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Abstract.  Electromagnetic Imaging problems involve development of an algorithm for estimation 
of complex permittivities of a N-cell body from the knowledge of scattered electric fields at N 
receiver locations, incident electric fields at N-cell centroid locations, cell sizes, cell locations and 
receiver locations.  In this algorithm, it is necessary to invert a scattering matrix, which relates 
polarization current inside the body to scattered electric fields outside the body.  To allow for a large 
number of cells, it is necessary to reduce matrix formation and inversion time.  This is achieved by 
block diagonalization of the scattering matrix using standard point symmetry groups vh CD 22 , and 

hC1 .  For three planes of symmetry, two planes of symmetry and one plane of symmetry, it is 

necessary to use groups vh CD 22 , and hC1 , respectively.  Group multiplication and character 
tables for these groups will be discussed.  Due to n )3or    2or    1( =n  planes of symmetry which 
depend on the configuration of the imaging problem regarding cell locations, cell sizes, receiver 
locations and transmitter location, it is possible to block diagonalize the scattering matrix.  In this 
paper,  block diagonalized matrix is derived for one plane of symmetry which can be generalized to 
two or three planes of symmetry.  Because of block diagonalization, it is observed that it is necessary  

to consider  n2  matrices of  nn NN 2/32/3 ×  instead of one NN 33 ×  scattering matrix.  Hence, 
it is observed that the matrix formation time and storage requirements of the scattering matrix are 

reduced by a factor  n2 and inversion time is reduced by a factor of  n22 .  
 
 
1. Introduction 
 
Recently, the applications of electromagnetic imaging in biomedical areas have received 
much attention.  This is due to the relative safety of non ionizing radiation as compared to 
X-rays or radioactive isotopes.  Other applications of electromagnetic imaging include 
nondestructive testing and geophysical explorations. 
 Electromagnetic Imaging problems [1] involve development of an algorithm for 
estimation  of complex  permittivities of a N-cell body from the knowledge of scattered 
electric  fields at N receiver  locations, incident electric fields at N-cell centroid  
locations, cell sizes, cell locations and receiver locations.  The estimation of complex  
permittivities (ε*s) requires the inversion of the scattering matrix 1B

t
. The scattering 
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matrix relates polarization current pj
r

 inside the body to scattered electric fields sE
r

 
outside the body, by the relationship   
 

ps jBE
rtr

⋅= 1                                                         (1) 
 

where the Green’s function matrix 1B
t

 is a NN 33 ×  matrix corresponding to the three 
components of the electric field for each of the N locations.  The time required to 
compute the inverse of 1B

t
 is proportional to (3N)3, while the storage requirements and 

matrix formation time are proportional to .)3( 2N   The reduction in the matrix formation 
and inversion time can be achieved by block diagonalization [2] of the scattering matrix 

1B
t

using standard point symmetry groups. 
 Vertical planes of symmetry for  solution of forward scattering problems have been 
used   [3-5], whereby the scattering matrix is required to have physical and electrical 
(with respect to ε*s ) symmetry about the planes of symmetry.  In this paper, we will  
derive unitary transformation matrices for one, two, and three planes of symmetry for a 
parallelepiped shaped body, which is surrounded by symmetrical locations of receiving 
dipoles, using group representation theory.  The symmetries between polarization 
currents and scattered electric fields in the presence of planes of symmetry will be 
discussed.  In addition, block diagonalized scattering matrix  is derived for one plane of 
symmetry.  
 
 
2.  Mathematical formulation 
 
Let us consider an arbitrarily shaped biological body, which is made physically 
symmetric by extending it with incorporation of the surrounding medium.  The ε*s of the 
peripheral cells are determined by volume averaging of the ε*s of the biological body and 
surrounding medium.  Use of saline or water as the surrounding medium for biological 
bodies justifies volume averaging of peripheral cells and extension for a physically 
symmetric body.  It is preferable to have the extended body in the shape of a 
parallelepiped, which will have one, two or three planes of symmetry depending on cell 
sizes, cell locations, and receiving dipole locations.  
 For block diagonalization of scattering matrix in equation (1), we define a unitary 
transformation matrix V

t
 with either 1 or –1 or 0 as its elements, such as 

 

 S
b

p
bb EjB

rrt
=⋅1  (2) 

 T
b VBVB

tttt
⋅⋅= 11  (3) 

 pp
b jVj

rtr
⋅=  (4) 

                                          IVV T ttt
=⋅  (5) 

 SS
b EVE

rtr
⋅=  (6) 
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where bB1
t

 is the block diagonalized matrix, TV
t

 is the transpose of  V
t

and I
t

 is an 
identity matrix. 
 
