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Abstract.  In page 297 of Pilz[4] a right near-ring N is called a C1(C2) near-ring if  
)( xNxNxxNxxN == for all x in N.  Szasz, Frence, in [6] calls a ring N, with the 

property xNxxN =  for all x in N, a P1-ring. We shall, in this paper, refer to a near-ring 
N with the property )( xNxNxxNxxN ==  for all x in N, a P1(P1') near-ring.  Motivated 
by these concepts we introduce Pk and Pk' near-rings (Definition 2.1).  We further 
generalize these concepts by introducing Pk(r,m) and Pk'(r,m) near-rings            
(Definition 3.1).  We discuss the properties of all these newly introduced structures in 
detail.  We also obtain complete charcterisations and structure theorems for such near 
rings. 

 
 
1.   Introduction 
 
Near-rings are generalized rings. If in a ring ),,( ⋅+N  we do not stipulate  
(i) the commutativity of ‘+’ and  (ii) the left distributive law of  ‘.’ over ‘+’ then  ),,( ⋅+N   
becomes a right near-ring.  Throughout this paper N stands for a right near-ring ),,( ⋅+N  
with at least two elements, "xy" stands for "x.y" for all x, y in N and 0 denotes the identity 
of the group ).,( +N  
 A subgroup M of N is called an N-subgroup if  .MNM ⊂   An ideal I of N is called  
 

(i)  a prime ideal if for all ideals KJ , of  N, IJIJK ⊂⇒⊂  or ,IK ⊂   
(ii)  a completely prime ideal if for all  IaIabNba ∈⇒∈∈ ,,  or Ib∈  and  

(iii)  a completely semiprime ideal if for  ., 2 IaIaNa ∈⇒∈∈  
  
 If for yx,  in N, 00 =⇒= xnyxy  for all n in N, we say that N has IFP  
(i.e. "Insertion of Factors property").  
 A map ‘m’ from N into N is called a mate function for N if xxxmx )(=  for all x in N. 

)(xm  is called a mate of x.  This concept has been introduced in [5] to handle the 
regularity structure in a near-ring with considerable ease and also to discuss the 
properties of  "mates" in detail.  
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 All the near-fields in this paper are zero-symmetric.  Basic concepts and terms used 
but left undefined in this paper can be found in Pilz [4]. 
 
1.1.  Notations 
 
(i)  E denotes the set of all idempotents of N.  
(ii)  L is the set of all nilpotent elements of N.  
(iii)  nynxyxnNnN d +=+∈= )(/{  for all yx,  in N} the set of all distributive 

elements of N. 
(iv)  }00/{0 =∈= nNnN - the zero-symmetric part of N.  (N is called zero-symmetric 

if  0NN = ).  
(v)  If S is a non-empty subset of N, xnnxNnSC =∈= /{)(  for all }Sx∈  

and for  }),({xC  we write )(xC  for x in N. 
(vi)  If N has IFP and if 00 =⇒= yxxy  (for x, y in N) then we say that N has  

(*, IFP).  
(vii)  As in [1], N is a  ),( mrP  near-ring if  mr NxNx =  for all x in N where  

mr, are positive integers. 
 
1.2.  Preliminary results  
 
We freely make use of the following results from [1], [2], [3], [4] and [5] and designate 
them as K(1), K(2) etc. (K for "Known Result"). 
 
K(1) :  When N admits mate functions the following are equivalent  

(i) N is P(1,2)  
(ii) )(NCE ⊂  
(iii) N  is P(2,1) (Theorem 2.20 of [1]). 

K(2) :  When N admits mate funtions, N is a ),( mrP  near-ring (for all positive integers 
mr, ) if and only if N is a )2,1(P  near-ring (Theorem 2.22 of [1]).  

K(3) :  If N is a ),( mrP near-ring with a mate function, we have from K(2), the 
following results: 
(a)  The concepts of N-subgroups, left ideals, right ideals and ideals are 

equivalent in N (Remark 2.26 (a) of [1]).   
(b)  NabNbNaNaNb =∩=  for all ba,  in N (Proposition 2.32 of [1]). 
(c) N is subdirectly irreduible if and only if it is a near-field  
 (Theorem 3.1 of [1]). 
(d)  N is isomorphic to a subdirect product of near-fields (Theorem 3.3 of [1]). 

K(4) :  A near-ring N has no non-zero nilpotent elements if and only if 002 =⇒= xx  
for all x in N.  (This result in prob 14, P.9 of [3] in respect of rings is valid for N 
as well). 

