BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

On P_k and P_k' Near-Rings

¹R. BALAKRISHNAN AND ²S. SURYANARAYANAN
¹Department of Mathematics, V.O.C. College, Tuticorin – 628 008 Tamil Nadu, India
²Department of Mathematics, St John's College, Palayamkottai, India

Abstract. In page 297 of Pilz[4] a right near-ring N is called a $C_1(C_2)$ near-ring if xN = xNx(Nx = xNx) for all x in N. Szasz, Frence, in [6] calls a ring N, with the property xN = xNx for all x in N, a P_1 -ring. We shall, in this paper, refer to a near-ring N with the property xN = xNx(Nx = xNx) for all x in N, a P_1 -ring. We shall, in this paper, refer to a near-ring N with the property xN = xNx(Nx = xNx) for all x in N, a $P_1(P_1)$ near-ring. Motivated by these concepts we introduce P_k and P_k' near-rings (Definition 2.1). We further generalize these concepts by introducing $P_k(r,m)$ and $P_k'(r,m)$ near-rings (Definition 3.1). We discuss the properties of all these newly introduced structures in detail. We also obtain complete charcterisations and structure theorems for such near rings.

1. Introduction

Near-rings are generalized rings. If in a ring $(N, +, \cdot)$ we do not stipulate (i) the commutativity of '+' and (ii) the left distributive law of '.' over '+' then $(N, +, \cdot)$ becomes a right near-ring. Throughout this paper N stands for a right near-ring $(N, +, \cdot)$ with at least two elements, "xy" stands for "x.y" for all x, y in N and 0 denotes the identity of the group (N, +).

A subgroup *M* of *N* is called an *N*-subgroup if $NM \subset M$. An ideal *I* of *N* is called

- (i) a prime ideal if for all ideals J, K of $N, JK \subset I \Rightarrow J \subset I$ or $K \subset I$,
- (ii) a completely prime ideal if for all $a, b \in N$, $ab \in I \Rightarrow a \in I$ or $b \in I$ and
- (iii) a completely semiprime ideal if for $a \in N, a^2 \in I \Rightarrow a \in I$.

If for x, y in N, $xy = 0 \Rightarrow xny = 0$ for all n in N, we say that N has *IFP* (i.e. "Insertion of Factors property").

A map 'm' from N into N is called a mate function for N if x = xm(x)x for all x in N. m(x) is called a mate of x. This concept has been introduced in [5] to handle the regularity structure in a near-ring with considerable ease and also to discuss the properties of "mates" in detail.

R. Balakrishnan and S. Suryanarayanan

All the near-fields in this paper are zero-symmetric. Basic concepts and terms used but left undefined in this paper can be found in Pilz [4].

1.1. Notations

- (i) *E* denotes the set of all idempotents of *N*.
- (ii) L is the set of all nilpotent elements of N.
- (iii) $N_d = \{n \in N / n(x+y) = nx + ny \text{ for all } x, y \text{ in } N\}$ the set of all distributive elements of N.
- (iv) $N_0 = \{ n \in N / n0 = 0 \}$ the zero-symmetric part of *N*. (*N* is called zero-symmetric if $N = N_0$).
- (v) If S is a non-empty subset of N, $C(S) = \{n \in N / nx = xn \text{ for all } x \in S\}$ and for $C(\{x\})$, we write C(x) for x in N.
- (vi) If N has *IFP* and if $xy = 0 \Rightarrow yx = 0$ (for x, y in N) then we say that N has (*, IFP).
- (vii) As in [1], N is a P(r,m) near-ring if $x^r N = Nx^m$ for all x in N where r, m are positive integers.

1.2. Preliminary results

We freely make use of the following results from [1], [2], [3], [4] and [5] and designate them as K(1), K(2) etc. (*K* for "Known Result").

- K(1): When N admits mate functions the following are equivalent(i) N is P(1,2)(ii) $E \subset C(N)$ (iii) N is P(2,1) (Theorem 2.20 of [1]).
- K(2): When N admits mate functions, N is a P(r,m) near-ring (for all positive integers r, m) if and only if N is a P(1, 2) near-ring (Theorem 2.22 of [1]).
- K(3): If N is a P(r,m) near-ring with a mate function, we have from K(2), the following results:
 - (a) The concepts of *N*-subgroups, left ideals, right ideals and ideals are equivalent in *N* (Remark 2.26 (a) of [1]).
 - (b) $NaNb = Na \cap Nb = Nab$ for all a, b in N (Proposition 2.32 of [1]).
 - (c) *N* is subdirectly irreduible if and only if it is a near-field (Theorem 3.1 of [1]).
 - (d) N is isomorphic to a subdirect product of near-fields (Theorem 3.3 of [1]).
- K(4): A near-ring N has no non-zero nilpotent elements if and only if $x^2 = 0 \Rightarrow x = 0$ for all x in N. (This result in prob 14, P.9 of [3] in respect of rings is valid for N as well).
- K(5): A zero-symmetric near-ring *N* has *IFP* if and only if (0: *S*) is an ideal where *S* is any non-empty subset of *N* (9.3, p.289 of [4]).