 
3. Symmetries in polarization currents and scattered fields 
 
We will show symmetries between polarization currents and scattered electric fields for 
one plane of symmetry using even and odd mode excitation of polarization currents [1,2].  
Besides that, the invariance Green’s function matrices for even and odd modes will be 
established which form the basis for block diagonalization of the scattering matrix 1B

t
.  

 Consider a cell l  with cell centroid at l
rr  and a field point mr

r  in the positive Y 

region of the three-dimensional space.  Assume a cell 'l  with cell centroid at '
l
rr  and a 

field point at '
mr
r  are the mirror images of cell l  and field point at mr

r , respectively, with 
respect to xz plane.  The cell sizes of cells l  and 'l  are assumed to be equal.  The 

Green’s function ),( baG
rrt

 denotes a matrix of order 3 which relates three orthogonal 
components (x,y, and z) of scattered electric fields at a point ar  to three orthogonal 
components of polarization currents of a cell with cell centroid at b

r
.   

 
We define matrices oe GGT

ttt
and,  as follows: 

 

   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
010
001

T
t

 

),(),(),(),( ''''
llll
rrtrrtrrtrrtt
rrGrrGrrGrrGG mmmm

e +++=  

),(),(),(),( ''''
llll
rrtrrtrrtrrtt
rrGrrGrrGrrGG mmmm

o −+−=  
 

Since the locations of cells and field points are symmetrical, it is observed that 
 
 TrrGTrrG mm

trrttrrt
ll ⋅⋅= ),(),( ''  

 TrrGTrrG mm
trrttrrt

ll ⋅⋅= ),(),( ''  
 
and it can be shown that 
 
             ee GTTG

tttt
⋅=⋅               (7) 

 oo GTTG
tttt

⋅−=⋅               (8) 
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Equations (7) and (8)  show invariance of oe GG
tt

and  under rotation described by T
t

.  
This type of invariance is the basis for block diagonalization of the scattering matrix [6].   
If  the polarization currents in the cells l  and  'l  are equal and denoted by ee Ej

rr
and,  

represents the sum of the scattered electric fields at field points mr
r  and   '

mr
r , then 

   
eee EjG
rrt

=⋅                                                (9) 

and   eee ETjTG
rrrrt

⋅=⋅⋅ )(                                         (10) 
 
Equations (9) and (10) show that for an even mode excitation (i.e., equal currents at cells 
l  and 'l ), the relationship between the polarization currents and the scattered fields is 
given by 
 ),,(),,( e

z
e
y

e
x

Ge
z

e
y

e
x EEEjjj

e
⎯→⎯
t

 

 ),,(),,( e
z

e
y

e
x

Ge
z

e
y

e
x EEEjjj

e
−⎯→⎯−

t

 
 
If  the polarization currents in the cells l  and  'l  are oo jj

rr
−and , respectively, and oE

r
 

represents the sum of the scattered electric fields at field points mr
r  and   '

mr
r ,   

 
then   ooo EjG

rrt
=⋅              (11) 

and ooo ETjTG
rrrrt

⋅−=⋅⋅ )(            (12) 
 
Equations (11) and (12) show that for an odd mode excitation (i.e., equal and opposite 
currents at cells l  and 'l ), the relationship between the polarization currents and the 
scattered fields is given by 
 

),,(),,( o
z

o
y

o
x

Go
z

o
y

o
x EEEjjj

o
⎯→⎯
t

 

),,(),,( o
z

o
y

o
x

Go
z

o
y

o
x EEEjjj

o
−−⎯→⎯−

t

 
 

For other planes of symmetry in the three dimensional space, equations similar to 
equation (7) to (12) can be derived by using various combinations of even and odd modes 
of excitations. 
 