K(5) :  A zero-symmetric near-ring N has IFP if and only if (0: S) is an ideal where S is 
any non-empty subset of N (9.3, p.289 of [4]). 
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K(6) : N is subdirectly irreducible if and only if the intersection of any family of non-
zero ideals of N is again non-zero (1.60(c), p.25 of [4] and [2]). 

K(7) :  If N admits mate functions and is subdirectly irreducible then it has no non-zero 
idempotent zero-divisors (vide stage (2) of the proof of Theorem 3.1  
of [1]). 

K(8) :  If N admits a mate function m, then  Exxmxxm ∈)(),( and xxNmNx )(=  and 
NxxmxN )(=  for all x in N (Lemma 3.2 of [5]). 

K(9) :  Let baa =2  and abb =2  for a, b in N.  Let 121 , auubau =−=  and 

.13 buu =   If there exist s'ix  in N such that  )3,2,1(2 == iuxu iii  then  ba =  
(Lemma 2.5 of [5]). 

 
 
2.  Pk and Pk' near-rings 
 
Definition 2.1.  A near-ring N is called a Pk near-ring (Pk' near-ring) if there exists a 
positive integer k such that  )( xNxNxxNxNx kk ==  for all x in N. 
 
Remark 2.2.   Obviously any 'kP  near-ring is zero-symmetric. 
 
Examples 2.3. 
 
(a) The direct product of any two near-fields is a kP  as well as a 'kP  near-ring. 
(b) The near-ring ),,( ⋅+N where ),( +N is the Klein's four group with },,,0{ cbaN = and 

‘.’ satisfies the following table (scheme 12, p.408 of Pilz[4]).  
 

. 0 a b c 
0 0 0 0 0 
a 0 a 0 a 
b 0 0 0 0 
c 0 a 0 a 

 
is a kP  as well as a  'kP  near-ring. 

 
(c)  Suppose in the example (b) above we define ‘.’ (as per scheme 8, p. 408 of  Pilz[4]) 

as follows  
 

. 0 a b c 
0 0 0 0 0 
a 0 0 0 a 
b 0 a b b 
c 0 a b c 
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Then ),,( ⋅+N is a 'kP  near ring but not a kP  near ring for any .1>k   It is neither a 

1P  near-ring nor a '1P  near-ring. 
 
(d) Consider the near-ring ),,( 4 ⋅+Z  where ),( 4 +Z  is the group of integers modulo 4 and 

‘.’  is defined as per scheme 2, p.407 of Pilz [4].  
 

. 0 1 2 3 

0 0 0 0 0 
1 0 1 0 0 
2 0 2 0 0 
3 0 3 0 0 

 
This is a kP  near-ring for .1>k   It is not a  'kP  near-ring for any positive integer k. 

 
(e) Any constant near-ring (i.e. aab =  for all Nba ∈, ) is a kP  near-ring. 

It is easy to verify the following:  
 
Proposition 2.4. Any homomorphic image of a )'( kk PP  near-ring is a )'( kk PP   
near-ring. 
 

As an immediate consequence of Proposition 2.4 we have the following: 

Theorem 2.5.  Every )'( kk PP  near-ring N is isomorphic to a subdiret product of 
subdirectly irreducible )'( kk PP  near-rings. 
 
Proof.  By 1.62, p.26 of Pilz[4], N is isomorphic to a subdirect product of subdirectly 
irreducible near-rings Ni`s, say, and each iN  is a homomorphic image of N under the 
usual projection map .iπ   The desired result now follows from Proposition 2.4. 
 
 Before proceeding further we have the following: 

Definition 2.6.    We say that a near-ring N is an )'( rr SS  near-ring if )( NxxNxx rr ∈∈  
for all x in N.   When 1=r  we write “ )'(SS near-ring”  instead of  “ )'( 11 SS near-ring”. 
 
Examples 2.7.   Let  r be any positive integer. 
 
(i) The near-ring of example 2.3(a) is an rS  as well as an 'rS  near-ring.  
(ii) Trivially any Boolean near-ring is an rS  as well as an 'rS  near-ring. 
(iii) The near-ring of example 2.3(e) is an 'rS  near-ring (but it is not an rS                

near-ring). 
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(iv) Let N be an arbitrary near-ring and let I be the ideal generated by  
},/{ Nxnnxx r ∈− .   Then  INN /=  is an rS  near-ring.  

(v) If in example (iv), I is the ideal generated by { },/{ Nnxnxx r ∈−  then  
INN /=   is an  'rS  near-ring. 

 
Remark 2.8.  Examples 2.7(iv) and 2.7(v) provide devices for manufacturing rS  and 

'rS  near-rings from an arbitrary near-ring. 
 
