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Abstract.  In this paper some coincidence point theorems in pseudocompact Tichonov spaces have 

been established which generalize the corresponding results of Fisher [2], Harinath [3], Jain and Dixit 

[4], Liu[6,7], Rao [9] and Taniguchi [11]. 

 
1. Introduction 
 
A topological space X is said to be pseudocompact if and only if each real valued 
continuous function on X is bounded.  By Tichonov space we mean a completely regular 
Hausdorff space.  It may be noted that every compact space is pseudocompact.  Example 
112 in [10] reveals that pseudocompact Tichonov spaces contain all compact metric spaces 
as a proper subclass.  If X is an arbitrary Tichonov space, then X is pseudocompact if and 
only if every real valued continuous function over X is bounded and attains its bounds. 
     In [3], Harinath first established fixed point theorems for contractive type mappings in 
pseudocompact Tichonov spaces.  Afterwards, Jain and Dixit [4,5], Liu [6,7], Naidu and 
Rao [8], Rao [9] and others extended Harinath’s results in various directions.  The purpose 
of this paper is to extend the results of Harinath, Jain, Dixit, Liu and Rao to much wider 
classes of mappings.  In section 2, we prove coincidence point theorems of contractive type 
mappings.  In section 3, we obtain coincidence point theorems of expansive type 
mappings. 

Throughout this paper, X stands for a pseudocompact Tichonov space and F denotes a 
nonnegative real valued function on .XX ×  
 
 
2.  Coincidence point theorems for contractive type mappings 
 
Theorem 2.1.  Let F satisfy that 0),( =yxF  if and only if yx = .  Suppose that sgf ,,  
and  t  are four self mappings on  X  such that  
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(a1) ; )()(  ,)()( XsXgXtXf ⊆⊆  
(a2)  either ),()( sxfxFxa =  or ),()( gxtxFxb =  is continuous on X ;  
(a3)  for ,,,, gytysxfxsxtygyfx ≠≠≠≠       
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Then either f and s  or g  and t  have a coincidence point in X.  
 
Proof.    First of all we assume that )(xb  is continuous.  Then there exists 0x  in X such 
that { }Xxxbxb ∈= |)(inf)( 0 .  It follows from (a1) that there exist 1x  and 2x  in X such 
that ., 2110 txfxsxgx ==   Suppose that neither  f  and  s  nor g and  t  have a coincidence 
point in  X.  In view of (2.1), we have 
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which implies that 

).,()(),( 11221 sxfxFxbgxfxF <=                              (2.2) 
 

 
______________________ 
(*) This project is supported in part by the National Natural Science Foundation of China (69973019). 
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By virtue of (2.1), we conclude that 
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which yields that  
 

( ) ( ).,, 0001 gxtxFgxfxF <                                             (2.3) 
 

It follows from (2.2) and (2.3) that ,)(),(),()( 000012 xbgxtxFgxfxFxb =<< which is a 
contradiction.   So either  f and s or g and t have a coincidence point.  Similarly we can 
prove the theorem when )(xa  is continuous.  This completes the proof. 
 
     As a consequent of Theorem 2.1, we have 
 
Corollary 2.1.  Let  F  satisfy that 0),( =yxF  if and only if yx = .  Assume that f and s 
are self mappings on  X  satisfying 
 
(a4) ;)()( XsXf ⊆   
(a5)  ),()( sxfxFxa =  is continuous; 
(a6)   for ,,,, syfysxfxsxsyfyfx ≠≠≠≠   
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Then f and s have a coincidence point in X.  
 

Reviewing the proof of Theorem 2.1 and omitting the condition that 0),( =yxF  if 
and only if yx = , we can see that the following result is true. 

 
Theorem 2.2.   Suppose that f, g, s and t are four self mappings on X satisfying (a1) and (a2) 
in Theorem 2.1 and 
 
(a7)  for ,,,, gytysxfxsxtygyfx ≠≠≠≠   

}{ .),(,),(,),(max),( gytyFsxfxFsxtyFgyfxF <  
 

Then either f and s  or g  and t  have a coincidence point in X. 
 
Theorem 2.3.  Let F,  f  and s  be as in Corollary 2.1 and satisfy conditions (a4), (a5) and  
the inequality 
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for . , sysxfyfx ≠≠   Then f and s  have a coincidence point in X.  Moreover, if  f and s  
commute at the coincidence point, then f  and s have a unique common fixed point in X.  
 
Proof.  As in the proof of Theorem 2.1, we can find a point Xx ∈0 such that 

{ }.|)(inf)( 0 Xxxaxa ∈=  Suppose .00 sxfx ≠  It follows that there exists 
Xx ∈1 satisfying .10 sxfx =    So ., 0101 fxfxsxsx ≠≠  Using (2.4), we conclude that 
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which means that . )()()( 010 xaxaxa <≤   This is a contradiction.  Hence .00 sxfx =  
Moreover, if  f  and  s commute at ,0x  that is, ,00 sfxfsx = then  
 

0000 ssxsfxfsxffx === .                                          (2.5) 
 

Put .0fx=υ   Now we show that υ  is a common fixed point of f and s.   Suppose that 
υυ ≠f .  According to (2.4) and (2.5), we have 
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which is a contradiction.  Hence υ  is a fixed point of  f.  Clearly, .υυ =s   That is, υ  is a 
common fixed point of  f and s.  
     To prove uniqueness, if possible, suppose that ω  is another common fixed point of   f 
and s, and is different from .υ   It follows from (2.4) that 
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which is a contradiction.  Hence υ  is the only common fixed point of f and s.  This 
completes the proof. 
 
