = N/CG(Z). By Frattini’s Argument NN (T∩CG(Z))
is transitive on zG ∩ T . If x ∈ CG(Z) then it follows from Lemma 3.1(d) that
zG ∩ T = {z}, and so z is isolated in G as desired. Assume that x /∈ CG(Z). By
Lemma 3.1(d) applied to y we have 〈x 〉 E T . Thus [T, 〈x 〉] ≤ 〈 z 〉, so by duality

x centralizes a hyperplane of Z.

(Since x acts as an F2-transvection on Z, the conjugacy class of x in N is a set
of 3-transpositions; we exploit an elementary consequence of this.) Let zg be an
arbitrary N -conjugate of z in Z different from z. The involutions x and xg then
generate a dihedral group that is not a 2-group. Thus x and xg invert an element
h of 〈x, xg 〉 of odd prime order. Since x and xg both centralize hyperplanes of Z,
h centralizes a subspace of codimension 2, so h has order 3. Moreover 〈h 〉 acts
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transitively on the three involutions in the 2-dimensional space [Z, h], namely on
{z, zg, zzg}. Since zg was arbitrary, it follows that

for any distinct z1, z2 ∈ zG ∩ T , the involution z1z2 is conjugate to z.

Finally, if w = z1z2 · · · zk is any involution in Z written as a commuting product of
G-conjugates zi of z, it follows by induction on k that w is conjugate to z. Thus
zG ∩ T = Z − {1} and Z is strongly closed as desired. This completes the proof of
the proposition. �

Under the hypotheses of Theorem 2, if G possesses a strongly closed abelian
subgroup, then by Goldschmidt’s Theorem [3], G is a Goldschmidt simple group,
and the theorem follows via Lemma 3.1(g). By Proposition 3.2, it remains to
consider when a Sylow 2-subgroup T has exponent 4. By Lemma 3.1(f), T is
class 2.

At this point we could invoke the Gorenstein-Gilman classification of simple
groups with Sylow 2-subgroups of class 2, [5], noting that all the simple groups in
their conclusion contain dihedral of order 8 subgroups generated by two conjugate
involutions, hence are not 2-fusion modular. But a more self-contained, elementary
argument circumvents this deep result.

Lemma 3.3. Let N be a finite group, let T ∈ Syl2(N), let D be a normal 2-
subgroup of N and let N = N/D. Assume further that the following conditions
hold:

(a) CT (D) ≤ D, and
(b) N/O2′(N) ∼= L2(2n) for some n ≥ 2.

Then N is not 2-fusion modular.

Proof. By way of contradiction assume N is 2-fusion modular and of minimal order
with these properties. Since the 2-fusion modular property carries over to subgroups
and quotient groups, we may obtain a contradiction by showing that some section
of N satisfying hypotheses (a) and (b) is not 2-fusion modular. By minimality
therefore O2′(N) = 1; and it follows from (a) and (b) that D = O2(N) = F ∗(N).
Every odd order element of N acts faithfully on D, hence also acts faithfully on
D/Φ(D). Replacing N by N/Φ(D), by minimality we may assume Φ(D) = 1.

Let H be a 2′-Hall complement in NN (T ) and let h ∈ H map to a generator
for a Cartan subgroup in the L2(2n) quotient N/O2′(N). Let w be a 2-element
of NN (〈h 〉) mapping to a Weyl element inverting the image of h in this L2(2n)
quotient. Then h also normalizes Tw. Since 〈T , Tw 〉 maps onto N/O2′(N), by
minimality we may assume

(4) N = 〈T, Tw 〉.
Since N is 2-fusion modular it follows as usual that h centralizes every element in
Φ(T ) hence it centralizes its subgroup [D,T ]. Thus h also centralizes [D,Tw], and
hence centralizes D0 = [D,T ]+ [D,Tw]. By construction both T and Tw normalize
D0, so by (4), D0 E N . Likewise, both T and Tw act trivially on D/D0, hence so
too does N . But now h acts trivially on both D0 and D/D0, and so acts trivially
on D = F ∗(N). This contradiction completes the proof of the lemma. �

Proof of Theorem 2: As before let G be a 2-fusion modular non-abelian simple
group, let T ∈ Syl2(G), and assume T is not elementary abelian. By Lemma 3.1
and Proposition 3.2, T is of nilpotence class 2 and exponent 4. Let x ∈ T be
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an element of order 4, let z = x2 and let Z = 〈 zG ∩ T 〉. By Lemma 3.1(c),
Z is elementary abelian. Since z is not isolated in T , there is some member of
Goldschmidt’s conjugation family [2] where a nontrivial conjugation of z into T
takes place. Moreover, since Z is a weakly closed abelian subgroup of T , NG(Z)
is transitive on zG ∩ T . We may therefore take all members of the Goldschmidt
conjugation family to lie in NG(Z). Thus by Goldschmidt’s Theorem, [2], Z lies in
some subgroup D of T with N = NG(D) satisfying the following properties:

(1) NT (D) ∈ Syl2(N),
(2) CT (D) ≤ D,
(3) either D = T or N/D is 2-isolated, and
(4) z 6= zg for some g ∈ N .

By Lemma 3.1(f) and hypothesis (2), Φ(T ) ≤ D. Hence T ≤ N and N/D has
elementary abelian Sylow 2-subgroups. Note also that because z 6= zg, if x belonged
to D then 〈x, xg 〉 would have order ≥ 16, a contradiction. Indeed, by the same
reasoning

(5) no G-conjugate of x lies in D.