Proposition 2.9.   Every  )'( rr SS  near-ring is an )'(SS  near-ring. 
 
Proof. Let N be an )'( rr SS  near-ring with .2≥r   Clearly then for all 

xNxNxxNx rr )(, 1−=∈∈ ))((( 11 xNNxxNxxNxxNx rrr ⊂==∈⊂ −−  ∴ N is an 
)'(SS  near-ring. 

 
Remark 2.10.   The converse of Proposition 2.9 is not valid.  Obviously the near-ring of 
example 2.3 (c) is an S as well as an S' near-ring.  But it is neither an rS  near-ring nor an 

'rS  near-ring for .1>r  
 Also the (near -) ring of integers ),,( ⋅+Z is an S as well as an 'S  near-ring.  But it is 
neither an rS  near-ring nor an 'rS  near-ring for .1>r   Thus even in the case of rings, 
the converse of  Proposition 2.9 is not valid, in general. 
 
 Before discussing the proporties of )'( kk PP  near-rings we have the following:  
 
Lemma 2.11.  Let N be a 1P  near-ring - ie xNxxN =  for all x in N - with a mate 
function.  Then N admits a mate function f such that ).()( xCxf ∈   
 
Proof .  Let m be a mate function for N.  For )(, xmx  in N, we can find a  ‘t’  in N such 

that xtxxxm =)(  (as  xNxxN = ) i.e. 22 ')( xxxtxxxxmx ===  with .' xtx =   We shall 
define NNf →:  such that  '.)( xxf =   Clearly then if we set ,)( xxxfy =  it follows 

that 2yxy =  and 2xyx =  and K(9) guarantees  .yx =   Thus  xxxfx )(=  and therefore f 
is a mate function for N. 
 Again let us set 211 ,,)(),( wxwwbaxxfbxxfa ==−==  and .31 waw =  By a 
slight modification of the proof of the Lemma 2.5 (K(9)) of [5], we get a = b and the 
desired result follows. 
 
Proposition 2.12.  Let N be a kP  or a 'kP  near-ring.   If N admits mate functions then 

}.0{=L  
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Proof.   Suppose N is a kP  near-ring with a mate function  ‘m’. 
 
Case (i).   1=k  i.e. xNxxN =  for all x in N.  We appeal to Lemma 2.11 and observe 
that N admits a mate function f such that  )()( xCxf ∈  for all x in N.   Therefore for all x 

in N, we have )())(()( 2 xfxxxfxxxxfx === and this guarantees "00" 2 =⇒= xx .  
From K(4) we get }.0{=L  

Case 2.   Let .1>k   Now xNxNx k =  for all x in N.  Since )()( NxxNxxxxmx k=∈=  

we get nxx k=  for some n in N.  If 2=k  then nxx 2=  and therefore 
".00" 2 =⇒= xx  If 2>k  we have )( 22 nxxx k−=  and again we get  

".00" 2 =⇒= xx    This yields  }0{=L  for all  .1>k  
 In view of Remark 2.2 we can prove the above result when N is a 'kP  near-ring, with 

,1>k  in a similar fashion. When 1=k we observe that for ., NxxNxNx =∈  

Consequently for all x in N, NxxxNxxNxxxNxxxxmx 2)()()( ===∈=  i.e. .2 Nxxx∈  

Hence  "00" 2 =⇒= xx  and the proof is complete.  
 
Remark 2.13.  The converse of Proposition 2.12 is not valid.  Examples are plentiful to 
justify this.  To cite two such we have the following: 
 
(i) Consider the near-ring constructed on the Klein's four group as per scheme (21) p. 

408 of Pilz[4]. 
 

. 0 a b c 

0 0 0 0 0 
a a a a a 
b 0 0 b 0 
c a a c a 

 
 It is a )2( ≥kPk  near-ring without nilpotent elements.  But it has no mate 

function. 
 
(ii) Even in the case of rings, the converse does not hold.  The ring ),,( ⋅+Z  of integers 

which is a 2P  as well as a '2P  near-ring comes in handy to justify this. The 
following result will be made use of throughout this paper. 

 
Proposition 2.14.   A )'( kk PP  near-ring N has a mate function if and only if N is an 

)(' kk SS  near-ring. 
 

Proof.   Let N be a kP  near-ring with a mate function ‘m’.   Therefore xNxNx k =  for all 

x in N.  Now )()( NxxNxxxxmx k=∈=  and this implies Nxx k∈  i.e. N is an 'kS  
near-ring.  
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 Conversely let N be an kk PS −'  near-ring.  ∴ )( xNxNxx k =∈  for all x in N.           
This implies xnxx =  for some n in N. Therefore xxxmx )(=  where we set  

nxm =)( .   Hence ‘m’ is a mate function for N. 
 The proof in respect of 'kP  near-rings is similar.  
 