 
4. Unitary transformation matrices 
 
We will derive the unitary transformation matrices, which block-diagonalize the 
scattering matrix for one, two and three planes of symmetry in three-dimensional space 
using group representation theory.  Groups of transformation on points in three-
dimensional spaces will be considered.  A set G of transformations is a group if 
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• The identity transformation I is in G; 
• The composition ST of two transformations S and T in G is again a transformation in 

G; 
• If S, T and U are transformations in G then )()( TUSUST = , and for every T in G, 

there is a U in G such that .1==UTTU  
We define a large group G generated by operators  321  and ,, RRRI  where  
 

),,(),,(1 zyxzyxR −=  
),,(),,(2 zyxzyxR −=  
),,(),,(3 zyxzyxR −=  

 
The multiplication tables for the group are given in Table 1.  This table shows that each 
row or column contains each element once and only once as stated in the Rearrangement 
Theorem [6]. 
 

Table 1.  Group multiplication table 
 

 I R1 R2 R3 R1R2 R1R3 R2R3 R1R2R3 

I 
R1 
R2 
R3 
R1R2 
R1R3 
R2R3 
R1R2R3 

I 
R1 
R2 
R3 
R1R2 
R1R3 
R2R3 
R1R2R3 

R1 

I 
R1R2 
R1R3 
R2 
R3 
R1R2R3 
R2R3 

R2 
R1R2 
I 
R2R3 
R1 
R1R2R3 
R3 
R1R3 

R3 

R1R3 
R2R3 
I 
R1R2R3 
R1 
R2 
R1R2 

R1R2 
R2 
R1 
R1R2R3 
I 
R2R3 
R1R3 
R3 

R1R3 
R3 
R1R2R3 
R1 
R2R3 
I 
R1R2 
R2 

R2R3 
R1R2R3 
R3 
R2 
R1R3 
R1R2 
I 
R1 

R1R2R3 
R2R3 
R1R3 
R1R2 
R3 
R2 
R1 
I 

 
We define three groups 321   and , GGG  such that 
 
 },,,,,,,{ 3213221231311 RRRRRRRRRRRRIG =  

 },,,{ 32232 RRRRIG =  

},{ 23 RIG =  
 

Group 1G corresponds to three planes of symmetry planes)    and  ,( xzyzxy , 2G  
corresponds to two planes of symmetry planes)  and ( xzxy  and 3G  corresponds to one 
plane of symmetry (xz plane).   The groups  21 , GG and 3G  are similar to the standard 
point symmetry groups hvh CCD 122   and , , respectively.   The character tables for the 
groups 21 , GG  and 3G  are given in Table 2, 3 and 4 respectively.   
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Table 2.  Character  table for group G1 

 
G1 I R1 R3 R1R3 R2 R1R2 R2R3 R1R2R3 

A1G 
B1G 
B2G 
B3G 
A1U 
B1U 
B2U 
B3U 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
−1 
−1 

1 
1 
−1 
−1 

1 
−1 

1 
−1 

1 
−1 

1 
−1 

1 
−1 
−1 

1 
1 
−1 
−1 

1 

1 
1 
1 
1 
−1 

1 
−1 
-1 

1 
1 
−1 
−1 
−1 
−1 

1 
1 

1 
−1 

1 
−1 
−1 

1 
−1 

1 

1 
−1 
−1 

1 
−1 

1 
1 

-1 

 
 

Table 3.  Character table for group G2 

 
G2 I R3 R2 R2R3 

A1 
A2 
B1 
B2 

1 
1 
1 
1 

  1 
−1 
  1 
−1 

   1 
−1 
−1 
 1 

   1 
   1 
−1 
−1 

 
 

Table 4.  Character table for group G3 

 
G3 I R2 

A’ 1   1 
A'' 1 −1 

 
 
A character table gives different unique combinations of the various symmetry 
operations, which are specified by the elements of the group.  These unique combinations 
of symmetry operations are called irreducible representations.  A set of irreducible 
representations for a group is defined such that any combination of the various symmetry 
operations is equivalent to one or direct sum of two or more irreducible representations.  
The sets of irreducible representations of the groups 21 , GG and 3G  are 

},,,,,,,,{ 32113211 UUUUGGGG BBBABBBA  },,,{ 2121 BBAA and  },{ AA ′′′ respectively. 
 In order to derive unitary transformation matrices for various planes of symmetry,  
we have to find matrix representations of different elements in the groups G1, G2 and G3 .  
We represent a  NN ×  diagonal matrix ).,,,( diagby 21 NaaaCC L

tt
=   Similarly, a 

NN ′×′  block diagonalized matrix with MN /′ blocks of  MM ×  matrices is denoted 
by 
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),,,( .diagBlock
. 21