- K(6): *N* is subdirectly irreducible if and only if the intersection of any family of nonzero ideals of *N* is again non-zero (1.60(c), p.25 of [4] and [2]).
- K(7): If *N* admits mate functions and is subdirectly irreducible then it has no non-zero idempotent zero-divisors (vide stage (2) of the proof of Theorem 3.1 of [1]).
- K(8): If N admits a mate function m, then $xm(x), m(x)x \in E$ and Nx = Nm(x)x and xN = xm(x)N for all x in N (Lemma 3.2 of [5]).
- $K(9): \text{ Let } a^2 = ba \text{ and } b^2 = ab \text{ for } a, b \text{ in } N. \text{ Let } u_1 = a b, u_2 = au_1 \text{ and} u_3 = bu_1. \text{ If there exist } x_i \text{ 's in } N \text{ such that } u_i = x_i u_i^2 \text{ } (i = 1, 2, 3) \text{ then } a = b \text{ (Lemma 2.5 of [5]).}$

2. P_k and P_k' near-rings

Definition 2.1. A near-ring N is called a P_k near-ring (P_k' near-ring) if there exists a positive integer k such that $x^k N = xNx(Nx^k = xNx)$ for all x in N.

Remark 2.2. Obviously any P_k ' near-ring is zero-symmetric.

Examples 2.3.

- (a) The direct product of any two near-fields is a P_k as well as a P_k' near-ring.
- (b) The near-ring $(N,+,\cdot)$ where (N,+) is the Klein's four group with $N = \{0, a, b, c\}$ and '.' satisfies the following table (scheme 12, p.408 of Pilz[4]).

•	0	а	b	с
0	0	0	0	0
а	0	а	0	а
b	0	0	0	0
c	0	а	0	а

is a P_k as well as a P_k ' near-ring.

(c) Suppose in the example (b) above we define '.' (as per scheme 8, p. 408 of Pilz[4]) as follows

	0	а	b	с
0	0	0	0	0
а	0	0	0	а
b	0	а	b	b
с	0	а	b	с

Then $(N,+,\cdot)$ is a P_k ' near ring but not a P_k near ring for any k > 1. It is neither a P_1 near-ring nor a P_1 ' near-ring.

(d) Consider the near-ring $(Z_4,+,\cdot)$ where $(Z_4,+)$ is the group of integers modulo 4 and '.' is defined as per scheme 2, p.407 of Pilz [4].

•	0	1	2	3
0	0	0	0	0
1	0	1	0	0
2	0	2	0	0
3	0	3	0	0

This is a P_k near-ring for k > 1. It is not a P_k' near-ring for any positive integer k.

 (e) Any constant near-ring (i.e. ab = a for all a, b ∈ N) is a P_k near-ring. It is easy to verify the following:

Proposition 2.4. Any homomorphic image of a $P_k(P_k')$ near-ring is a $P_k(P_k')$ near-ring.

As an immediate consequence of Proposition 2.4 we have the following:

Theorem 2.5. Every $P_k(P_k')$ near-ring N is isomorphic to a subdiret product of subdirectly irreducible $P_k(P_k')$ near-rings.

Proof. By 1.62, p.26 of Pilz[4], N is isomorphic to a subdirect product of subdirectly irreducible near-rings N_i^s s, say, and each N_i is a homomorphic image of N under the usual projection map π_i . The desired result now follows from Proposition 2.4.

Before proceeding further we have the following:

Definition 2.6. We say that a near-ring N is an $S_r(S_r')$ near-ring if $x \in Nx^r (x \in x^r N)$ for all x in N. When r = 1 we write "S(S') near-ring" instead of " $S_1(S_1')$ near-ring".

Examples 2.7. Let *r* be any positive integer.

- (i) The near-ring of example 2.3(a) is an S_r as well as an S_r ' near-ring.
- (ii) Trivially any Boolean near-ring is an S_r as well as an S_r' near-ring.
- (iii) The near-ring of example 2.3(e) is an S_r ' near-ring (but it is not an S_r near-ring).

- (iv) Let N be an arbitrary near-ring and let I be the ideal generated by $\{x nx^r / n, x \in N\}$. Then $\overline{N} = N / I$ is an S_r near-ring.
- (v) If in example (iv), *I* is the ideal generated by $\{\{x x^r n / x, n \in N\}$ then $\overline{N} = N / I$ is an S_r ' near-ring.

Remark 2.8. Examples 2.7(iv) and 2.7(v) provide devices for manufacturing S_r and S_r' near-rings from an arbitrary near-ring.