Lemma 2.15.  Let N be a zero-symmetric near-ring with a mate function `m'.  Then  
 
 (i)  N has (*, IFP) if and only if }.0{=L  
 (ii)  enene =  for all Ee∈  and  .Nn∈  
 
Proof. 
 
 (i)  Suppose N has (*, IFP).  If  02 =a  for any a in N then by IFP, .0)( =aaam  i.e. 

.0=a   Hence }0{=L  (by K(4)).  

 Conversely if },0{=L  then ))(()()1(0 2 yxyxyxxy =⇒= xxyy )(=  

xy0= 000 =⇒== yxy  and (2) ))(()( 2 xnyxnyxny =  0)( xnnyyxxn ==  
00 =⇒= xny  for all n in N.  Thus N has (*, IFP). 

(ii) For Ee∈  and Nn∈  we have 0)( =− eenene  and by (*, IFP), we get 
,0)( =− enenee 0)( =− eneneen  and .0)( =− eneneene   These demand  

0)( 2 =− enene  and therefore enene =  since }.0{=L   
 
 As an immediate consequence of Lemma 2.15 - read with Propositions 2.12 and 2.14 
- we have the following:  
 
Corollary 2.16.  

 
(i) If N is an 'kk PS −  near-ring then N has (*, IFP).  
(ii) If )( 0NN ==  is an  kk PS −'  near-ring then N has (*, IFP).  
 
Theorem 2.17.  Let N be a near-ring with a mate function f.  Then the following 
statements are equivalent: 
 
(i) N is 'kP   for any positive integer k.  
(ii) ).(NCE ⊂  
(iii) N is ),( mrP  for all positive integers ., mr  
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Proof. 
 
(i) ⇒ (ii):  Since xNxNx k =  for all x in N,  eNeNe =  for all e in E.  ∴ For any 

,Nn∈ there exists Nu∈  such that .euene =   This implies .)( neeueene ==  
By Lemma 2.15 and Corollary 2.16(i) we have .eneen =   Thus we get 

neeneen )( ==  and (ii) follows. 
 
(ii) ⇒ (i): Case 1 : Let .1=k  For all x in N, xNxxNxxfxxNxfNx === ))(()(  

(using K(8)) ∴ N is a '1P  near-ring.  
 
 Case 2.  Let .1>k  For all xn,  in N, 11 ))(()( −− == kkk xxxxfnxnxnx  

.))(())(( 11 xNxxnxxxfxnxxxf kk ∈== −−  Therefore .xNxNx k ⊂  Also 

nxxxxfxnx ))((= 222 )())(()()( xxnfxxxfxxxnfxxxnf === .))(( 32 xxfxn=   

Repeating this process we ultimately obtain kkk Nxxxfxnxnx ∈= − )))((( 1   

for all positive integers k.   Therefore .kNxxNx ⊂   Thus  kNxxNx ⊂  for all 
x in N and (i) follows. 

 
"(ii) ⇔ (iii)" follows from K(1) and K(2).  
 
Theorem 2.18.  Any N-subgroup of an 'kk PS −  near-ring N is also an 'kk PS −            
near-ring in its own right.  
 
Proof.   Let N be an 'kk PS −  near-ring.  Proposition 2.14 guarantees the existence of a 
mate function ‘f’  for N.  Let M be any N-subgroup of N.  From Theorem 2.17 we see that 
N is a ),( mrP  near-ring also.  K(3)(a) demands that M is a right ideal of N.  Therefore 

MNMNxxfxf ⊂∈)()( for all x in M.  Thus we can define a map g:  M → M such that 
)()()( xxfxfxg =  for all .Mx ⊂  Obviously g serves as a mate function for M - as 

.)( xxxxg =   

 Now let ., Msx ∈  Since xNxNx k =  there exists Nn∈  such that 
.)())(( xMxxNMxxxnxgxxnxsx k ⊂∈==  ∴ .xMxMx k ⊂  Also since 

)( kNxxNxxsx =∈  there exists Nn ∈1  such that .1
kxnxsx =  Again 

kk xsxnxxgxsxxxgxsx 11)()()( ===  where .)( 11 MMNnxxgs ⊂∈=                       

∴ .kMxxMx ⊂   Thus xMxMx k =  for all  Mx∈   i.e. M is a  'kP  near-ring.  Since M 
has a mate function ‘g’,  M is an kS  near-ring as well (from Proposition 2.14). 
 
