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Abstract: In this paper we consider closed orbits of an ergodic (not necessarily hyperbolic) toral 
automorphism and prove an analogue of Mertens theorem of analytic number theory for these closed 
orbits. 

 
 
1.   Introduction 
 
Mertens theorem of analytic number theory gives us the following asymptotic formula for 
primes p: 
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whereγ is Euler's constant and )()( t~ gtf  means  1)()(  t/gtf → when ∞→t  (see  [1]).  
 A dynamical version of this theorem, in the context of closed orbits of axiom A flows 
and diffeomorphisms, was established by Sharp [4].  In particular, the asymptotic formula 
derived by Sharp also hold for a special class of axiom A diffeomorphisms namely 
automorphisms of the finite dimensional torus of the hyperbolic type. 
 The purpose of this paper is to further extend Sharp's work to the general setting of 
an ergodic (not necessarily hyperbolic) toral automorphism A.  Recall that if we denote 
the n-torus by nT  then this mean nn  TTA →:  where the associated   nn×   matrix 
which we shall also denote by A have integer entries,  1det ±=(A) and no eigenvalues of  
A  are roots of unity.  Let τ denotes a closed orbit of A  and )(τλ be its (least) period  

(i.e )}(,),(,{ 1 xAxAx m−= Lτ  for some nTx∈  with xxAm =)(  and m=)(τλ                  
(m least)).  Then the main result of this paper is as follows: 
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Theorem 1.   Let h  be the topological entropy of A  and for each closed orbit τ  of  A , 
let )(τλ be its period.  Also let  )(zζ   be the zeta function of A.  Then 
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where 2/2dm = , d is the number of eigenvalues of A  of modulus one, γ  is Euler's 

constant and ν  is the value of the non-zero and analytic function mh zez )1()( −ζ  at 
hez −= . 

 
 The proof of this result is modelled along the line of Sharp's paper which in turn was 
motivated by the analogoues number theoretic proof (see [1]).  One should note that, 
unlike the case of an axiom A diffeomorphism which relies heavily on the associated 
symbolic dynamics and zeta functions, the result for  toral automorphisms (hyperbolic or 
not) can be derived directly without appealing to the symbolic model.  This is so since in 
this case  the corresponding dynamical zeta function whose analytic properties is relied 
upon is easily found.  Observe that this is just as well since Markov partitions, the 
necessary tools for symbolic modelling can never exists in the case of ergodic toral 
automorphisms (see [3]).   
 
 
2.   The proof 
 
As before let nn  TTA →: be an ergodic automorphism on the n-torus and let )(Fix An  

denotes the number of fixed points of nA .  The Artin-Mazur zeta function for A  is 
defined by 
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It is well-known that )(zζ  has radius of convergence he−  where h  is the topological 
entropy of A  (see [2]).  In fact if λ  denotes an arbitrary eigenvalue of A  then 

∏ −= |)1(|)(Fix n
n A λλ  and ∑ >= 1|| ||logλ λh  (see [6]). 

 The analytic properties of )(zζ  beyond hez −=||  is given by the following theorem 
which is due to Waddington [5]. 
 
Proposition 1.   There exists a finite set U  whose elements ρ  lies on the unit circle  1S  
and integers )(ρK , for each ,U∈ρ  such that 
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where )(zB  is analytic and non-zero in the region  heRz −<   for some 1>R . 
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Remarks 
1.  The set U  arises from the expansion ∑∏ ∈= =− U Kρλ ρρλ )()1(1||  where the 

product is taken over all eigenvalues λ  of  A  of modulus one.  Clearly )(ρK are 
just integers and U∈1 . 

2. Let 2/2dm =  where d  is the number of eigenvalues of A  of modulus one.  Then it 
is not hard to see that mK =)1( . 

3. If we know the eigenvalues of A  explicitly then a straight-forward calculation will 
enable us to derive a closed form for )(zB  and hence for )(zζ .  It is clear that this 
closed form will only involve the eigenvalues of A .   

 
 The following example illustrates the above proposition and the accompanying 
remarks. 
 
Example.  The following matrix induces an ergodic but non-hyperbolic automorphism on 

4T  (see [7]): 
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The matrix A has 2 positive eigenvalues 21 and αα  with  12 10 αα <<< , and 2 

complex eigenvalues ββ and   on the unit circle.  Note that the topological                     
entropy h of A is log 1α . It is straight-forward to check that 

).1()1()1()1()(Fix 21 ββαα −−−−−= nn
n A   Hence by using the log series, the zeta 

function of A is given by the following formula:  
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and this expression is valid for  hez −< .   Also in this case, U is the set },,1{ ββ  with 

2)1( =K and ).(1)( ββ KK =−=  We take the function )(zB  (in the notation of  
Proposition 1) as  
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Since ,1 12 αα <<  it is then clear that )(zB  is non-zero and analytic in the region 
heRz −< ,  for some 1>R . 

 For an integer x , let })(:{Card)( xx ≤= τλτπ .  Then using the above proposition, 
Waddington [5] showed that  
 
Proposition  2.  [Prime Orbit Theorem] 
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 Waddington also showed that the sum 
1
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zero and infinity.  Thus we have the following corollory to the Prime Orbit theorem 
which we shall call upon for later use: 
 
Corrolary 1.   There exists positive constants 1C  and  2C  such that 
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 We shall need the following result. 
 
Proposition 3.  The function mh zez )1()( −ζ  is analytic and non-zero in a neighbourhood 

of hez −= .   Moreover 
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Proof.  The first statement of the proposition follows from  proposition 1 and the 
accompanying remarks.  Now write  
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 The rest follows from the logarithmic expansion.  
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Corollary 2.   Let .)1()()( mh zezz −= ζν   Then  
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 Observe that by remark (3) above, for a given A the function )(zν can be made 
explicit. 
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where γ  is Euler's constant. 
 
Proof. 
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 From number theory we have  )1(log1
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Thus ).1(log)(log)( omxmexK h +++= − γν  
 
Proposition  5. 
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Proof.  From the Euler product form of ),(zζ  one can show that 
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where [y] denotes the fractional part of y. 
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Now 
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 By Stieltjes integrating the last term in the above inequality with respect to )(xπ , we 
have 
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Now apply corollary 1 to deduce that the above sum converge to zero as ∞→x and 
hence completing the proof. 
 Combining Propositions 4 and 5 then gives us our main result where ).( he−=νν  
When A is also hyperbolic (i.e 0=d  so that 1=m ) then we can retrieve Sharp's result as 
mentioned in the introduction. 
 
Corollary 3.  Let A be a hyperbolic toral automorphism with topological entropy h.  
Then 
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where γ  is Euler's constant and some constant .ν  
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