Proposition 2.9. Every $S_r(S_r')$ near-ring is an S(S') near-ring.

Proof. Let N be an $S_r(S_r')$ near-ring with $r \ge 2$. Clearly then for all $x \in N, x \in Nx^r = (Nx^{r-1})x \subset Nx(x \in x^r N = x(x^{r-1}N = x(x^{r-1}N) \subset xN) \therefore N$ is an S(S') near-ring.

Remark 2.10. The converse of Proposition 2.9 is not valid. Obviously the near-ring of example 2.3 (c) is an S as well as an S' near-ring. But it is neither an S_r near-ring nor an S_r' near-ring for r > 1.

Also the (near -) ring of integers $(Z,+,\cdot)$ is an *S* as well as an *S*' near-ring. But it is neither an S_r near-ring nor an S_r ' near-ring for r > 1. Thus even in the case of rings, the converse of Proposition 2.9 is not valid, in general.

Before discussing the proporties of $P_k(P_k')$ near-rings we have the following:

Lemma 2.11. Let N be a P_1 near-ring - ie xN = xNx for all x in N - with a mate function. Then N admits a mate function f such that $f(x) \in C(x)$.

Proof. Let *m* be a mate function for *N*. For x, m(x) in *N*, we can find a 't' in *N* such that xm(x) = xtx (as xN = xNx) i.e. $x = xm(x)x = xtx^2 = x'x^2$ with x' = xt. We shall define $f: N \to N$ such that f(x) = x'. Clearly then if we set y = xf(x)x, it follows that $xy = y^2$ and $yx = x^2$ and K(9) guarantees x = y. Thus x = xf(x)x and therefore *f* is a mate function for *N*.

Again let us set a = xf(x), b = f(x)x, $a - b = w_1$, $xw_1 = w_2$ and $aw_1 = w_3$. By a slight modification of the proof of the Lemma 2.5 (*K*(9)) of [5], we get a = b and the desired result follows.

Proposition 2.12. Let N be a P_k or a P_k' near-ring. If N admits mate functions then $L = \{0\}$.

Proof. Suppose N is a P_k near-ring with a mate function 'm'.

Case (i). k = 1 i.e. xN = xNx for all x in N. We appeal to Lemma 2.11 and observe that N admits a mate function f such that $f(x) \in C(x)$ for all x in N. Therefore for all x in N, we have $x = xf(x)x = x(xf(x)) = x^2 f(x)$ and this guarantees " $x^2 = 0 \implies x = 0$ ". From K(4) we get $L = \{0\}$.

Case 2. Let k > 1. Now $x^k N = xNx$ for all x in N. Since $x = xm(x)x \in xNx(=x^k N)$ we get $x = x^k n$ for some n in N. If k = 2 then $x = x^2 n$ and therefore " $x^2 = 0 \Rightarrow x = 0$ ". If k > 2 we have $x = x^2(x^{k-2}n)$ and again we get " $x^2 = 0 \Rightarrow x = 0$ ". This yields $L = \{0\}$ for all k > 1.

In view of Remark 2.2 we can prove the above result when *N* is a P_k ' near-ring, with k > 1, in a similar fashion. When k = 1 we observe that for $x \in N$, xNx = Nx. Consequently for all x in N, $x = xm(x)x \in xNx = x(Nx) = x(xNx) = x^2Nx$ i.e. $x \in x^2Nx$. Hence " $x^2 = 0 \implies x = 0$ " and the proof is complete.

Remark 2.13. The converse of Proposition 2.12 is not valid. Examples are plentiful to justify this. To cite two such we have the following:

 (i) Consider the near-ring constructed on the Klein's four group as per scheme (21) p. 408 of Pilz[4].

•	0	а	b	С
0	0	0	0	0
а	а	a	а	а
b	0	0	b	0
С	а	а	С	а

It is a P_k ($k \ge 2$) near-ring without nilpotent elements. But it has no mate function.

(ii) Even in the case of rings, the converse does not hold. The ring $(Z,+,\cdot)$ of integers which is a P_2 as well as a P_2' near-ring comes in handy to justify this. The following result will be made use of throughout this paper.

Proposition 2.14. A $P_k(P_k')$ near-ring N has a mate function if and only if N is an $S_k'(S_k)$ near-ring.

Proof. Let N be a P_k near-ring with a mate function 'm'. Therefore $x^k N = xNx$ for all x in N. Now $x = xm(x)x \in xNx(=x^k N)$ and this implies $x \in x^k N$ i.e. N is an S_k ' near-ring.

Conversely let N be an $S_k' - P_k$ near-ring. $\therefore x \in x^k N(=xNx)$ for all x in N. This implies x = xnx for some n in N. Therefore x = xm(x)x where we set m(x) = n. Hence 'm' is a mate function for N.

The proof in respect of P_k ' near-rings is similar.

