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Abstract. Electromagnetic Imaging problems involve development of an algorithm for estimation
of complex permittivities of a N-cell body from the knowledge of scattered electric fields at N
receiver locations, incident electric fields at N-cell centroid locations, cell sizes, cell locations and
receiver locations. In this algorithm, it is necessary to invert a scattering matrix, which relates
polarization current inside the body to scattered electric fields outside the body. To allow for a large
number of cells, it is necessary to reduce matrix formation and inversion time. This is achieved by

block diagonalization of the scattering matrix using standard point symmetry groups D, , Co, and
Cih - For three planes of symmetry, two planes of symmetry and one plane of symmetry, it is

necessary to use groups D,y ,C,, and Cyy,, respectively. Group multiplication and character

tables for these groups will be discussed. Due to n(n =1 or 2 or 3) planes of symmetry which

depend on the configuration of the imaging problem regarding cell locations, cell sizes, receiver
locations and transmitter location, it is possible to block diagonalize the scattering matrix. In this
paper, block diagonalized matrix is derived for one plane of symmetry which can be generalized to
two or three planes of symmetry. Because of block diagonalization, it is observed that it is necessary

to consider 2" matrices of 3N /2" x3N /2" instead of one 3N x 3N scattering matrix. Hence,
it is observed that the matrix formation time and storage requirements of the scattering matrix are

reduced by a factor 2" and inversion time is reduced by a factor of 22n .

1. Introduction

Recently, the applications of electromagnetic imaging in biomedical areas have received
much attention. This is due to the relative safety of non ionizing radiation as compared to
X-rays or radioactive isotopes. Other applications of electromagnetic imaging include
nondestructive testing and geophysical explorations.

Electromagnetic Imaging problems [1] involve development of an algorithm for
estimation of complex permittivities of a N-cell body from the knowledge of scattered
electric fields at N receiver locations, incident electric fields at N-cell centroid
locations, cell sizes, cell locations and receiver locations. The estimation of complex

permittivities (*s) requires the inversion of the scattering matrix B,. The scattering



34 D.K. Ghodgaonkar and R. Ismail

matrix relates polarization current P inside the body to scattered electric fields E*

outside the body, by the relationship
E*=B;- j° (€

where the Green’s function matrix B, is a 3N x3N matrix corresponding to the three
components of the electric field for each of the N locations. The time required to
compute the inverse of B, is proportional to (3N)*, while the storage requirements and

matrix formation time are proportional to (3N)2. The reduction in the matrix formation
and inversion time can be achieved by block diagonalization [2] of the scattering matrix
B, using standard point symmetry groups.

Vertical planes of symmetry for solution of forward scattering problems have been
used [3-5], whereby the scattering matrix is required to have physical and electrical
(with respect to £*s ) symmetry about the planes of symmetry. In this paper, we will
derive unitary transformation matrices for one, two, and three planes of symmetry for a
parallelepiped shaped body, which is surrounded by symmetrical locations of receiving
dipoles, using group representation theory. The symmetries between polarization
currents and scattered electric fields in the presence of planes of symmetry will be
discussed. In addition, block diagonalized scattering matrix is derived for one plane of
symmetry.

2.  Mathematical formulation

Let us consider an arbitrarily shaped biological body, which is made physically
symmetric by extending it with incorporation of the surrounding medium. The &*s of the
peripheral cells are determined by volume averaging of the &*s of the biological body and
surrounding medium. Use of saline or water as the surrounding medium for biological
bodies justifies volume averaging of peripheral cells and extension for a physically
symmetric body. It is preferable to have the extended body in the shape of a
parallelepiped, which will have one, two or three planes of symmetry depending on cell
sizes, cell locations, and receiving dipole locations.

For block diagonalization of scattering matrix in equation (1), we define a unitary

transformation matrix V with either 1 or =1 or 0 as its elements, such as

By -Jy = Ep @)
By =V- B V' 3)
i =Vv-ij° (4)
V.-V = (5)

i
= V. E® (6)

m
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where By, is the block diagonalized matrix, V" is the transpose of V and i isan
identity matrix.

3. Symmetries in polarization currents and scattered fields

We will show symmetries between polarization currents and scattered electric fields for
one plane of symmetry using even and odd mode excitation of polarization currents [1,2].
Besides that, the invariance Green’s function matrices for even and odd modes will be

established which form the basis for block diagonalization of the scattering matrix B .