Corollary 2.19.   Any N-homomorphic image of an 'kk PS −  near-ring N is an 'kk PS −  
near-ring. 
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Proof.  Let NNh →:  be an N-homomorphism.  Obviously h(N) is a subgroup of N.          
For n, )()()()()()(, NhNhNNhNhnnhnnhNn ⇒⊂⇒∈′=′∈′  is an  
N-subgroup of N.   The result now follows from Theorem 2.18. 
 
Theorem 2.20.   Let N be a near-ring with a mate function ‘m’.   If )(NCE ⊂  then N is 
a kP   near-ring for all positve integers k.  
 
Proof.   Suppose ).(NCE ⊂   If Nx∈  then xNxxxNmxxNxmxxN === ))(())((  
(using K(8)).  This proves the theorem for .1=k   For 1>k  and for any 

xNxxNNxxNxNx kk =⊂=∈ − )(, 1  (using the result for 1=k ) i.e. .xNxNx k ⊂   
Also xxNxxNxxmxxxNxmxxxxNxmxNx )())(())(()( ====  (using K(8)) 

NxxNxxxxNxxNxx 322 )()( ====  and continuing in the same vein we ultimately get 

NxNxxxNx kk ⊂=  where k is any positive integer.  Hence NxxNx k=  for all Nx∈  
and the result follows. 
 
Remark 2.21.  The converse of Theorem 2.20 is not valid.  For example let us consider 
the near-ring ),,( ⋅+N where ),( +N  is the Klein's four group with },,,0{ cbaN = and ‘.’ 
satisfies the following table (defined as per scheme 1, p.408 of Pilz [4]).  
 

. 0 a b c 

0 0 0 0 0 
a 0 a a a 
b 0 b b b 
c 0 c c c 

 

 This is a kP  near-ring for all positive integers k.  In fact it is a Boolean near-ring and 
identity function serves as a mate function.  But ).()( NCNE ⊂/=  
 
Corollary 2.22.  Let N be a near-ring admitting mate functions.  Then N is a 'kP  near-
ring for a fixed positive integer k if and only if it is a rP  as well as a 'rP  near-ring for 
all positive integers r.  
 
Proof.   For the ‘only if ’ part we proceed as follows:  We appeal to Theorems 2.17 and 
2.20 and observe that N is NNCEPk ⇒⊂⇒ )('  is rP  as well as 'rP  for all positive 
integers r.  

 
 Proof of ‘if part’ is obvious.  
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Remark 2.23.  It is worth-noting that a kP  near-ring with a mate function need not 
necessarily be a 'kP  near-ring.  The example cited under Remark 2.21 comes in handy to 
justify this.  It is a kP  near-ring, for all positive integers k, and it admits mate functions. 
But it is not a 'kP  near-ring for any k. 
 We shall now discuss the conditons under which a kP  near ring becomes a 'kP   
near-ring. 
 
Theorem 2.24.   Let N be a zero-symmetric near-ring admitting mate functions.  Then N 
is a kP  near-ring with dNE ⊂  if and only if N is a 'kP  near-ring. 
 
Proof.  For the ‘only if’ part we note that as oNN =  and N has a mate funciton, it has  

)(*, IFP  and  }0{=L  (by Propositon 2.14 and Corollary 2.16(ii)).  From Lemma 2.15 
we get enene =  for all Ee∈  and .Nn∈   Since ,dNE ⊂  .0)( =− enenee   This 

ultimately yields 0)( 2 =− enene  and consequently .enene =   Thus we get ).(NCE ⊂  
Theorem 2.17 now guarantees that N is a 'kP  near-ring. 
 For the ‘if part’ we observe that N is )(' NCEPk ⊂⇒  (from Theorem 2.17) N⇒  is 
a kP  near-ring (Theorem 2.20).  Again dNENCE ⊂⇒⊂ )(  and the result follows. 
 As an immediate consequence of Theorems 2.17 and 2.24 we get:  
 
Corollary 2.25.  The following statements are equivalent in a near-ring N with mate 
functions.  
 
(i), (ii), (iii) of Theorem 2.17 and  
(iv) N is a zero-symmetric kP  near-ring with .dNE ⊂   
 
 From Corollaries 2.22 and 2.25 we obtain the following:  
 
Proposition 2.26.   Let N admit mate functions.  Then N is a zerosymmetric kP  near-ring 
(for a fixed k) with dNE ⊂  if and only if N is a rP  as well as a 'rP  near-ring for all 
positive integers r.  
 
Theorem 2.27.    Let N be a kP  near-ring with a mate function.  If N is zero-symmetric and 
has a left identity 1 then N is a 'rP  near-ring for any positive integer r.  
 