Lemma 2.15. Let N be a zero-symmetric near-ring with a mate function `m'. Then

- (i) N has (*, IFP) if and only if $L = \{0\}$.
- (*ii*) ene = en for all $e \in E$ and $n \in N$.

Proof.

(i) Suppose N has (*, *IFP*). If $a^2 = 0$ for any a in N then by *IFP*, am(a)a = 0. i.e. a = 0. Hence $L = \{0\}$ (by K(4)).

Conversely if $L = \{0\}$, then $xy = 0 \Rightarrow (1) (yx)^2 = (yx)(yx) = y(xy)x$ = $y0x = y0 = 0 \Rightarrow yx = 0$ and (2) $(xny)^2 = (xny)(xny) = xn(yx)ny = xn0$ = $0 \Rightarrow xny = 0$ for all *n* in *N*. Thus *N* has (*, *IFP*).

(ii) For $e \in E$ and $n \in N$ we have (ene - en)e = 0 and by (*, *IFP*), we get e(ene - en) = 0, en(ene - en) = 0 and ene(ene - en) = 0. These demand $(ene - en)^2 = 0$ and therefore ene = en since $L = \{0\}$.

As an immediate consequence of Lemma 2.15 - read with Propositions 2.12 and 2.14 - we have the following:

Corollary 2.16.

- (i) If N is an $S_k P_k'$ near-ring then N has (*, IFP).
- (ii) If $N = (= N_0)$ is an $S_k' P_k$ near-ring then N has (*, IFP).

Theorem 2.17. Let N be a near-ring with a mate function f. Then the following statements are equivalent:

- (i) N is P_k ' for any positive integer k.
- (*ii*) $E \subset C(N)$.
- (iii) N is P(r,m) for all positive integers r,m.

- Proof.
- (i) ⇒ (ii): Since Nx^k = xNx for all x in N, Ne = eNe for all e in E. ∴ For any n ∈ N, there exists u ∈ N such that ne = eue. This implies ene = (eue =)ne. By Lemma 2.15 and Corollary 2.16(i) we have en = ene. Thus we get en = (ene =)ne and (ii) follows.
- (ii) \Rightarrow (i): Case 1 : Let k = 1. For all x in N, Nx = Nxf(x)x = (xf(x)N)x = xNx(using K(8)) \therefore N is a P_1 ' near-ring.

Case 2. Let k > 1. For all n, x in N, $nx^{k} = (nx)x^{k-1} = n(xf(x)x)x^{k-1}$ = $xf(x)(nx)x^{k-1} = (xf(x)nx^{k-1})x \in xNx$. Therefore $Nx^{k} \subset xNx$. Also $xnx = (xf(x)x)nx = xnf(x)x^{2} = xnf(x)x^{2} = (xf(x)x)nf(x)x^{2} = xn(f(x))^{2}x^{3}$. Repeating this process we ultimately obtain $xnx = (xn(f(x))^{k-1})x^{k} \in Nx^{k}$ for all positive integers k. Therefore $xNx \subset Nx^{k}$. Thus $xNx \subset Nx^{k}$ for all x in N and (i) follows.

"(ii) \Leftrightarrow (iii)" follows from *K*(1) and *K*(2).

Theorem 2.18. Any N-subgroup of an $S_k - P_k$ ' near-ring N is also an $S_k - P_k$ ' near-ring in its own right.

Proof. Let *N* be an $S_k - P_k'$ near-ring. Proposition 2.14 guarantees the existence of a mate function 'f' for *N*. Let *M* be any *N*-subgroup of *N*. From Theorem 2.17 we see that *N* is a P(r,m) near-ring also. K(3)(a) demands that *M* is a right ideal of *N*. Therefore $f(x)xf(x) \in NMN \subset M$ for all x in *M*. Thus we can define a map $g: M \to M$ such that g(x) = f(x)xf(x) for all $x \subset M$. Obviously g serves as a mate function for *M* - as xg(x)x = x.

Now let $x, s \in M$. Since $Nx^k = xNx$ there exists $n \in N$ such that $sx^k = xnx = x(nxg(x))x \in x(NM)x \subset xMx$. $\therefore Mx^k \subset xMx$. Also since $xsx \in xNx(=Nx^k)$ there exists $n_1 \in N$ such that $xsx = n_1x^k$. Again $xsx = xg(x)(xsx) = xg(x)n_1x^k = s_1x^k$ where $s_1 = xg(x)n_1 \in MN \subset M$. $\therefore xMx \subset Mx^k$. Thus $Mx^k = xMx$ for all $x \in M$ i.e. M is a P_k ' near-ring. Since M has a mate function 'g', M is an S_k near-ring as well (from Proposition 2.14).

Corollary 2.19. Any N-homomorphic image of an $S_k - P_k'$ near-ring N is an $S_k - P_k'$ near-ring.