In particular, D 6= T . Since then N/D is 2-isolated, by Bender’s Theorem (see [2])
it either has cyclic Sylow 2-subgroups (of order 2) or it possesses a normal subgroup
L of odd index such that L/O2,2′(N) ∼= L2(2n), for some n ≥ 2. (The other Bender
groups are not permissible by Lemma 3.1(g).) By Lemma 3.3 applied to L in place
of N , the latter configuration does not hold, so

|T : D | = 2 and N/D has a normal 2-complement.

Let N0 be the subgroup of N of index 2 containing D, so that N = N0〈x 〉. Let
V : G→ N/N0 be the transfer homomorphism. We compute the value of V (x) by
familiar means ([4], Theorem 7.3.3):

(6) V (x) =
r∏
i=1

g−1
i xnigiN0

where g1, . . . , gr are representatives of the distinct orbits of 〈x 〉 acting by left
multiplication on the left cosets of N in G, and ni is the cardinality of the ith orbit.

Since x4 = 1, the factors on the right hand side of (6) coming from orbits of
size 4 contribute the identity to the product. If gi is a representative of an orbit
of size 2, then zgi = (x2)gi ∈ N . In this case 〈 zgi 〉D is a 2-group whereas Z is
a maximal 2-group generated by conjugates of z, hence zgi ∈ Z ≤ N0. Thus the
orbits of size 2 contribute only the identity to right hand product in (6) as well.
Finally, gi is a representative of an orbit of size 1 if and only if g−1

i xgi ∈ N . We
may adjust the representative by multiplying it on the right by an element of N so
that g−1

i xgi ∈ T as well. As usual, by the 2-fusion modular property of 〈x, xgi 〉
we obtain that gi ∈ CG(z). Thus the number of orbits of size 1 of 〈x 〉 acting on
G/N is the same as the number of distinct left cosets in the action of CG(z) on the
set of left cosets of N , namely |CG(z) : CG(z) ∩ N |. Since T ≤ CG(z) ∩ N , the
latter index is odd. By (5) each orbit of size 1 contributes a factor of xN0 to the
transfer product in (6). This proves V (x) equals xN0 raised to an odd power, hence
is not the identity in N/N0. This violates the simplicity of G, and so completes the
proof. �
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Finally, we close with an easy consequence of Proposition 3.2.

Corollary 3.4. Let G be a 2-fusion modular finite group with O2′(G) = 1, and
let T be a Sylow 2-subgroup of G. If T possesses an element y of order 8, then
y4 ∈ O2(G).

Proof. Let x = y2 and z = y4. By Proposition 3.2, Z = 〈 zG ∩ T 〉 is a strongly
closed elementary abelian subgroup all of whose involutions are conjugate in G. By
Goldschmidt’s Theorem [3], G1 = 〈ZG 〉 is a direct product of an elementary abelian
subgroup with simple Goldschmidt groups. Since all involutions of Z are conjugate,
if G1 had any non-abelian simple component, then G1 would necessarily be a single
simple component containing Z. By Lemma 3.1(g), G1 is not a Suzuki or unitary
group. The groups L2(q) with q ≡ ±3 (mod 8), Re(32n+1), L2(4) and J1 do not
possess automorphisms of order 8. The groups L2(2m) for m ≥ 3 have elementary
abelian Sylow 2-subgroups, and so x would induce an outer automorphism on G1.
In this case m = 2n and x would lie in the field automorphism of order 2 coset (and
all elements in this coset act the same way on the abelian Sylow 2-subgroup Z of
G1, i.e., as field automorphisms of order 2). It follows that if G1

∼= L2(22n) then
x would centralize only an elementary abelian subgroup of order 2n in Z, contrary
to Proposition 3.2. This proves G1 is a 2-group, as desired. �

Acknowledgment

The authors thank the referees for their careful reading of the paper, and their
suggestions for improving its limpidity.

References

[1] H. Bao and L. Miao, Finite groups with some M -permutable primary subgroups, Bull. Malays.
Math. Sci. Soc., (2) 36 (2013), no. 4, 1041–1048.

[2] D. Goldschmidt, A conjugation family for finite groups, J. Alg., 16(1970), 138–142.
[3] D. Goldschmidt, 2-fusion in finite groups, Annals of Math, 99(1974), 70–117.

[4] D. Gorenstein, Finite Groups, Harper & Row, 1968.

[5] D. Gorenstein and R. Gilman, Finite groups with Sylow 2-subgroups of class 2, I, Trans.
Amer. Math. Soc., 207(1975), 1–101.

[6] D. Gorenstein, R. Lyons and R. Solomon, The classification of the finite simple groups, No. 3,

Memoirs of the AMS, 40(1998), No. 3, 1–419.
[7] M. Isaacs, Finite Group Theory, AMS Graduate Studies in Math, 92(2008).

[8] X. Li and Y. Xu, The Indices of Subgroups of Finite Groups in the Join of their Conjugate

Pairs, to appear in Bull. Malays. Math. Sci. Soc., 8 pages.
[9] H. N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc., 121(1966), 62–89.

[10] X. Yi and A. N. Skiba, On S-propermutable subgroups of finite groups, to appear in Bull.

Malays. Math. Sci. Soc., (2).

Department of Mathematics and Statistics, University of Vermont,

16 Colchester Avenue, Burlington, VT 05405 USA
E-mail address: foote@math.uvm.edu

Department of Mathematical Sciences, University of Wisconsin Stevens Point,

2001 Fourth Ave., Stevens Point, WI 54481, USA
E-mail address: mwelz@uwsp.edu