2

1

k

K

CCC

C

C
C

C
t

L
tt

t

t

t

t
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= ,   where  MNK /′=  

Let   
 

).1,1,1(diag.and),1,1,1(diag.),1,1,1(diag.),1,1,1(diag. 321 −=−=−== IIII o
tttt

 
 
For a body with N cells and n planes of symmetry  )3,2,1( =n , we define four matrices 

with 3,2/3 ==′ MNN n  and  nNK 2/=  as follows, 
 

),,,(diag.Block oooS IIII
t

L
ttt

= ,     ),,,(diag.Block 1111 IIII S
t

L
ttt

=  

 ),,,(diag.Block 2222 IIII S
t

L
ttt

= ,     ),,,(diag.Block 3333 IIII S
t

L
ttt

=  
 
Now, it is observed that matrix representations   ,,,,,, 12321 SSSSSS IIIIII

tttttt
−−   

SS II
tt

−− and,3  correspond to group elements ,,,,, 31321 RRRRRI  

3212132 ,, RRRRRRR , respectively.   Substituting these matrix representations for 
various group elements in the character tables given by tables 2, 3 and 4, we get unitary 
transformation matrices for three planes, two planes and one plane of symmetry; 

321 and,, VVV
ttt

 where   
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−
−−−
−−−−

−−
−−−−

−−
−

−−−

=

SSSSSSSS

SSSSSSSS

SSSSSSSS

SSSSSSSS

SSSSSSSS

SSSSSSSS

SSSSSSSS

SSSSSSSS

IIIIIIII
IIIIIIII
IIIIIIII

IIIIIIII
IIIIIIII

IIIIIIII
IIIIIIII
IIIIIIII

V

tttttttt

tttttttt

tttttttt

tttttttt

tttttttt

tttttttt

tttttttt

tttttttt

t

132231

132231

132231

132231

132231

132231

132231

132231

1
22

1         (13) 

 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−
−

=

123

123

123

123

2 2
1

SSSS

SSSS

SSSS

SSSS

IIII
IIII
IIII
IIII

V
tttt

tttt

tttt

tttt

t
                            (14) 
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           ⎥
⎦

⎤
⎢
⎣

⎡

−
=

2

2
3

2
1

SS

SS

II
II

V tt

tt
t

                                             (15) 

 
All unitary transformation matrices are normalized so as to satisfy IVV T ttt

= . 
 
 
5. Block diagonalization of scattering matrix 
 
We will derive the block diagonalized matrix  for one plane of symmetry (xz plane) using 
the unitary transformation matrix obtained in section 4.  Consider a body with N cells, 
which is surrounded by N receiving dipole location.  The body and the receiving dipole 
locations are assumed to be symmetrical with respect to the xz plane, which passes 
through the origin of the three-dimensional xyz space.  The positive Y region is denoted 
by region 1, while the negative Y is denoted by region 2.  If ijB

t
 represents a 

2323 NN ×  matrix  which relates the polarization currents in the cells of region j to 
scattered electric fields at receiving dipole locations in the region i, 
 

            ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211
1 BB

BB
B tt

tt
t

  (16) 

 
In region 1 and 2, if  21 and jj

rr
 are the polarization currents in the cells and 

SS EE 21   and
rr

 are the scattered electric fields at receiving dipole locations, then  
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= S

S
Sp

E
EE

j
j

j
2

1

2

1 and r

r
t

r

r
r

  (17) 

 
Substituting into equation (1), we have 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

2

1

2221

1211

2

1

j
j

BB
BB

E
E

S

S
r

r

tt

tt

r

r

  (18) 

 
Using the  symmetry in the Green’s functions, it can be shown (see Appendix) that 
 
 211222 SS IBIB

tttt
⋅⋅=   (19) 

212221 SS IBIB
tttt
⋅⋅=  
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Using equations (3), (15) and (16), we have 
 

  T
b VBVB

tttt
⋅⋅= 11  

         ⎥
⎦

⎤
⎢
⎣

⎡

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
=

222221

1211

2

2

2
1

2
1

SS

SS

SS

SS

II
II

BB
BB

II
II

tt

tt

tt

tt

tt

tt

 

  
( )

( )⎥⎦
⎤

⎢
⎣

⎡

⋅−
⋅+

=
21211

21211

20
02

2
1

S

S

IBB
IBB

tttt

tttt

 

 
Therefore, 

 ⎥
⎦

⎤
⎢
⎣

⎡

⋅−
⋅+

=
21211

21211
1 0

0

S

S
b IBB

IBB
B tttt

tttt
t

 (20) 

 
where 0

t
 is a  2323 NN × null matrix. 