Proof. Let $h: N \to N$ be an *N*-homomorphism. Obviously h(N) is a subgroup of *N*. For $n, n' \in N, nh(n') = h(nn') \in h(N) \Rightarrow Nh(N) \subset h(N) \Rightarrow h(N)$ is an *N*-subgroup of *N*. The result now follows from Theorem 2.18.

Theorem 2.20. Let N be a near-ring with a mate function 'm'. If $E \subset C(N)$ then N is a P_k near-ring for all positive integers k.

Proof. Suppose $E \subset C(N)$. If $x \in N$ then xN = x(m(x)xN) = x(Nm(x)x) = xNx(using K(8)). This proves the theorem for k = 1. For k > 1 and for any $x \in N, x^k N = x(x^{k-1}N) \subset xN = xNx$ (using the result for k = 1) i.e. $x^k N \subset xNx$. Also xNx = xNxm(x)x = x(Nxm(x))x = x(xm(x)N)x = x(xN)x (using K(8)) $= x^2Nx = x(xNx) = x(x^2Nx) = x^3Nx$ and continuing in the same vein we ultimately get $xNx = x^k Nx \subset x^k N$ where k is any positive integer. Hence $xNx = x^k N$ for all $x \in N$ and the result follows.

Remark 2.21. The converse of Theorem 2.20 is not valid. For example let us consider the near-ring $(N, +, \cdot)$ where (N, +) is the Klein's four group with $N = \{0, a, b, c\}$ and '.' satisfies the following table (defined as per scheme 1, p.408 of Pilz [4]).

•	0	а	b	С
0	0	0	0	0
a	0	a	а	а
b	0	b	b	b
С	0	С	С	С

This is a P_k near-ring for all positive integers k. In fact it is a Boolean near-ring and identity function serves as a mate function. But $E(=N) \not\subset C(N)$.

Corollary 2.22. Let N be a near-ring admitting mate functions. Then N is a P_k ' near-ring for a fixed positive integer k if and only if it is a P_r as well as a P_r ' near-ring for all positive integers r.

Proof. For the 'only if' part we proceed as follows: We appeal to Theorems 2.17 and 2.20 and observe that N is $P_k \cong E \subset C(N) \cong N$ is P_r as well as P_r' for all positive integers r.

Proof of 'if part' is obvious.

Remark 2.23. It is worth-noting that a P_k near-ring with a mate function need not necessarily be a P_k ' near-ring. The example cited under Remark 2.21 comes in handy to justify this. It is a P_k near-ring, for all positive integers k, and it admits mate functions. But it is not a P_k ' near-ring for any k.

We shall now discuss the conditons under which a P_k near ring becomes a P_k ' near-ring.

Theorem 2.24. Let N be a zero-symmetric near-ring admitting mate functions. Then N is a P_k near-ring with $E \subset N_d$ if and only if N is a P_k ' near-ring.

Proof. For the 'only if' part we note that as $N = N_o$ and N has a mate funciton, it has (*, *IFP*) and $L = \{0\}$ (by Propositon 2.14 and Corollary 2.16(ii)). From Lemma 2.15 we get ene = en for all $e \in E$ and $n \in N$. Since $E \subset N_d$, e(ne - ene) = 0. This ultimately yields $(ne - ene)^2 = 0$ and consequently ne = ene. Thus we get $E \subset C(N)$. Theorem 2.17 now guarantees that N is a P_k ' near-ring.

For the 'if part' we observe that N is $P_k \Rightarrow E \subset C(N)$ (from Theorem 2.17) $\Rightarrow N$ is a P_k near-ring (Theorem 2.20). Again $E \subset C(N) \Rightarrow E \subset N_d$ and the result follows.

As an immediate consequence of Theorems 2.17 and 2.24 we get:

Corollary 2.25. The following statements are equivalent in a near-ring N with mate functions.

(i), (ii), (iii) of Theorem 2.17 and (iv) N is a zero-symmetric P_k near-ring with $E \subset N_d$.

From Corollaries 2.22 and 2.25 we obtain the following:

Proposition 2.26. Let N admit mate functions. Then N is a zerosymmetric P_k near-ring (for a fixed k) with $E \subset N_d$ if and only if N is a P_r as well as a P_r ' near-ring for all positive integers r.

Theorem 2.27. Let N be a P_k near-ring with a mate function. If N is zero-symmetric and has a left identity 1 then N is a P_r' near-ring for any positive integer r.

Proof. Since *N* is a zero-symmetric P_k near-ring with a mate function it has (*, IFP) and $L = \{0\}$ (from proposition 2.14, Lemma 2.15(i) and Corollary 2.16(ii)). Again by Lemma 2.15 (ii), ene = en for all $e \in E$ and $n \in N$. Also since (1-e)e = 0 we get (1-e)ne = 0 for all $n \in N$. \therefore ne = ene. Thus en = ene = ne for all $n \in N$ and for all $e \in E$. Hence $E \subset C(N)$ and Theorem 2.17 guarantees that *N* is a P_r ' near-ring for all positive integers *r*.