Consider a cell ¢ with cell centroid at ¥, and a field point F,, in the positive Y
region of the three-dimensional space. Assume a cell ¢' with cell centroid at F(' and a
field point at fr;] are the mirror images of cell ¢ and field point at T, , respectively, with
respect to xz plane. The cell sizes of cells ¢ and ¢' are assumed to be equal. The
Green’s function G(&,b) denotes a matrix of order 3 which relates three orthogonal
components (X,y, and z) of scattered electric fields at a point a to three orthogonal
components of polarization currents of a cell with cell centroid at b .

We define matrices T, G®and G° as follows:

1 0 0
T=/0 -1 0

0 0 1
G®=G(Fy, 1)+ G(T, T, )+ G(Fy, ) + G(Fy, T, )
G°=G(f,, 1,) - G(Tp. T, ) + G(Fy, F,) — G(Fp, T, )

Since the locations of cells and field points are symmetrical, it is observed that

G(ry. 1, ) = T-6(r,. 1) T
G(r,. 7, ) = T-G(rp 1) T
and it can be shown that
Gt T=T-G° ©)
G- T=-T-G° (8)
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Equations (7) and (8) show invariance of G®and G° under rotation described by T .
This type of invariance is the basis for block diagonalization of the scattering matrix [6].
If the polarization currents in the cells ¢ and ¢' are equal and denoted by j¢, and E®

represents the sum of the scattered electric fields at field points F,, and F,,, then

I
m

ée . ]’e
and Ge(T-]9)

‘ ©)
-E® (10)

1]
=

Equations (9) and (10) show that for an even mode excitation (i.e., equal currents at cells
¢ and ¢'), the relationship between the polarization currents and the scattered fields is

given by
(i, 58 i8) —— (Ef, ES, EY)

(iS, Qg is) —=— (ES, —ES,EP)

If the polarization currents in the cells ¢ and ¢' are j°and —j°, respectively, and E°

represents the sum of the scattered electric fields at field points F,, and F,,,

o

then =

O.JTO

E° (11)
°(T-]°)= -T-E° (12)

s

and

Equations (11) and (12) show that for an odd mode excitation (i.e., equal and opposite
currents at cells ¢ and ¢'), the relationship between the polarization currents and the

scattered fields is given by
(i3, iy, i7) —— (E}, Ey, E)
(ig, - iy.i9) —— (-E}, Ey,—E})
For other planes of symmetry in the three dimensional space, equations similar to

equation (7) to (12) can be derived by using various combinations of even and odd modes
of excitations.

4. Unitary transformation matrices

We will derive the unitary transformation matrices, which block-diagonalize the
scattering matrix for one, two and three planes of symmetry in three-dimensional space
using group representation theory. Groups of transformation on points in three-
dimensional spaces will be considered. A set G of transformations is a group if
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e  The identity transformation | is in G;

e  The composition ST of two transformations S and T in G is again a transformation in
G;

e IfS, T and U are transformations in G then (ST)U =S(TU), and for every T in G,
there isa U in G such that TU =UT =1.

We define a large group G generated by operators |, R;, R, and R; where

Rl(x! yl Z) = (_Xv y’ Z)
Ry(%y,2) =(x-Y,2)
R3 (Xv Y, Z) = (X! y,—Z)
The multiplication tables for the group are given in Table 1. This table shows that each

row or column contains each element once and only once as stated in the Rearrangement
Theorem [6].

Table 1. Group multiplication table

| Ry R, Rs RiR> RiRs R2R3 RiRzR3
| | Ry R, Rs RiR, RiRs R2R3 RiRzR3
Ry Ry | RiR, RiR3 R, R3 R1R;R3 R2R3
R, R, RiR, | R;R3 Ry R1R,R3 Rs RiR3
Rs Rs RiR3 R;R3 | Ri1R;R3 R1 R, RiR,
RiR; RiR; R, R: RiR:Rs | | R2R3 RiR3 Rs
RiR3 RiR;3 Rs RiR;R3 Ry R;R3 | RiR, R,
R2Rs3 R2Rs3 RiR:R3 Rs R, Ri1R3 RiR, | R,
RiR;R3 RiR;R3 R;R3 RiR3 RiR, 28 R, Ry |