Proof.   Since N is a zero-symmetric kP  near-ring with a mate function it has ),( IFP∗  
and }0{=L  (from proposition 2.14, Lemma 2.15(i) and Corollary 2.16(ii)). Again by 
Lemma 2.15 (ii), enene =  for all Ee∈  and .Nn∈   Also since 0)1( =− ee  we get 

0)1( =− nee  for all .Nn∈   ∴ .enene =   Thus neeneen ==  for all  Nn∈  and for all 
.Ee∈  Hence )(NCE ⊂  and Theorem 2.17 guarantees that N is a 'rP  near-ring for all 

positive integers r.  
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Proposition 2.28.  A left identity of a kP  near-ring is also a right identity.  
 
Proof.  Let e be a left identity of N.  ∴ exx =  for all .Nx∈   Now  

.eNeeNeNeNek =⇒=   Then there exists Nn∈  such that eneexx ==  and this 
implies  .nex =   Hence .)( 2 xnenexe ===   Thus ‘e’  is a right identity as well.  
 
Remark 2.29.  A right identity of a kP  near-ring need not be a left identity.  In the 
example given under Remark 2.21 cba ,,  are right identities but none is a left identity. 
This very same example together with Remark 2.23 asserts that Theorem 2.27 fails if N 
has only a right identity. 
 
Proposition 2.30.  Every ideal of an kk PS −'  near-ring is a completely semiprime ideal.  
 
Proof.  Case (i)  Let .1=k   Then N has a mate function and  xNxxN =  for all .Nx∈  
From Lemma 2.11 we observe that N has a mate function f such that                 

xxfxxf )()( =  for all x in N.  Let I be any ideal of N.  If  Ia ∈2  then  

.)())(()( 2 IINafaaafaaaafa ⊂∈===   i.e. Ia∈  and the result follows.  
 
Case (ii)  Let .1>k   Since N is an kk PS −'  near-ring Proposition 2.14 guarantees that 

N has a mate function say ‘m’.   For )()(, NaaNaaaamaNa k=∈=∈                            

and consequently there exists Nn∈  such that .naa k= .  When 
.,2 22 IINnaaIak ⊂∈=⇒∈=   i.e. .Ia∈   When  Iak ∈> 2,2   

IINnaaa k ⊂∈=⇒ − )( 22   i.e. Ia∈  and the desired result follows.  
 
Propositions 2.31.   Any prime ideal of an 'kk PS −  near-ring is a completely prime 
ideal.  
 
Proof.  Let N be an 'kk PS −  near-ring.  Then N has a mate function, say f (Proposition 
2.14).  Let P be a prime ideal of N and let  .Pab∈   ∴ PNPNab ⊂⊂  (from Theorem 
2.17 and K(3)(a)).  Clearly then PNabNaNb ⊂= )(  (from K(3)(b)).  Since Na and Nb are 
ideals in N and since P is prime, PNa ⊂  or  .PNb ⊂    Therefore Paaafa ∈= )()(  or 

Pbbbfb ∈= )()(  and the desired result follows. 
 
Proposition 2.32.  Any prime ideal of an 'kk PS −  near-ring N is a maximal ideal. 
 
Proof.  Let I be a prime ideal of N.  Let J be an ideal of N such that  1≠J  and that  

.NJI ⊂⊂    We need only to show that .NJ =  Let  .IJx −∈    From proposition 2.14 
we see that N has a mate function, say, ‘m’.  For 2)()(, xxmxxxmxNx ==∈   
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(Q )(NCE ⊂ from Theorem 2.17).  Thus for all ,Nn∈  2)( xxnmnx =  and this implies 
.0))(( =− xxxnmn    Since N has IFP (Corollary 2.16(i)) we get 0))(( =− zxxxnmnz  for 

all  .Nz∈   Consequently }.0{))(( =− NxxxnmnN   If we let  xxnmny )(−=  then 
.}0{ INyNx ⊂=   Since I is prime and Nx, Ny are ideals in N (Theorem 2.17 and K(3)(a)) 

we get INy ⊂  or .INx ⊂   If INx ⊂  then Ixxxmx ∈= ))((  which is clearly a 
contradiction. If INy ⊂  then JNy ⊂  and this demands .))(( Jyyymy ∈=   
i.e. .)( Jxxnmn ∈−   From Theorem 2.17 and K(3)(a) we get Jxxnm ∈)( and therefore 

Jn∈  forcing .NJ =   The desired result now follows. 
 