Proposition 2.28. A left identity of a P_k near-ring is also a right identity.

Proof. Let *e* be a left identity of *N*. \therefore x = ex for all $x \in N$. Now $e^k N = eNe \Rightarrow eN = eNe$. Then there exists $n \in N$ such that x = ex = ene and this implies x = ne. Hence $xe(=ne^2) = ne = x$. Thus 'e' is a right identity as well.

Remark 2.29. A right identity of a P_k near-ring need not be a left identity. In the example given under Remark 2.21 *a*, *b*, *c* are right identities but none is a left identity. This very same example together with Remark 2.23 asserts that Theorem 2.27 fails if *N* has only a right identity.

Proposition 2.30. Every ideal of an $S_k' - P_k$ near-ring is a completely semiprime ideal.

Proof. Case (i) Let k = 1. Then *N* has a mate function and xN = xNx for all $x \in N$. From Lemma 2.11 we observe that *N* has a mate function *f* such that xf(x) = f(x)x for all *x* in *N*. Let *I* be any ideal of *N*. If $a^2 \in I$ then $a = af(a)a = a(af(a)) = a^2 f(a) \in IN \subset I$. i.e. $a \in I$ and the result follows.

Case (ii) Let k > 1. Since N is an $S_k' - P_k$ near-ring Proposition 2.14 guarantees that N has a mate function say 'm'. For $a \in N$, $a = am(a)a \in aNa(=a^k N)$ and consequently there exists $n \in N$ such that $a = a^k n$. When k = 2, $a^2 \in I \Rightarrow a = a^2 n \in IN \subset I$. i.e. $a \in I$. When k > 2, $a^2 \in I \Rightarrow a = a^2 n \in IN \subset I$ i.e. $a \in I$ and the desired result follows.

Propositions 2.31. Any prime ideal of an $S_k - P_k'$ near-ring is a completely prime ideal.

Proof. Let *N* be an $S_k - P_k'$ near-ring. Then *N* has a mate function, say *f* (Proposition 2.14). Let *P* be a prime ideal of *N* and let $ab \in P$. \therefore $Nab \subset NP \subset P$ (from Theorem 2.17 and K(3)(a)). Clearly then $NaNb(=Nab) \subset P$ (from K(3)(b)). Since *Na* and *Nb* are ideals in *N* and since *P* is prime, $Na \subset P$ or $Nb \subset P$. Therefore $(a =)af(a)a \in P$ or $(b =)bf(b)b \in P$ and the desired result follows.

Proposition 2.32. Any prime ideal of an $S_k - P_k$ ' near-ring N is a maximal ideal.

Proof. Let *I* be a prime ideal of *N*. Let *J* be an ideal of *N* such that $J \neq 1$ and that $I \subset J \subset N$. We need only to show that J = N. Let $x \in J - I$. From proposition 2.14 we see that *N* has a mate function, say, 'm'. For $x \in N$, $x = xm(x)x = m(x)x^2$

(:: $E \subset C(N)$ from Theorem 2.17). Thus for all $n \in N$, $nx = nm(x)x^2$ and this implies (n - nm(x)x)x = 0. Since *N* has *IFP* (Corollary 2.16(i)) we get z(n - nm(x)x)zx = 0 for all $z \in N$. Consequently $N(n - nm(x)x)Nx = \{0\}$. If we let y = n - nm(x)x then $NyNx = \{0\} \subset I$. Since *I* is prime and Nx, Ny are ideals in *N* (Theorem 2.17 and K(3)(a)) we get $Ny \subset I$ or $Nx \subset I$. If $Nx \subset I$ then $x(=xm(x)x) \in I$ which is clearly a contradiction. If $Ny \subset I$ then $Ny \subset J$ and this demands $y(=ym(y)y) \in J$. i.e. $n - nm(x)x \in J$. From Theorem 2.17 and K(3)(a) we get $nm(x)x \in J$ and therefore $n \in J$ forcing J = N. The desired result now follows.

Propositon 2.33. If N is an $S_k - P_k$ ' near-ring then for any $e \in E$, N is the direct sum of ideals Ne and (0: Ne).

Proof. By Peirce decomposition $N = Ne \oplus (0:e)$ (\because every $n \in N$ can be uniquely written as n = ne + (-ne+n)). Since N is an $S_k - P_k$ ' near-ring Theorem 2.17 and K(3)(a) guarantee that Ne is an ideal of N. We shall show that (0:e) = (0:Ne). If $y \in (0:e)$ then for all $n \in N$, yne = yen ($\because E \subset C(N)$ from Theorem 2.17 as N is an $S_k - P_k$ ' near-ring) = 0. $\therefore y \in (0:Ne)$ and hence $(0:e) \subset (0:Ne)$. Now $x \in (0:Ne) \Rightarrow xne = 0$ for all n in N. In particular, xee = xe = 0. Thus xe = 0 or $x \in (0:e)$. Therefore $(0:Ne) \subset (0:e)$. Thus (0:e) = (0:Ne). Since N has IFP (Corollary 2.16(i)) K(5) demands that (0:Ne) is an ideal. Obviously $(0:Ne) \cap Ne = \{0\}$ and the desired result follows.