     Similarly we can prove the following result. 
 
Corollary 2.2.  Let F  be as in Corollary 2.1 and XXf →:  be a mapping satisfying  
 
(a8)   ),()( xfxFxa =  is continuous; 
(a9)   for yx ≠ , 
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Then  f  has a unique fixed point in X . 
 
Remark 2.1.  Theorem 2.1 extends Theorem 1 of Liu [6] with ts =  and Theorem 1 of Liu 
[7]. 
 

The following example shows that Theorem 2.1 generalizes properly the 
corresponding results of Liu [6, 7] . 

  
Example 2.1.   Let { }4,3,2,1=X  with  F defined by ),(),(,0),( xyFyxFxxF ==  for 
all ,, Xyx ∈ and  
 

 ( ) ( ) ( ) ( ) ( ) ( ) .5.14,2,23,2,14,34,13,12,1 ====== FFFFFF  
 

Clearly X is a compact metric space with metric F.  So X is a pseudocompact Tichonov 
space.  Define f, g, s  and  XXt →:  by 
 

;143,421 ;43,1421 ======== ggggffff  

.13,242,41 ;12,24,43,31 ======== ttttssss  
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It is easy to verify that the conditions of Theorem 2.1 are satisfied, but Theorem 1 of           
Liu [7] is not applicable since  
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does not hold for fyfx ≠ with .3,1 == yx  

On the other hand, let .th =   Then  
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is not satisfied for .4,3 == yx   That is, Theorem 1 of Liu [6] is unavailable.  
 
Remark 2.2.  Corollary 2.2 extends Theorem 2 of Jain and Dixit [4], Theorem 1 of 
Harinath [3] and Theorem 2 of Fisher [2]. 
 
3. Coincidence point theorems for expansive type mappings 
 
The following result is a cousin to Theorem 2.1, but “reverses” the inequality in (2.1). 
 
Theorem 3.1.   Let F satisfy that 0),( =yxF  if and only if yx = .   Suppose f, g, s and        t 
are four self mappings on  X satisfying conditions (a1) and (a2) of Theorem 2.1 and  
 

 (b1)  for gytysxfxsxtygyfx ≠≠≠≠ ,,,  
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Then either f and s or g  and  t  have a coincidence point in X. 
 
Proof.   Assume that ),()( gxtxFxb =  is continuous on X.  Since X is a pseudoompact 
Tichonov space, it follows from (a2) that there exists 0x  in X such that 



Z. Liu and L. Zhang 

 

66

{ }.|)(sup)( 0 Xxxbxb ∈=   By (a1), there exist 21, xx  in X such that ., 2110 txfxsxgx ==   
Suppose neither  f and s nor g and  t  have a coincidence point.  Then from (b1), we have  
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so that .),()( 112 sxfxFxb >  Using (b1), we infer that  
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which means that .)(),(),()( 000112 xbgxtxFsxfxFxb =>>   It is a contradiction. Hence 
either  f and s  or g  and t  have a coincidence point.  Similarly we can prove the theorem 
when )(xa is continuous. 
 

The example below shows that the coincidence points of f and s  or g  and t  may 
not be unique. 
 
Example 3.1.  Let X, f, g, s and  t  be as in Example 2.1.  Define [ )∞+→× ,0 : XXF  by 
  

( ) ( ) ( )xyFyxFxxF ,,,0, == , 



Coincidence Point Theorems in Pseudocompact Tichonov Spaces 

 

67 

for all ,, Xyx ∈ and  
 

 ( ) ( ) ( ) ( ) ( ) ( ) .5.14,2,2.13,1,23,2,14,34,12,1 ====== FFFFFF  
 

It is easy to see that the conditions of Theorem3.1 are satisfied. However, 2 and 3 are 
coincidence points of  f and s, and 1 and 3 are coincidence points of g and  t. 
 
    From Theorem 3.1, we have 
 
Corollary 3.1.  Let F,  f and s  be as Theorem 3.1 and satisfy conditions (a4) and (a5) in 
Corollary 2.1 and 
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Then  f and s  have a coincidence point in X. 
 
Corollary 3.2. [8,Theorem 2].  Suppose that  f, g, s and t are four self mappings on             X 
satisfying (a1) and (a2) in Theorem 2.1 and 
 
(b3)  for ,,,, gytysxfxsxtygyfx ≠≠≠≠   
 

}{ .),(,),(,),(min),( gytyFsxfxFsxtyFgyfxF >                          (3.3) 
 

Then either f and  s or g  and  t have a coincidence point in X. 
 
Remark 3.1.   Theorem 3 of  Taniguchi [11] is a special case of Corollary 3.2.  
 
Theorem 3.2.   Let F  be as in Corollary 2.1 and XXf →:  be a mapping satisfying 
condition (a8) in Corollary 2.2 and 
 
(b4)  for fyfx ≠  
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Then f has a fixed point in X . 
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Proof. Let { }.|)(sup)( 0 Xxxaxa ∈=   If ,00
2 fxxf ≠  then .00 xfx ≠  By (3.4), we have 
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which implies that ).()( 00 xafxa >  It is a contradiction. Hence .00
2 fxxf =  This 

completes the proof. 
 
Remark 3.2.  Observe that the identity mapping on X satisfies the assumptions of Theorem 
3.2.  It follows that the fixed points of  f  in Theorem 3.2 may not be unique. 
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