 
Using equations (4), (15) and (17), we have 
 
 pp

b jVj
ttt

⋅=  

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
=

2

1

2

2

2
1

j
j

II
II

j
SS

SSp
b t

t

tt

tt
t

⎥
⎦

⎤
⎢
⎣

⎡

−
+

=
221

221

2
1

jIj
jIj

j
S

Sp
b rtr

rtr
r

 (21) 

 
Using equations (5), (15) and (18), we have 
 

 SS
b EVE

ttt
⋅=  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
= S

S

SS

SSS
b E

E
II

II
E

2

1

2

2

2
1

t

t

tt

tt
t

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

= S
S

S

S
S

S
S
b EIE

EIEE
221

221

2
1

rtr

rtr
r

  (22) 

 
 
After substituting equations (20) to (22) into equation (2), it is observed that we have to 
consider two  2323 NN ×    matrices instead of a NN 33 ×  scattering matrix 1B

t
.  

Equations similar to equations (20) to (22) can be derived for other planes of 
symmetries by using appropriate unitary transformation matrices given in equations (13) 
to (15). 
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6. Conclusion 
 
The group representation theory is a powerful tool for achieving reduction in matrix 
formation and matrix inversion time in electromagnetic imaging problems. The block 
diagonalized matrix  bB1

t
 has 2n blocks of nn NN 2323 × matrices where n is the 

number of planes of symmetry.  For the NN 33 ×  scattering matrix, time for inversion is 
proportional to 3)3( N and formation time is proportional to .)3( 2N   Thus the time for 

inversion of block diagonalized matrix bB1
t

 is reduced by a factor of n22  as compared 

with time for inversion of 1B
t

.  The matrix formation time is reduced accordingly by a 

factor of  .2n  
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Appendix 
 
For evaluating the matrix elements, we need to solve the following volume integral 
involving Green’s functions.  Assume that 
 

'
42

2 dv
R

e
k

IkG
Rjk

Vm π

ε

ε
ε

−

∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∇∇
+=

l

tt
l  

 
where  l

t
mG   is a 33×  matrix relating three orthogonal components of scattered electric 

fields at the mth receiver location to three orthogonal components of polarization current 
in the  l th cell.  By going through steps similar to equation 15 to 44 of [7], we have 
 

S
m

V
mm GGG lll

ttt
+=  

For 1B
t

 matrix,  
 

           Iakakak
Rk

eG
m

Rjk
V

m

m tt

l
l

l

⋅−=
−

)]cos()[sin( εεε
ε

ε

                                     (A1) 

 
where  2/1222 ])()()[( llll zzyyxxR mmmm −+−+−=  
 

     lΔ⎟
⎠
⎞

⎜
⎝
⎛=

3/1

4
3
π

a  

 
lΔ  is the cell size of the  l th cell and  I

t
  is a  33× identity matrix. 

 

∑ ∫
=

−=
2

1
3 ')',()1(

i
S m

iS
m

n
dsrrGG rrt

l φγ  

 
where φG  in dyadic notation, 
 

⎥
⎥
⎥
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3,2,1=jU j  unit vectors in  zyx ˆandˆ,ˆ   directions, respectively. 
 

'
33 '4
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2/1222 ])'()'()'[(' zzyyxxR mmm −+−+−=   
 
From equation (A1) and (A2), it is observed that the off-diagonal elements are 
determined by equation (A2) only.  If there is one plane of symmetry (xz plane), then the 
off-diagonal elements will be negative for the Green’s function of  .)','( l

rrt
rrG m   This is 

due to ŷ   becoming  ŷ−  and the change in sign for the term  )'( yym −   in equation  
(A2).  Thus, 
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Because  2SI
t

  consists of blocks of  T
t

 matrix, it is observed that 
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