We define three groups G,,G, and G5 such that

G, ={I, Ri, Rs, RiRs, Ry, RiRy, RyRg, RleRs}
G, ={|1R3’R21R2R3}
G3 :{laRz}

Group G, corresponds to three planes of symmetry (xy,yz and xz planes),G,
corresponds to two planes of symmetry (xyand xz planes) and Gj corresponds to one
plane of symmetry (xz plane). The groups G,;,G,and G; are similar to the standard
point symmetry groups D,,,C,, and Cy,, respectively. The character tables for the
groups G;,G, and G5 are given in Table 2, 3 and 4 respectively.
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Table 2. Character table for group G;

G: | R, Rs RiRs R, | RiR, | RaRs | RiRsRs
Asg 1 1 1 1 1 1 1 1
Bis 1 1| 4 -1 1 1 -1 -1
Bac 1 -1 1 1 1 1 1 ]
Bss 1 -1 | -1 1 1 -1 -1 1
Ay 1 1 1 1] -1 -1 -1 -1
B 1 1 -1 -1 1 -1 1 1
Bay 1 -1 1 -1 | -1 1 -1 1
Bau 1) 1] 1| -1 1 1 -1

Table 3. Character table for group G,

G, I Rs R, R2Rs
AL 1 1 1 1
A, 1 -1 -1 1
B: 1 1 -1 -1
B, 1 -1 1 -1

Table 4. Character table for group Gs

Gs | R
A’ 1 1
A" 1 -1

A character table gives different unique combinations of the various symmetry
operations, which are specified by the elements of the group. These unique combinations
of symmetry operations are called irreducible representations. A set of irreducible
representations for a group is defined such that any combination of the various symmetry
operations is equivalent to one or direct sum of two or more irreducible representations.
The sets of irreducible representations of the groups G;,G,and G; are

{Aic, Big,Bog, Bsg, A By, Boy  Bay b, {A1, Ay, By, BoJand {A’, A"} respectively.
In order to derive unitary transformation matrices for various planes of symmetry,
we have to find matrix representations of different elements in the groups G;, G, and G3.

We represent a N x N diagonal matrix C by C = diag (a,,a,,---,ay). Similarly, a
N’'x N’ block diagonalized matrix with N’/ M blocks of M xM matrices is denoted
by
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C= =Block diag.(C;, C,,---, C,), where K=N'/M

Ck
Let

I, =diag. (1, 1, 1), I =diag. (-1, 1, 1), 1, =diag. (1, -1 1), and I, =diag. (1, 1,-1).

For a body with N cells and n planes of symmetry (n=1, 2, 3), we define four matrices
with N'=3N/2", M =3 and K=N/2" as follows,

Is = Block diag. (I, Ty, 1,), Is; = Block diag. (I, Ty, 1)

Now, it is observed that matrix representations Ig, Is;, Tsp, Ig3, — Ispr —ls,

~Ig3,and —ig  correspond to  group elements I, Ry, R,, R, RR;,
R,R;, RiR,, RiR,R5, respectively.  Substituting these matrix representations for

various group elements in the character tables given by tables 2, 3 and 4, we get unitary
transformation matrices for three planes, two planes and one plane of symmetry;

Vi, V,, and V; where

Is Isg ls3 —lsa s ls3 —ls1 —1s
Is Tsg —ls3 s I's2 I's3 sy s
Is —lsp Is3 I's2 I'so ls3 —ls1 s
v, = 1 [s —~|51 —Jss —[sz |§2 [33 |“51 —ﬁls (13)
2|0y Ts Ty 05, —Ts, Tg sy Is
Is sy —lsz3 o —lsy sz —lgg —ls
Is —lsg Is3 ls2  —lsa g3 sy —1s
s —ls1 —lss —lsy —lsp —lsz —lsp s

wl
[
w

—_
n
N
|
n
[=N

L 1|Tg —Tgg —Tgp 1T
,==| 8 s3 “ls2 Tl (14)
R O PR

P 1
|

[

w

[

)

[

=N
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; _Llls g
Vy=—| . 2 15
’ ﬁ{'s 452} (39

All unitary transformation matrices are normalized so as to satisfy V. V' =1 .