Propositon 2.33.   If N is an 'kk PS −  near-ring then for any ,Ee∈  N is the direct sum 
of ideals Ne  and ).:0( Ne  
 
Proof.  By Peirce decomposition ):0( eNeN ⊕=  (Q every Nn∈  can be uniquely 
written as  )( nnenen +−+= ).  Since N is an  'kk PS −  near-ring Theorem 2.17 and 
K(3)(a) guarantee that Ne is an ideal of N.  We shall show that ).:0():0( Nee =  
If  ):0( ey∈  then for all ,Nn∈ yenyne =  (Q )(NCE ⊂  from Theorem 2.17 as N is 
an 'kk PS −  near-ring) = 0.   ∴ ):0( Ney∈  and hence ).:0():0( Nee ⊂  Now 

0):0( =⇒∈ xneNex  for all n in N.  In particular, .0== xexee   Thus 0=xe  or  
).:0( ex∈   Therefore ).:0():0( eNe ⊂   Thus  ).:0():0( Nee =   Since N has IFP 

(Corollary 2.16(i)) K(5) demands that ):0( Ne  is an ideal.  Obviously  
}0{):0( =∩ NeNe  and the desired result follows. 

 
 Theorem 2.17 and K(3)(d) guarantee the following structure theorem for an 'kk PS −  
near-ring : 
 
Theorem 2.34.   An 'kk PS −  near-ring is isomorphic to a subdirect product of near-
fields. 
 We shall make use of the following result for obtaining a structure theorem for an 

kk PS −'  near-ring. 
 
Theorem 2.35.  Let N be a zero-symmetric kk PS −'  near-ring.  Then N is subdirectly 
irreducible if and only if N is simple. 
 
Proof.  Since N is an kk PS −'  near-ring it admits mate functions (Proposition 2.14). 
Suppose N is subdirectly irreducible. K(7) guarantees that no non-zero idempotent 
element of N is a zero-divisor and this demands NNx =   for all non-zero x in N.  Hence 
N has no non-trivial N-subgroups.  Since oNN =  as well, all ideals are N-subgroups. 
Consequently N is simple.  

The converse is obvious from K(6).  
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As an immediate consequence of Theorem 2.35 we have the following: 
 

Theorem 2.36.  If N is a zero-symmetric kk PS −'  near-ring then N is isomorphic to a 
subdirect product of simple near-rings. 
 
Proof.  From Theorem 2.5, N is isomorphic to a subdirect product of subdirectly 
irreducible kP  near-rings,  s'iN  say.  Since N has a mate function (Proposition 2.14) we 
see that each ,iN  being a homomorphic image of N, has a mate function.  Theorem 2.35 
takes care of the rest of the proof. 
 
Corollary 2.37.  If N is a zero-symmetric kk PS −'  near-ring and if every homomorphic 
image of N has at least one non-zero distributive element then N is isomorphic to a 
subdirect product of near-fields. 
 
Proof.  This result is an immediate consequence of 8.3 of Pilz[4] and Theorem 2.36.  
 
Corollary 2.38.  Let N be a zero-symmetric kk PS −'  near-ring with at least one non-
zero distributive element.  Then N is subdirectly irreducible if and only if N is a near-
field. 
 
Proof.  The desired result follows from 8.3 of Pilz[4] and Theorem 2.35. 
 
Corollary 2.39.  If N is a zero-symmetric kk PS −'  near-ring with dNE ⊂  then N is 
isomorphic to a subdirect product of near fields. 
 
Proof.  Corollary 2.25 and Theorem 2.34 guarantee the desired result. 
 
Theorem 2.40.  If a kP  near-ring N  fulfills the left cancellation law then N is a near-
integral domain. 
 
Proof.  Let S be any subsemigroup of N and let .Nn∈   Since sNsNs k =  for  Ss∈  
there exists Nn ∈′  such that .snsns k ′=  i.e. snns 11 =  where Sss k ∈=1  and 

.1 Nnsn ∈′=  i.e. S satisfies the left Ore condition. 9.60 of Pilz[4] guarantees that  
N is a near-integral domain. 
 
Corollary 2.41.  If N, satisfying the conditions of Theorem 2.40, has DCCN then N is a 
near-field. 
 
Proof.  This is an immediate consequence of  9.62(c) of Pilz [4] and Theorem 2.40. 
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3. Pk(r,m) and Pk'(r,m) Near-Rings 
 
In this section we shall introduce ),( mrPk and ),(' mrPk near-rings by way of 
generalizing the concepts of kP  and  'kP  nearrings. 
 