Theorem 2.17 and K(3)(d) guarantee the following structure theorem for an $S_k - P_k$ ' near-ring :

Theorem 2.34. An $S_k - P_k$ ' near-ring is isomorphic to a subdirect product of near-fields.

We shall make use of the following result for obtaining a structure theorem for an $S_k' - P_k$ near-ring.

Theorem 2.35. Let N be a zero-symmetric $S_k' - P_k$ near-ring. Then N is subdirectly irreducible if and only if N is simple.

Proof. Since *N* is an $S_k' - P_k$ near-ring it admits mate functions (Proposition 2.14). Suppose *N* is subdirectly irreducible. *K*(7) guarantees that no non-zero idempotent element of *N* is a zero-divisor and this demands Nx = N for all non-zero *x* in *N*. Hence *N* has no non-trivial *N*-subgroups. Since $N = N_o$ as well, all ideals are *N*-subgroups. Consequently *N* is simple.

The converse is obvious from K(6).

As an immediate consequence of Theorem 2.35 we have the following:

Theorem 2.36. If N is a zero-symmetric $S_k' - P_k$ near-ring then N is isomorphic to a subdirect product of simple near-rings.

Proof. From Theorem 2.5, N is isomorphic to a subdirect product of subdirectly irreducible P_k near-rings, N_i 's say. Since N has a mate function (Proposition 2.14) we see that each N_i , being a homomorphic image of N, has a mate function. Theorem 2.35 takes care of the rest of the proof.

Corollary 2.37. If N is a zero-symmetric $S_k' - P_k$ near-ring and if every homomorphic image of N has at least one non-zero distributive element then N is isomorphic to a subdirect product of near-fields.

Proof. This result is an immediate consequence of 8.3 of Pilz[4] and Theorem 2.36.

Corollary 2.38. Let N be a zero-symmetric $S_k' - P_k$ near-ring with at least one nonzero distributive element. Then N is subdirectly irreducible if and only if N is a nearfield.

Proof. The desired result follows from 8.3 of Pilz[4] and Theorem 2.35.

Corollary 2.39. If N is a zero-symmetric $S_k' - P_k$ near-ring with $E \subset N_d$ then N is isomorphic to a subdirect product of near fields.

Proof. Corollary 2.25 and Theorem 2.34 guarantee the desired result.

Theorem 2.40. If a P_k near-ring N fulfills the left cancellation law then N is a nearintegral domain.

Proof. Let *S* be any subsemigroup of *N* and let $n \in N$. Since $s^k N = sNs$ for $s \in S$ there exists $n' \in N$ such that $s^k n = sn's$. i.e. $s_1 n = n_1 s$ where $s_1 = s^k \in S$ and $n_1 = sn' \in N$. i.e. *S* satisfies the left Ore condition. 9.60 of Pilz[4] guarantees that *N* is a near-integral domain.

Corollary 2.41. If N, satisfying the conditions of Theorem 2.40, has DCCN then N is a near-field.

Proof. This is an immediate consequence of 9.62(c) of Pilz [4] and Theorem 2.40.

3. $P_k(r,m)$ and $P_k'(r,m)$ Near-Rings

In this section we shall introduce $P_k(r,m)$ and $P_k'(r,m)$ near-rings by way of generalizing the concepts of P_k and P_k' nearrings.

Definition 3.1. A near-ring N is called a $P_k(r,m)$ ($P_k'(r,m)$) near-ring if there exist positive integers k, r,m such that for all x in N, $x^k N = x^r N x^m (N x^k = x^r N x^m)$.

Remark 3.2. Obviously a $P_k'(r,m)$ near-ring is zero-symmetric. A $P_k(1,1)(P_k'(1,1))$ near-ring is nothing but a $P_k(P_k')$ near-ring.

Examples 3.3. Let k, r, m be any three positive integers.

- (i) The direct product of any two near-fields is a $P_k(r,m)$ as well as a $P_k'(r,m)$ near-ring.
- (ii) A constant near-ring is a $P_k(r,m)$ near-ring. It is not a $P_k'(r,m)$ near-ring.
- (iii) Near-ring of example 2.3(b) is a $P_k(r,m)$ as well as a $P_k'(r,m)$ near-ring.
- (iv) The near-ring given in example 2.3(c) is a $P_k'(r,m)$ but not a $P_k(r,m)$ near-ring for k > 1. It is not $P_1(r,m)$ nor $P_1'(r,m)$.