5. Block diagonalization of scattering matrix

We will derive the block diagonalized matrix for one plane of symmetry (xz plane) using
the unitary transformation matrix obtained in section 4. Consider a body with N cells,
which is surrounded by N receiving dipole location. The body and the receiving dipole
locations are assumed to be symmetrical with respect to the xz plane, which passes
through the origin of the three-dimensional xyz space. The positive Y region is denoted

by region 1, while the negative Y is denoted by region 2. If I§ij represents a

3N/2x3N/2 matrix which relates the polarization currents in the cells of region j to
scattered electric fields at receiving dipole locations in the region i,

B, - Fﬂ ?ﬂ} (16)
BZl BZZ

In region 1 and 2, if ], and j, are the polarization currents in the cells and
ES and E; are the scattered electric fields at receiving dipole locations, then

H =S
jp=| and  ES-|El 17
=i €5 o

Substituting into equation (1), we have

Ff}{én E“ﬁzHL} 18)
Ezs B Byl

Using the symmetry in the Green’s functions, it can be shown (see Appendix) that

BZZ = I052 ’ B'11 : I052 (19)

821: ISZ'Bl2'|82
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Using equations (3), (15) and (16), we have

Elb :\7 M él ‘\7T
:;L{R &2}{&1 EH};L{& "s}
V2 ls —Ts, ||By By | V2|05, -1,
2 0 2By, - By, i)
Therefore,
. B, +B,, 1. 0
By :{ ut B -ls2 v } (20)
0 By =By - s

where 0 isa 3N/2x3N/2null matrix.
Using equations (4), (15) and (17), we have

P =V.jP

. 10 g :|{il:|?p 1{]1+I“521?2}

=== 2| |="F 2%z (21)
b \/E|:IS —lsa |l )2 ° x/Eh—lssz

Using equations (5), (15) and (18), we have

ES _V.ES
Va2 |is 15| E;

_s 1 |E +1ig,E;5

ES=— le ~szﬂgs (22)
V2 | Ef —T5,E;

After substituting equations (20) to (22) into equation (2), it is observed that we have to
consider two 3N/2x3N/2  matrices instead of a 3N x3N scattering matrix B, .

Equations similar to equations (20) to (22) can be derived for other planes of
symmetries by using appropriate unitary transformation matrices given in equations (13)
to (15).
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6. Conclusion

The group representation theory is a powerful tool for achieving reduction in matrix
formation and matrix inversion time in electromagnetic imaging problems. The block

diagonalized matrix By, has 2" blocks of 3N/2n x3 N/2n matrices where n is the
number of planes of symmetry. For the 3N x3N scattering matrix, time for inversion is
proportional to (3N)3and formation time is proportional to (3N)?. Thus the time for

inversion of block diagonalized matrix By, is reduced by a factor of 22" as compared
with time for inversion of B,. The matrix formation time is reduced accordingly by a
factor of 2".
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Appendix

For evaluating the matrix elements, we need to solve the following volume integral
involving Green’s functions. Assume that

- - _jksR
ey =k§L{I +Z—2V} e4ﬂR v’
&

where G, isa 3x3 matrix relating three orthogonal components of scattered electric

fields at the mth receiver location to three orthogonal components of polarization current
inthe ¢th cell. By going through steps similar to equation 15 to 44 of [7], we have

sV < S
Gmé:Gmt’ +Gm(:

For B, matrix,

= Jk:Ryn

H
<

[sin(k,a) —k,a cos(k,a)]- T (A1)

m/
gxme

where Rmf :[(Xm_X€)2+(ym_y()2+(zm_zf)2]l/2

1/3
a:(ij Al

iy4
Al isthe cell size of the /thcelland T isa 3x3identity matrix.

s s < [

Gri” =2 (D[ 73Gy (T, ") S

i=1 "
where G, in dyadic notation,
(X = XXX+ (X = X)KY + (X — X)XZ
G¢(Fma r)= (ym —y)yR+ (ym -y)yy+ (ym -y)yi (A2)

(2, —2)2%+ (2, —2)29+ (2, - 2)212

F'=F, +(—1)i70j
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Ujlj =123 unitvectorsin X, y and Z directions, respectively.

14 KR _r
7/3:|: 3 :|e R
47R

R =[(Xp —X)2 + (Y = ¥)? + (2 - 2')°1?

From equation (Al) and (A2), it is observed that the off-diagonal elements are
determined by equation (A2) only. If there is one plane of symmetry (xz plane), then the

off-diagonal elements will be negative for the Green’s function of G(F,', F,'). This is
due to § becoming -¥ and the change in sign for the term (y, —Yy') in equation
(A2). Thus,

(@)
—~~
=i
3
=
-
Il
—
O
—~~
=
3
e
N
_|

(@h
~~
=i
3
=
\/-
Il
_|
(@h
—~~
=i
3
(\-‘l
N
-

Because Ig, consists of blocks of T matrix, it is observed that

By, =lsy By - s

B21:|52'BIZ'|52