Definition 3.1.  A near-ring N is called a ),( mrPk )),('( mrPk  near-ring if there exist 

positive integers mrk ,,  such that for all x in N,  ).( mrkmrk NxxNxNxxNx ==  
 
Remark 3.2.  Obviously a ),(' mrPk near-ring is zero-symmetric.  A ))1,1('()1,1( kk PP  
near-ring is nothing but a )'( kk PP near-ring. 
 
Examples 3.3.   Let  mrk ,,  be any three positive integers.  
 
(i) The direct product of any two near-fields is a ),( mrPk as well as a ),(' mrPk  

near-ring.  
(ii) A constant near-ring is a  ),( mrPk  near-ring.  It is not a ),(' mrPk  near-ring.  
(iii) Near-ring of example 2.3(b) is a ),( mrPk  as well as a ),(' mrPk  near-ring.  
(iv) The near-ring given in example 2.3(c) is a ),(' mrPk  but not a ),( mrPk near-ring 

for .1>k   It is not  ),(1 mrP  nor ).,('1 mrP   
 
Lemma 3.4. Let f be a mate function for N.  If )(NCE ⊂  then 

rrr xfxxxfxxf ))(())(())(( ==  for all x in N and for all positive integers r. 
 
Proof.  As  )(NCE ⊂  we have, ))(()())(())(( 2 xxfxxfxxfxxf ==  )())(( xfxxfx=  

22 ))(( xfx= .  Continuing in the same vein we get rrr xfxxxfxxf ))(())(())(( ==  for 
all positive integers r. 
 
Theorem 3.5.  Let N admit a mate function ‘f'.  Then N is a )1,1('kP  near-ring for a fixed 
k if and only if N is a ),(' mrPt  and a  ),( mrPt  near-ring for all positive integers t, r, m. 
 
Proof.  Suppose N is a )1,1('kP near-ring for a fixed positive integer k. Theorem 2.17 
demands that ).(NCE ⊂   Let mrt ,, be any three positive integers.  For ,Nx ⊂   
 

.).1,1('  is  ( kmr
k

kmr NxNxxPNNxxNxNxx ⊂∴=⊂ Q                             1    
 
 Now let ).( xNxNxz k =∈  Then there exists Ny∈  such that xyxz =  

mr xxfxyxxxfxxfxyxxxf ))((())(())((())(( ==  as .)(),( Exxfxxf ∈  Since )(NCE ⊂  
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we can make use of Lemma 3.4 and get .)))(())((( mrmmrr Nxxxxfxyxxfxz ∈=   

Thus mrk NxxNx ⊂                    2 
 
Hence ).( xNxNxNxx kmr ==    From Corollary 2.22 we observe that N is a )1,1(tP  as 
well as a )1,1('tP  near-ring for all positive integers t.  Hence 

mrktt NxxNxxNxNxNx ====  for all x in N. i.e. N is a ),( mrPt  as well as a 
),(' mrPt  near-ring for all positive integers  .,, mrt  

 Converse is obvious. 
 
Theorem 3.6.  Let N be a near-ring with a mate function.  Then N is a zero-symmetric 

)1,1(kP  near-ring with  dNE ⊂  if and only if N is a ),( mrPt  as well as a ),(' mrPt  
near-ring for all positive integers .,, mrt   
 
Proof.   N is zero-symmetric, )1,1(kP  with NNE d ⇔⊂  is a )1,1('kP  near-ring for 
any positive integer k(Corollary 2.25) ⇔ N is a ),( mrPt  as well as a  ),(' mrPt  near-ring 
for all positive integers mrt ,,  (Theorem 3.5). 
  
 Collecting the pieces of results from Theorem 2.17, Corollaries 2.22, 2.25, 
Proposition 2.26 and Theorems 3.5 and 3.6 we obtain:  
 
Theorem 3.7.  The following statements are equivalent in a near-ring N with mate 
functions.  
 
(1) N is a ))1,1('(' kk PP =  near-ring for a fixed positive integer k.  
(2) N is a zero-symmetric ))1,1(( kk PP =  near-ring for a fixed positive integer k with 

.dNE ⊆  
(3) N is a ),( mrP  near-ring for all positive integers r, m.  
(4) N is a ),(' vuPt  near-ring for all positive integer t, u, v.  
(5) N is a zero-symmetric ),( vuPt  near-ring for all positive integers t, u, v  

with .NdE ⊆   
 
 We conclude our discussion with the following:  
 
Remark 3.8.  Theorem 3.7 - when read with K(3)(d) - guarantees that if N admits mate 
functions and is either a ),( vuPt  near-ring with dNE ⊂  or simply a  ),(' vuPt  near-ring 
- where vut ,,  are any three positive integers - then N is isomorphic to a subdirect 
product of near-fields. 
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