Lemma 3.4. Let f be a mate function for N. If $E \subset C(N)$ then $(xf(x) =) (xf(x))^r = x^r (f(x))^r$ for all x in N and for all positive integers r.

Proof. As $E \subset C(N)$ we have, $(xf(x) =)(xf(x))^2 = xf(x)(xf(x)) = x(xf(x))f(x)$ = $x^2(f(x))^2$. Continuing in the same vein we get $(xf(x) =)(xf(x))^r = x^r(f(x))^r$ for all positive integers *r*.

Theorem 3.5. Let N admit a mate function 'f'. Then N is a P_k '(1,1) near-ring for a fixed k if and only if N is a P_t '(r,m) and a $P_t(r,m)$ near-ring for all positive integers t, r, m.

Proof. Suppose N is a $P_k'(1,1)$ near-ring for a fixed positive integer k. Theorem 2.17 demands that $E \subset C(N)$. Let t, r, m be any three positive integers. For $x \subset N$,

$$x^r N x^m \subset x N x = N x^k (\because N \text{ is } P_k'(1,1). \therefore x^r N x^m \subset N x^k.$$
 1

Now let $z \in Nx^k$ (= xNx). Then there exists $y \in N$ such that z = xyx= $(xf(x))(xyx(f(x)x) = (xf(x))^r(xyx(f(x)x)^m \text{ as } xf(x), f(x)x \in E.$ Since $E \subset C(N)$

22

we can make use of Lemma 3.4 and get $z = x^r ((f(x))^r xyx(f(x))^m) x^m \in x^r Nx^m$. Thus $Nx^k \subset x^r Nx^m$ 2

Hence $x^r Nx^m = Nx^k$ (= xNx). From Corollary 2.22 we observe that N is a $P_t(1,1)$ as well as a $P_t'(1,1)$ near-ring for all positive integers t. Hence $x^t N = Nx^t = xNx = Nx^k = x^r Nx^m$ for all x in N. i.e. N is a $P_t(r,m)$ as well as a $P_t'(r,m)$ near-ring for all positive integers t, r, m.

Converse is obvious.

Theorem 3.6. Let N be a near-ring with a mate function. Then N is a zero-symmetric $P_k(1,1)$ near-ring with $E \subset N_d$ if and only if N is a $P_t(r,m)$ as well as a $P_t'(r,m)$ near-ring for all positive integers t, r, m.

Proof. N is zero-symmetric, $P_k(1, 1)$ with $E \subset N_d \Leftrightarrow N$ is a $P_k'(1, 1)$ near-ring for any positive integer k(Corollary 2.25) $\Leftrightarrow N$ is a $P_t(r, m)$ as well as a $P_t'(r, m)$ near-ring for all positive integers t, r, m (Theorem 3.5).

Collecting the pieces of results from Theorem 2.17, Corollaries 2.22, 2.25, Proposition 2.26 and Theorems 3.5 and 3.6 we obtain:

Theorem 3.7. The following statements are equivalent in a near-ring N with mate functions.

- (1) N is a $P_k'(=P_k'(1,1))$ near-ring for a fixed positive integer k.
- (2) *N* is a zero-symmetric $P_k (= P_k (1, 1))$ near-ring for a fixed positive integer k with $E \subseteq N_d$.
- (3) N is a P(r, m) near-ring for all positive integers r, m.
- (4) N is a $P_t'(u, v)$ near-ring for all positive integer t, u, v.
- (5) *N* is a zero-symmetric $P_t(u, v)$ near-ring for all positive integers t, u, v with $E \subseteq Nd$.

We conclude our discussion with the following:

Remark 3.8. Theorem 3.7 - when read with K(3)(d) - guarantees that if N admits mate functions and is either a $P_t(u, v)$ near-ring with $E \subset N_d$ or simply a $P_t'(u, v)$ near-ring - where t, u, v are any three positive integers - then N is isomorphic to a subdirect product of near-fields.

R. Balakrishnan and S. Suryanarayanan

References

- 1. R. Balakrishnan and S. Suryanarayanan, *P*(*r*,*m*) Near-Rings To appear in the *Bull. Malaysian Math. Sc. Soc.*
- 2. Gratzer, George, Universal Algebra, Springer Verlag, New York, 1979.
- 3. Neal.H. McCoy *The Theory of Rings*, MacMillan & Co., 1970.
- 4. Pilz Gunter, Near Rings, North Holland, 1983.
- 5. S. Suryanarayanan and N. Ganesan, Stable and Pseudostable near-rings, *Indian J.Pure and Appl. Math.* **19** (December, 1988), 1206-1216.
- 6. Szasz, Frence: Some generalizations of strongly regular rings *Mathematicae Japonicae* 17 (1972), 115-118.

24